
José Júlio Alferes
Federico Banti
Antonio Brogi

João Alexandre Leite

The Refined Extension
Principle for Semantics of
Dynamic Logic
Programming

Abstract. Over recent years, various semantics have been proposed for dealing with
updates in the setting of logic programs. The availability of different semantics naturally

raises the question of which are most adequate to model updates. A systematic approach
to face this question is to identify general principles against which such semantics could

be evaluated. In this paper we motivate and introduce a new such principle – the refined

extension principle. Such principle is complied with by the stable model semantics for
(single) logic programs. It turns out that none of the existing semantics for logic program

updates, even though generalisations of the stable model semantics, comply with this

principle. For this reason, we define a refinement of the dynamic stable model semantics
for Dynamic Logic Programs that complies with the principle.

Keywords: Logic Programming, Dynamic Logic Programming, Updates, Belief Change,

Non-monotonic Reasoning, Answer-set Programming, Stable Model Semantics

1. Introduction and Motivation

Until recently, most of the research in the field of logic programming for
representing knowledge that evolves with time has focused on changes in
the extensional part of knowledge bases (factual events or observations).
This is what happens with the event calculus [9], logic programming forms
of the situation calculus [15, 17] and logic programming representations of
action languages [8]. In all of these, the problem of updating the intensional
part of the knowledge base (rules or action descriptions) remains basically
unexplored.

In recent years, some amount of effort was devoted to explore the problem
of updates in a logic programming setting, leading to different framework
proposals and semantics [1, 4, 5, 10, 12, 13, 20, 21]. According to most of
these proposals, knowledge is given by a sequence of logic programs (or a
Dynamic Logic Program [1, 2, 10]) where each is to be viewed as an update
to the previous ones. Most of the existing semantics are based on the notion
of causal rejection of rules introduced by Leite and Pereira in [12] i.e., the
rejection of a prior rule if there is a newer one that conflicts with it, and on

Special Issue on Reasoning about Action and Change
Edited by Gerhard Brewka and Pavlos Peppas

Studia Logica 79: 7–32, 2005.
c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

8 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

a notion of default assumptions that can be added to the theory. Different
notions of rejection and default assumptions lead to different semantics,
namely the justified update semantics [12, 13], the dynamic stable model
semantics [1, 2, 10] and the update answer-set semantics [5]1.

While such existing semantics based on causal rejection coincide on a
large class of dynamic logic programs, they essentially differ on the extent
to which they are immune to some apparently inoffensive updates (e.g. tau-
tologies2). Take, for example, the program P1 = {a.} and update it with
P2 = {not a ← not a.}. Intuitively, one would expect the update of P1 with
P2 not to change the semantics because the only rule of P2 is a tautology.
This is not the case according to the semantics of justified updates which
admits, after the update, the models {a} and {}3.

Examples such as this one motivated the introduction of the dynamic
stable model semantics [1, 2] which properly deals with them. Unfortunately,
there still remain examples involving tautological updates where none of the
existing semantics behaves as expected. Let us now show an example to
illustrate the problem.

Example 1.1. Consider the program P1 describing some knowledge about
the sky. At each moment it is either day time or night time; we can see the
stars whenever it is night time and there are no clouds; and currently it is
not possible to see the stars.

P1 : day ← not night.
night ← not day.
stars ← night,not cloudy.
not stars.

The only dynamic stable model of this program is {day}. Suppose now the
program is updated with the following tautology:

P2 : stars ← stars.

This tautological update introduces a new dynamic stable model. In fact,
besides the intuitively correct dynamic stable model {day}, the dynamic
stable model semantics also admits the model {night, stars}. Technically,
this happens because the rule in P2, which has a true body in the latter
model, causally rejects the fact not stars of P1. Furthermore, these results

1In this paper, we only consider semantics based on the notion of causal rejection.
2By a tautology we mean a rule of the form L ← Body with L ∈ Body.
3Similar behaviours are exhibited by the update answer-set semantics [5].

The Refined Extension Principle for Semantics of DLP 9

are shared by all other existing semantics for updates based on causal rejec-
tion [1, 4, 5, 10, 12, 13]. We argue that this behaviour is counterintuitive as
the addition of the tautology in P2 should not add new models.

This alone should be enough to have us start the quest for a semantics
for updates that is immune to tautologies. But the problem runs deeper.
Typically, these tautological updates are just particular instances of more
general updates that should be ineffective but, in reality, cause the intro-
duction of new models e.g. those with a rule whose head is self-dependent4

as in the following example:

Example 1.2. Consider again program P1 of Example 1.1, and replace P2

with
P2 : stars ← venus.

venus ← stars.

While P1 has only one model (viz., {day}), according to all the existing
semantics for updates based on causal rejection, the update P2 adds a second
model, {night, stars, venus}. Intuitively, this new model arises since the
update P2 causally rejects the rule of P1 which stated that it was not possible
to see the stars.

On the basis of these considerations, it is our stance that, besides the
principles used to analyze and compare these semantics, described in [5, 10],
another important principle is needed to test the adequacy of semantics
of logic program updates in some important situations, in particular those
concerning the unwanted generation of new dynamic stable models when
certain sets of rules are added to a dynamic logic program. It is worth
noting, however, that an update with the form of P2 in Example 1.2 may
have the effect of eliminating previously existing models, this often being a
desired effect, as illustrated by the following example:

Example 1.3. Consider program P1 with the obvious intuitive reading: one
is either alone or with friends, and one is either happy or depressed.

P1 : friends ← not alone.
alone ← not friends.
happy ← not depressed.
depressed ← not happy.

This program has four dynamic stable models namely, {friends, depressed},
{friends, happy}, {alone, happy} and {alone, depressed}. Suppose now

4For the definition of self-dependent literals in a logic program, see [3].

10 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

that the program is updated with the following program (similar to P2 used
in Example 1.2):

P2 : depressed ← alone.
alone ← depressed.

This update specified by P2 eliminates two of the dynamic stable models,
leaving only {friends, happy} and {alone, depressed}, this being a desirable
effect.

In this paper we propose a new principle, that we call the refined exten-
sion principle, which can be used to compare different semantics for updates
based on the stable model semantics — as is the case of all the above men-
tioned.

To this purpose, we start with the simple case of a single logic program
and set forth the refined extension principle which, if complied with by a
semantics, specifies some conditions under which rules can be safely added
without introducing new models according to that semantics. Notably, the
stable model semantics [7] complies with this principle. Informally, the se-
mantics based on stable models can be obtained by taking the least model
of the definite program obtained by adding some assumptions (default nega-
tions) to the initial program. Intuitively, the refined extension principle
states that the addition of rules that do not change that least model should
not lead to obtaining more (stable) models.

Subsequently, we generalize this principle by lifting it to the case of
semantics for dynamic logic programs. Not unexpectedly, given the examples
above, it turns out that none of the existing semantics for updates based on
causal rejection complies with such principle, which leads us to introduce a
new semantics for dynamic logic programs, namely the refined dynamic stable
model semantics, which complies with the refined extension principle. The
refined dynamic stable model semantics is obtained by refining the dynamic
stable model semantics [1, 2, 10] which, of all the existing semantics, as shall
be seen, is the one that complies with the refined extension principle on the
largest class of programs.

The rest of the paper is organized as follows. Section 2 recalls some
preliminary notions and establishes notation. Section 3 is devoted to mo-
tivate and present the refined extension principle, while in Section 4 a re-
fined semantics for logic program updates that complies with the principle
is presented. Section 5 is devoted to compare the new semantics with other
existing semantics, and to analyze these with respect to the refined extension
principle. Finally, some concluding remarks are drawn. In Appendix, the
reader can find all the proofs of the results presented throughout the paper.

The Refined Extension Principle for Semantics of DLP 11

2. Preliminaries

In this paper we extensively use the concept of generalized logic programs
[16] i.e. logic programs that allow for default negation both in the bodies
as well as in the heads of their rules. A generalization of the stable models
semantics for normal logic programs [7] to the class of generalized programs
was defined by Lifschitz and Woo [16]. Here we present such semantics
differently from [16], the equivalence of both definition being proven in [2].

Let A be a set of propositional atoms. A default literal is an atom
preceded by not . A literal is either an atom or a default literal. A rule r
is an ordered pair H (r) ← B (r) where H (r) (dubbed the head of the rule)
is a literal and B (r) (dubbed the body of the rule) is a finite set of literals.
A rule with H (r) = L0 and B (r) = {L1, . . . , Ln} will simply be written as
L0 ← L1, . . . , Ln. A rule with H (r) = L0 and B (r) = {} is called a fact
and will simply be written as L0.

A generalized logic program (GLP) P , in A, is a finite or infinite set of
rules5. By P∅ we mean an empty set of rules. If H(r) = A (resp. H(r) =
not A) then not H(r) = not A (resp. not H(r) = A). Two rules r and r′ are
conflicting, denoted by r !" r′, iff H(r) = not H(r′).

An interpretation M of A is a set of atoms (M ⊆ A). An atom A is true
in M , denoted by M ! A, iff A ∈ M , and false otherwise. A default literal
not A is true in M , denoted by M ! not A, iff A /∈ M , and false otherwise.
A set of literals B is true in M , denoted by M ! B, iff each literal in B is
true in M .

A rule r is satisfied by an interpretation M iff whenever M ! B(r) then
M ! H(r). An interpretation M is a model of a program P iff M satisfies all
rules in P.

An interpretation M of A is a stable model (or answer set) of a generalized
logic program P iff

M = least (P ∪ {not A | A %∈ M}) (1)

where M = M ∪ {not A | A %∈ M}, A is an atom, and least(.) denotes the
least model of the definite program obtained from the argument program by
replacing every default literal not A by a new atom not A6.

5As usual, we assume that each rule is identified by a unique name. Consequently, we
can have, in the same program, two distinct rules, r and r′, such that H(r) = H(r′) and
B(r) = B(r′).

6This amounts to determining the least model of the argument program, treating de-
fault literals as positive atoms.

12 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

A dynamic logic program (DLP) is a sequence of generalized logic pro-
grams. Let P = (P1, ..., Ps) and P ′=(P ′

1, ..., P
′
s) be two DLPs. We use ρ (P)

to denote the set of all rules appearing in the programs P1, ..., Ps, and P∪P ′

to denote the DLP (P1 ∪ P ′
1, ..., Ps ∪ P ′

s). According to all semantics based
on causal rejection of rules, an interpretation M models a DLP iff

M = Γ (P,M) (2)

where

Γ (P,M) = least (ρ (P) − Rej (P,M) ∪ Def (P,M)) (3)

and where Rej (P,M) stands for the set of rejected rules and Def (P,M)
for the set of default assumptions, both given P and M . Intuitively, we
first determine the set of rules from P that are not rejected, i.e. ρ (P) −
Rej (P,M), to which we add a set of default assumptions Def (P,M). Note
the similarity to the way stable models of generalized logic programs are
obtained, where default assumptions of the form not A are added for every
A %∈ M .

From [10] it is easy to see that all existing semantics for updates based on
causal rejection are parameterizable using different definitions of Rej (P,M)
and Def (P,M). The dynamic stable model semantics [1, 10] for DLP is
defined as follows:

Definition 2.1. Let P be a dynamic logic program and M an interpretation.
M is a dynamic stable model of P iff

M = ΓD (P,M) (4)

where

ΓD (P,M) = least
(
ρ (P) − RejD (P,M) ∪ Def (P,M)

)
(5)

and

RejD (P,M) =
{
r | r ∈ Pi,∃r′ ∈ Pj , i < j, r !" r′,M ! B(r′)

}
(6)

Def(P,M) = {not A | #r ∈ ρ(P),H(r) = A,M ! B(r)} (7)

3. Refined Extensions

As mentioned in the Introduction, we are interested in exploring conditions
guaranteeing that the addition of a set of rules to a (dynamic) logic program
does not generate new (dynamic) stable models. In this Section, we motivate
and introduce the notion of refined extension for both the case of single
logic programs and dynamic logic programs, which, together with the results
proven, constitute a step in such direction.

The Refined Extension Principle for Semantics of DLP 13

3.1. Refined Extensions of Generalized Logic Programs

Informally, the semantics based on stable models are obtained by taking the
least model of the definite program obtained by adding some assumptions
(default negations) to the initial program i.e., the stable models of a gener-
alized logic program P are those interpretations M such that M coincides
with the least model of the program7

P ∪ {not A | A %∈ M}

In general, several semantics share the characteristic that the models of
a program P can be characterized as the least model of the program

P ∪ Assumptions (P,M)

where Assumptions (P,M) is simply a set of default literals whose def-
inition depends on the semantics in use. Note that all of the stable models
[7], the well-founded [6] and the weakly perfect model semantics [19] can
be defined in this way. As mentioned above, the stable model semantics of
normal and generalized programs can be obtained by establishing that

Assumptions (P,M) = {not A | A %∈ M} .

In the sequel, if Sem is a semantics definable in such a way, by Sem(P)
we denote the set of all models of a given program P , according to Sem.

With the intention of defining the refined extension principle, we first
need to set forth some intermediate notions, namely that of syntactic exten-
sion of a program. Intuitively we say that P ∪E is a syntactic extension of
P iff the rules in E have no effect on the least model of P . Formally:

Definition 3.1. Let P and E be generalized logic programs. We say that
P ∪ E is a syntactic extension of P iff least (P) = least (P ∪ E).

Consider now a generalized program P , and a set of rules E. A model
M of P ∪E according to Sem is computed as the least model of the definite
logic program obtained by adding the set of default assumptions to P ∪ E.
We can then apply the concept of syntactical extension to verify whether
the addition of the rules in E does not influence the computation of M . If
this is the case for all models of the program P ∪ E, according to Sem, we
say that P ∪ E is a refined extension of the original program P . Formally:

7Here and elsewhere, whenever we mention the model of a GLP, we mean the model
of the definite logic obtained from the GLP by replacing every default literal not A by a
new atom not A.

14 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

Definition 3.2. Let P and E be generalized logic program, M an interpre-
tation, and Sem a semantics for generalized logic programs. We say that
P ∪ E is an extension of P with respect to Sem and M iff

P ∪ Assumptions (P ∪ E,M) ∪ E

is a syntactic extension of

P ∪ Assumptions(P ∪ E,M)

We say that P ∪ E is a refined extension of P with respect to Sem iff P ∪ E
is an extension of P with respect to Sem and all models in Sem(P ∪ E).

Example 3.3. Let P1 and P2 be the programs:

P1 : day ← not night.
night ← not day.
stars ← night,not cloudy.
not stars.

P2 : stars ← stars

It is clear that irrespective of what the set Assumptions (P1 ∪ P2,M) of
added assumptions is, given any model M , we have that the least model
of P1 ∪ Assumptions (P1 ∪ P2,M) coincides with the least model of P1 ∪
Assumptions (P1 ∪ P2,M) ∪ P2. Thus, P1 ∪ P2 is a refined extension of P1.

We are now ready to formulate the refined extension principle for seman-
tics of generalized logic programs. Intuitively, a semantics complies with the
refined extension principle iff a refined extension of a program P does not
have more models than P .

Principle 3.4 (Refined extension – static case). A semantics Sem for gen-
eralized logic programs complies with the refined extension principle iff for
any two generalized logic programs P and E, if P ∪E is a refined extension
of P then

Sem(P ∪ E) ⊆ Sem(P).

As one may expect, the principle properly deals with the case of adding
tautologies, i.e., for any semantics Sem that complies with the principle, the
addition of tautologies does not generate new models.

The Refined Extension Principle for Semantics of DLP 15

Proposition 3.5. Let Sem be a semantics for generalized programs, P a
generalized program, and τ a tautology. If Sem complies with the refined
extension principle then

Sem(P ∪ {τ}) ⊆ Sem(P).

Most importantly, the stable model semantics complies with the refined
extension principle, as stated in the following proposition:

Proposition 3.6. Let P be any generalized logic program, P ∪ E be a
refined extension of P , and M a stable model of P ∪ E. Then M is also a
stable model of P .

As an immediate consequence of these two propositions, we get that the
addition of tautologies to a generalized program does not introduce new
stable models. The converse is also true i.e., the addition of tautologies to a
generalized program does not eliminate existing stable models.

3.2. Refined Extensions of Dynamic Logic Programs

We now generalize the refined extension principle to the case of dynamic
logic programs, so as to guarantee that, according to the semantics that
comply with it, certain updates do not generate new models.

Definition 3.7. Let P and E be two dynamic logic programs8, Sem a
semantics for dynamic logic programs and M an interpretation. We say
that P ∪ E is an extension of P with respect to M iff

[ρ (P) − Rej (P ∪ E ,M)] ∪ Def (P ∪ E ,M) ∪ [ρ (E) − Rej (P ∪ E ,M)]

is a syntactical extension of

[ρ (P) − Rej (P ∪ E ,M)] ∪ Def (P ∪ E ,M)

We say that P ∪ E is a refined extension of P iff P ∪ E is an extension of P
with respect to all models in Sem(P ∪ E).

Note that the above definition is the straightforward lifting of Defini-
tion 3.2 to the case of dynamic logic programs. Roughly speaking, we simply
replaced P and E with ρ (P)−Rej (P ∪ E ,M) and ρ (E)−Rej (P ∪ E ,M),
respectively.

The refined extension principle is then formulated as follows.

8Here, and elsewhere, we assume that the sequences of GLPs (or DLPs) P and E are
of the same length.

16 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

Principle 3.8 (Refined extension principle). A semantics Sem for dynamic
logic programs complies with the refined extension principle iff for any dy-
namic logic programs P and P ∪ E , if P ∪ E is a refined extension of P
then

Sem(P ∪ E) ⊆ Sem(P).

Again, this principle amounts to the straightforward lifting of Principle
3.4 Unfortunately, as we already pointed out in the Introduction, none of
the existing semantics for dynamic logic programs based on causal rejection
comply with the refined extension principle.

Example 3.9. Consider again the program P1 and P2 of Example 1.2. The
presence of the new model contrasts with the refined extension principle.
Indeed, if we consider the empty update P∅, then the dynamic logic pro-
gram (P1, P∅) has only one stable model (viz., {day}). Since, as the reader
can check, (P1, P2) is a refined extension of (P1, P∅) then, according to the
principle, all models of (P1, P2) should also be models of (P1, P∅). This is
not the case for existing semantics.

If we consider infinite logic programs, there is also another class of ex-
amples where all the previously existing semantics based on causal rejection
fail to satisfy the refined extension principle. This class of examples consists
of sequences of updates containing an infinite number of conflicting rules
whose bodies are satisfied i.e., an infinite number of potential contradictions
where each is removed by a later update, of which the following example
serves as illustration.

Example 3.10. Consider an infinite language consisting of the constant 0
and of the unary function successor. The set of terms of such a language
has an obvious bijection to the set of natural numbers. In this context, given
a term n, we will use the expression n + 1 for successor(n). Let q be an
unary predicate and A the set of propositional atoms consisting of all the
predicates of the form q(n).

Consider the following programs:

P1 : q(X).
not q(X).

P2 : q(X) ← q(X + 1).

Since P1 and P2 contain the variable X, in order to compute the sta-
ble model semantics, we have to consider the ground versions of the two

The Refined Extension Principle for Semantics of DLP 17

programs i.e., the following two infinite programs:

P ground
1 : q(n). ∀ n ∈ N

not q(n). ∀ n ∈ N

P ground
2 : q(n) ← q(n + 1). ∀ n ∈ N

All existing semantics based on causal rejection admit the interpretation
I = A, consisting of all the predicates of the form q(n), as a model of the pro-
gram (P ground

1 , P ground
2). Since the program (P ground

1 , P∅) is clearly contra-
dictory, hence having no stable models, and the program (P ground

1 , P ground
2)

is a refined extension of (P ground
1 , P∅), then, according to the refined exten-

sion principle, it should be taken as contradictory and have no models.

As for the case of generalized programs, if we consider a semantics Sem
for dynamic logic programs that complies with the principle, the addition
of tautologies does not generate new models. This is stated in the following
proposition that lifts Proposition 3.5 to the case of dynamic logic programs.

Proposition 3.11. Let Sem be a semantics for dynamic logic programs, P
a dynamic logic program, and E a sequence of sets of tautologies. If Sem
complies with the refined extension principle then

Sem(P ∪ E) ⊆ Sem(P).

4. Refined Semantics for Dynamic Logic Programs

In this Section we define a new semantics for dynamic logic programs that
complies with the refined extension principle.

Before proceeding we will take a moment to analyze the reason why
the dynamic stable model semantics fails to comply with the refined ex-
tension principle in Example 1.1. In this example, the extra (counterintu-
itive) dynamic stable model {night, stars} is obtained because the tautology
stars ← stars in P2 has a true body in that model, hence rejecting the fact
not stars of P1. After rejecting this fact, it is possible to consistently con-
clude stars, and thus verify the fixpoint condition (Equation 5), via the rule
stars ← night,not cloudy of P1.

Here lies the matrix of the undesired behaviour exhibited by the dynamic
stable model semantics: One of the two conflicting rules in the same program
(P1) is used to support a later rule (of P2) that actually removes that same
conflict by rejecting the other conflicting rule. Informally, rules that should

18 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

be irrelevant may become relevant because they can be used by one of the
conflicting rules to defeat the other.

A simple way to inhibit this behaviour is to let conflicting rules in the
same state inhibit each other. This can be obtained with a slight modifica-
tion to the notion of rejected rules of the dynamic stable model semantics,
namely by also allowing rules to reject other rules in the same state. Since,
according to the dynamic stable model semantics, rejected rules can reject
other rules, two rules in the same state can reject each other, thus avoiding
the above described behaviour.

Definition 4.1. Let P be a dynamic logic program and M an interpretation.
M is a refined dynamic stable model of P iff

M = ΓS (P,M) (8)

where

ΓS (P,M) = least
(
ρ (P) − RejS (P,M) ∪ Def (P,M)

)
(9)

and

RejS (P,M) =
{
r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j, r !" r′,M ! B(r′)

}
(10)

At first sight this modification could seem to allow the existence of models
in cases where a contradiction is expected (e.g. in a sequence where the last
program contains facts for both A and not A): if rules in the same state can
reject each other then the contradiction is removed, and the program could
have undesirable models. Notably, the opposite is actually true (cf. theorem
5.3 below), and the refined dynamic stable models are always dynamic stable
models, i.e., allowing the rejection of rules by rules in the same state does
not introduce extra models. To better understand this behaviour, consider
a DLP P with two conflicting rules (with heads A and not A) in one of its
programs Pi. Take an interpretation M where the bodies of those two rules
are both true (as nothing special happens if a rule with false body is rejected)
and check if M is a refined dynamic stable model. By definition 4.1, these
two rules reject each other, and reject all other rules with head A or not A
in that or in any previous state. Moreover, not A cannot be considered as
a default assumption, i.e., does not belong to Def (P,M) because of the
rule with head A and true body. This means that all the information about
A (a rule with head A or not A) with origin in Pi or any previous state is
deleted. Since M must contain either A or not A, the only possibility for
M to be a stable model is that there exists a rule τ , in some later update,

The Refined Extension Principle for Semantics of DLP 19

whose head is either A or not A, and whose body is true in M . This means
that a potential inconsistency can only be removed by some later update. If
such later update does not exist, then, even though the two rules that cause
the contradiction reject each other, we still do not obtain any models.

Finally, as this was the very motivation for introducing the refined se-
mantics, it is worth observing that the refined semantics does comply with
the refined extension principle, as stated by the following theorem.

Theorem 4.2. The refined dynamic stable model semantics complies with
the refined extension principle.

By Proposition 3.11, it immediately follows from this theorem that the
addition of tautologies never adds models in this semantics. Note that the
converse is also true: the addition of tautologies does not eliminate exist-
ing models in the refined semantics i.e., the refined dynamic stable model
semantics is immune to tautologies, as stated by the following theorem.

Theorem 4.3. Let P be any DLP and E a sequence of sets of tautologies.
M is a refined stable model of P iff M is a refined stable model of P ∪ E.

Moreover the refined semantics preserves all the desirable properties of
the previous semantics for dynamic logic programs [5, 10].

To give an insight view on the behaviour of the refined semantics, we now
illustrate how the counterintuitive results of example 1.1 are eliminated.

Example 4.4. Consider again the DLP P = (P1, P2) of example 1.1

P1 : day ← not night.
night ← not day.
stars ← night,not cloudy.
not stars.

P2 : stars ← stars

This DLP has one refined dynamic stable model, M = {day}. Thus the
conclusions of the semantics match with the intuition that it is day and it is
not possible to see the stars.

We now show that M is a refined dynamic stable model. First of all we
compute the sets RejS (P,M) and Def (P,M):

RejS (P,M) = {stars ← night,not cloudy.}
Def (P,M) = {not night,not stars,not cloudy}

20 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

Then we check whether M is a refined dynamic stable model according to
definition 4.1. Indeed:

ΓS (P,M) = least
(
(P1 ∪ P2) − RejS (P,M) ∪ Def (P,M)

)
=

= {day,not night,not stars,not cloudy} = M

As mentioned before, the dynamic stable model semantics, besides M , also
admits the interpretation N = {night, stars} as one of its models, thus
violating the refined extension principle. We now show that N is not a
refined dynamic stable model. As above we compute the sets:

RejS (P, N) = {not stars; stars ← night,not cloudy.}
Def (P, N) = {not day,not cloudy}

Hence:

ΓS (P, N) = least
(
(P1 ∪ P2) − RejS (P, N) ∪ Def (P, N)

)
=

= {night,not day,not cloudy} %= N

From where we conclude, according to definition 4.1, that N is not a refined
dynamic stable model.

5. Comparisons

Unlike the refined dynamic stable model semantics presented here, none of
the other existing semantics based on causal rejection respect the refined
extension principle and, consequently, none is immune to the addition of
tautologies.

It is clear from the definitions that the refined semantics coincides with
the dynamic stable model semantics [1, 2, 10] for sequences of programs with
no conflicting rules in a same program. This means that the dynamic stable
model semantics complies with the refined extension principle for such class
of sequences of programs, and would have no problems if one restricts its
application to that class. However, such limitation would reduce the freedom
of the programmer, particulary in the possibility of using conflicting rules
to represent integrity constraints. Another limitation would result from the
fact that updates also provide a tool to remove inconsistency in programs
by rejecting conflicting rules. Such feature would be completely lost in that
case.

With respect to the other semantics based on causal rejection, it is not
even the case that the principles is satisfied by sequences in that restricted

The Refined Extension Principle for Semantics of DLP 21

class. The update answer-set semantics [5] (as well as inheritance programs
of [4]), and the justified update semantics [12, 13] fail to be immune to
tautologies even when no conflicting rules occur in the same program:

Example 5.1. Consider the DLP P = (P1, P2, P3) where (taken from [10]):

P1 : day.

P2 : not day.

P3 : day ← day.

stating that initially it is day time, then it is no longer day time, and finally
(tautologically) stating that whenever it is day time, it is day time. While
the semantics of justified updates [12, 13] and the dynamic stable model
semantics [1, 10] select {day} as the only model, the update answer set
semantics of [5] (as well as inheritance programs of [4]) associates two models,
{day} and {}, with such sequence of programs9.

While the semantics of justified updates [12, 13] works properly for the
above example, there are classes of programs where its behaviour shows its
failure to comply with the refined extension principle:

Example 5.2. Consider the DLP P = (P1, P2) where (taken from [10]):

P1 : day.

P2 : not day ← not day.

According to the semantics of justified updates, (P1, P2) has two models,
M1 = {day} and M2 = {}, whereas (P1, P∅) has the single model M1, thus
violating the refined extension principle.

Finally, observe that the refined semantics is more credulous than all the
other semantics, in the sense that the set of its models is always a subset of
the set of models obtained with any of the others thus making its intersection
larger. Comparing first with the dynamic stable model semantics:

Theorem 5.3. Let P be a DLP, and M an interpretation. If M is a refined
dynamic stable model then M is a dynamic stable model.

9Notice that, strictly speaking, the semantics [4, 5] are actually defined for extended
logic programs, with explicit negation, rather than for generalized programs. However,
the example can be easily adapted to extended logic programs.

22 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

This result generalizes to all the other semantics since the dynamic sta-
ble model is the most credulous of the existing semantics. Indeed, each
dynamic stable model is also a model in the justified update semantics [10].
Inheritance programs are defined for disjunctive logic programs, but if we
restrict to the non disjunctive case, this semantics coincides with the update
answer-set semantics of [5], and each dynamic stable model is also an update
answer-set [10].

The analysis of the semantics for updates that are not based on causal
rejection (e.g. [20, 21]) is beyond the scope of this paper. Even though
the refined extension principle is not directly applicable to evaluate such
semantics, they do not appear satisfactory in the way they deal with simple
examples, as shown in [5, 10] where a deeper analysis of such semantics can
be found.

6. Concluding Remarks

We have started by motivating and introducing a new general principle –
the refined extension principle – that can be used to compare semantics
of logic programs that are obtainable from the least model of the original
program after the addition of some (default) assumptions. For normal logic
programs, both the well-founded and stable models are obtainable as such.
The principle states that the addition of rules that do not change the least
model of the program together with the assumptions can never generate new
models. A special case of this principle concerns the addition of tautologies.
Not surprisingly, the stable model semantics for normal and generalized logic
programs complies with this principles.

We have generalized this principle for the case of dynamic logic programs,
noticing that none of the existing semantics complies with it. A clear sign
of this, already mentioned in the literature [5, 10], was the fact that none
of these existing semantics is immune to tautologies. We have illustrated
how, among these existing semantics, the dynamic stable model semantics
[1, 2, 10] is the one that complies with the principle for a wider class, viz., the
class of dynamic logic programs without conflicting rules in a same program
in the sequence.

To remedy this problem exhibited by the existing semantics, and guided
by the refined extension principle, we have introduced a new semantics for
dynamic logic programs – the refined dynamic stable model semantics – and
shown that it complies with such principle. Furthermore, we have proved
that this semantics is immune to tautologies.

The Refined Extension Principle for Semantics of DLP 23

We have compared the new semantics with extant ones and have shown
that, besides the difference regarding the principle, this semantics is more
credulous than any of the others, in the sense of admitting a smaller set of
stable models (thus yielding a larger intersection of stable models).

Future lines of research include extending this study to deal with multi-
dimensional updates [10, 11]. Multi-dimensional updates can be viewed as a
tool for naturally encoding and combining knowledge bases that incorporate
information from different sources, which may evolve in time. Existing se-
mantics suffer from the same kind of problems we identified here for dynamic
logic program.

Another important line for future work is the implementation of the
refined semantics. We intend to do it by finding a transformation from
dynamic programs to generalized programs, such that the stable models
of the latter are in a one-to-one correspondence with the refined dynamic
stable models of the former, similarly to what has been done for all other
semantics based on the causal rejection principle. The existence of such
a transformation would directly provide a means to implement the refined
dynamic stable model semantics of dynamic logic programs, by resorting to
an implementation for answer-set programming, such as SMODELS [18] or
DLV [14].

Acknowledgments

A warm acknowledgment is due to Pascal Hitzler and Reinhard Kahle for
helpful discussions. This work was partially supported by project FLUX
(POSI/40958/SRI/2001), financed by FEDER, and by project SOCS (IST-
2001-32530).

7. Appendix

In this Appendix, we present the proofs of the Theorems and Propositions
found throughout the paper. Before we proceed, however, we introduce
some notation and establish some properties of the least model, to be used
subsequently.

7.1. Notation

Let L be a literal, τ a rule of the form L0 ← L1, . . . , Ln, and P a program.
We use:

24 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

• L to denote the literal not A (resp. A) if L is the literal not A (resp.
A);

• τ to denote the rule L0 ← L1, . . . , Ln;

• P to denote the program {τ | τ ∈ P};
• H(P) to denote the set of the heads of all rules in P i.e.,

H(P) = {L |∃τ ∈ P, H(τ) = L} (11)

Let P and E be two dynamic logic programs, and M an interpretation.
We use:

• M− to denote the set {not A | A %∈ M};
• GeneratorD(P,M) to denote the program ρ (P) − RejD(P,M) ∪

Def(P,M);

• GeneratorS(P,M) to denote the program ρ (P) − RejS(P,M) ∪
Def(P,M).

Let M be an interpretation and τ a rule.We say that τ is supported by
M iff M |= B(τ).

7.2. Properties of the least model

Throughout the proofs of Theorems and Propositions we make use several
properties of the least model of a definite logic program, that we now prove.

Property 1. Let P , U and R be definite logic programs, such that, for any
rule τ ∈ U , B(τ) %⊆ least(P), and H(R) ⊆ least(P) then:

least(P ∪ U ∪ R) = least(P) (12)

i.e., P ∪ R ∪ U is a syntactic extension of P .

Proof. The least operator is monotonous, hence

least(P) ⊆ least(P ∪ U ∪ R) (13)

To prove the inverse inclusion, we start by proving that least(P) is a model
of P ∪ U ∪ R. First, least(P) is the least model of P . Moreover, it is a
model of U , since, by hypothesis, the body of any rule in U is not supported.
Finally it is a model of R, since, by hypothesis, the head of any rule in R

The Refined Extension Principle for Semantics of DLP 25

is in least(P). Thus, least(P) is a model of P ∪ R ∪ U and, as such, must
include the least model of P ∪ R ∪ U , i.e.

least(P ∪ R ∪ U) ⊆ least(P) (14)

From (13) and (14), (12) immediately follows.

Property 2. Let P be a definite logic program and Ta a program whose
rules are tautologies i.e. rules of the form: A ← Body where A ∈ Body.
Then P ∪ Ta is a syntactic extension of P .

Proof. Let U be the program consisting of all rules r′ in Ta such that
H(r′) %∈ least(P) and R be the program obtained considering all rules r
such that H(r) ∈ least(P). Note that, since for all rules r ∈ Ta we have
that H(r) ∈ B(r), the rules of U are such that B(r) %⊆ least(P). From this
and the definition of R, it follows that P , U and R satisfy the hypothesis
of Property 1. Hence, by the thesis of such Property it follows immediately
that P ∪ Ta is a syntactic extension of P .

7.3. Proofs of Theorems and Propositions

Proof of Proposition 3.5. Let Sem be a semantics for generalized pro-
grams, P a generalized program, τ a tautology and M an interpretation such
that M ∈ Sem(P ∪ {τ}). Then, by definition:

M = least(P ∪ {τ} ∪ Assumtions(P ∪ {τ},M))

By Property 2 we have that

M = least(P ∪ Assumtions(P ∪ {τ},M))

Hence P ∪ {τ} is a refined extension of P . Since the semantics Sem com-
plies with the refined extension principle, this implies M ∈ Sem(P). Thus
Sem(P ∪ {τ}) ⊆ Sem(P) as desired.

Proof of Proposition 3.6. Let P and E be two generalized programs
and M an interpretation. Recall that, in the stable model semantics, in-
dependently of P , the set Assumptions(P,M) is M−. We simply have to
prove that, if M is a stable model of P ∪ E and P ∪ E is an extension of P
wrt. M , then M is a stable model of P . If M is a stable model of P ∪ E,
then, by definition of extension

M = least(P ∪ M− ∪ E) = least(P ∪ M−)

This, by (1), implies that M is a stable model of P .

26 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

Proof of Proposition 3.11. Let Sem be a semantics for dynamic logic
programs that complies with the refined extension principle, P a dynamic
logic program, and E a sequence of sets of tautologies. Let M be an inter-
pretation such that M ∈ Sem(P ∪ E). Then:

M = least(ρ (P ∪ E) − Rej(P ∪ E ,M) ∪ Assumption(P ∪ E ,M))

Splitting the set ρ (P ∪ E)−Rej(P ∪E ,M) in two parts, namely ρ (P)−
Rej(P ∪ E ,M) and ρ (E) − Rej(P ∪ E ,M) we obtain

M = least(ρ (P) − Rej(P ∪ E ,M) ∪ Assumption(P ∪ E ,M) ∪ E ′)

where E ′ = ρ (E)−Rej(P ∪ E ,M). Note that all the rules in E ′ are tautolo-
gies. Since the addition of tautologies does not change the least model (cf.
Property 2) it follows that M is also the least model of

ρ (P) − Rej(P ∪ E ,M) ∪ Assumption(P ∪ E ,M)

Since Sem complies with the refined extension principle, from such principle
it follows that M ∈ Sem(P).

Proof of Theorem 4.2 . Let P and E be the two dynamic logic pro-
grams P1, . . . , Pn and E1, . . . , En such that P ∪ E is a refined extension of
P, and M a refined stable model of P ∪ E i.e.

M = least(ρ (P ∪ E) − Rej(P ∪ E ,M) ∪ Assumption(P ∪ E ,M))

We have to prove that M is also a refined stable model of P i.e.

M = least(GeneratorS(P,M))

Since M is a refined stable model of P ∪E then, by definition, M is the least
model of the definite logic program: Gen ∪Res where Gen is the program

(ρ (P) − RejS(P ∪ E ,M)) ∪ Def(P ∪ E ,M)

and Res the program

ρ (E) − RejS(P ∪ E ,M)

From the hypothesis we know that Gen ∪ Res is a syntactic extension of
Gen. By the definition of syntactic extension we derive that

M = least(Gen)

The Refined Extension Principle for Semantics of DLP 27

If a rule τ belongs to RejS(P,M), then it also belongs to RejS(P ∪ E ,M),
because there will be anyway a rule rejecting it, hence

RejS(P,M) ⊆ RejS(P ∪ E ,M)

Furthermore, if not A belongs to Def(P ∪ E ,M), there is no rule in P with
head A and true body, then not A ∈ Def(P,M) and hence for any A,
not A ∈ Def(P ∪ E ,M) implies not A ∈ Def(P,M) i.e.

Def(P ∪ E ,M) ⊆ Def(P,M)

It follows that

Def(P ∪ E ,M) ⊆ least(GeneratorS(P,M)) (15)

Moreover, since

ρ (P) − RejS(P ∪ E ,M) ⊆ ρ (P) − RejS(P,M) (16)

by definition of Gen and the inclusions (15) and (16) we obtain

Gen ⊆ GeneratorS(P,M)

We will prove that GeneratorS(P,M) = Gen ∪ U ∪ R where R and U are
definite logic programs such that Gen, R and U satisfy the hypothesis of
Property 1. This, by Property 1, implies that:

least(GeneratorS(P,M)) = least(Gen) = M

and proves the thesis.
Let us define R as the following set of rules:

R =
{
τ : τ %∈ Gen ∧ H(τ) ∈ M ∧

(
τ ∈ Def(P , M) ∨ τ ∈ ρ (P) − RejS(P , M)

)}

And U as the following set of rules:

U = {τ : τ %∈ Gen ∧ H(τ) %∈ M ∧ τ | τ ∈ ρ (P) − RejS(P,M)}

By definition of GeneratorS(P,M) it follows that

GeneratorS(P,M) = Gen ∪ U ∪ R

and, by definition of R it follows H(R) ⊆ least(Gen). It remains to be
proved that M %|= B(τ) for every τ ∈ U . Let L be the head of rule τ ∈ U .
Since, by definition of U , H(τ) %∈ M , there are two possibilities:

28 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

• L is the positive literal A and not A ∈ Def(P ∪ E ,M). Then there
does not exist any rule in ρ (P) whose head is A and whose body is
supported by M , then M %|= B(τ).

• There exists a rule η in ρ (P) − RejS(P ∪ E ,M) such that H(η) =
not L and M |= B(η). Then, suppose by absurd that, M |= B(τ)
and hence M |= B(τ). Let i be the index such that τ ∈ Pi. Then
there exists Pj such that η ∈ Pj and i < j, otherwise η would not
belong to ρ (P)−RejS(P ∪E ,M). Then, τ is rejected by η and hence:
τ %∈ ρ (P) − RejS(P,M), against hypothesis.

We have proved that Gen, U and R satisfy the hypothesis of Prop-
erty 1. Then, by such Property, we have that least(GeneratorS(P,M)) =
least(Gen) = M

Proof of Theorem 4.3 . Let P be a dynamic logic program, E a se-
quence of sets of tautologies, and M a refined stable model of P. We have
to prove that M is also a refined stable model of P ∪ E .

By definition, M is a refined stable model of P ∪ E iff

M = least(GeneratorS(P ∪ E ,M))

where

GeneratorS(P ∪ E ,M) = (17)
= ρ (P) − RejS(P ∪ E ,M) ∪ Def(P ∪ E ,M) ∪ ρ (E) − RejS(P ∪ E ,M)

First, we find a simpler program G such that

least(GeneratorS(P ∪ E ,M)) = least(G)

Since
ρ (E) − RejS(P ∪ E ,M)

is a tautological program, by Property 2 we obtain

least(GeneratorS(P ∪ E ,M)) =
least

(
ρ (P) − RejS(P ∪ E ,M) ∪ Def(P ∪ E ,M)

)

We will now prove that Def(P ∪ E ,M) = Def(P,M). Clearly

Def(P ∪ E ,M) ⊆ Def(P,M)

The Refined Extension Principle for Semantics of DLP 29

Now suppose that not A ∈ Def(P,M). Then A %∈ M . For each rule τ in
ρ (E) such that H(τ) = A, since τ is a tautology, A ∈ B(τ) which implies
M %|= B(τ). Hence, it follows that A ∈ Def(P ∪ E ,M). It follows that

Def(P ∪ E ,M) = Def(P,M)

as stated. Hence we define the program G as

G = ρ (P) − RejS(P ∪ E ,M) ∪ Def(P,M)

By what was previously mentioned, it follows that:

least(GeneratorS(P ∪ E ,M)) = least(G)

Hence, if we prove that least(G) = M we prove the thesis. By

ρ (P) − RejS(P ∪ E ,M) ⊆ ρ (P) − RejS(P,M)

It follows
G ⊆ ρ (P) − RejS(P,M) ∪ Def(P,M)

Then clearly least(G) ⊆ M .
It remains to prove the opposite inclusion. Suppose, by absurd, there

exists a literal L such that L ∈ M but L %∈ least(G). This means there
exists a rule τ ∈ GeneratorS(P,M) such that τ %∈ G and H(τ) = L. This
means there exists a tautology η such that H(η) = not L and M |= B(η).
The last condition implies, since η is a tautology, that not L ∈ M , or
equivalently L %∈ M against hypothesis. Then least(G) = M and hence M
is a refined stable model of P ∪ E .

Proof of Theorem 5.3 . Let P be a dynamic logic program and M a
refined stable model of P. We have to prove that M is a dynamic stable
model. Since M is a refined stable model of P, it is such that:

M = least(ρ (P) − RejS(P,M) ∪ Def(P,M))

We have to prove that

M = least(ρ (P) − RejD(P,M) ∪ Def(P,M))

Following the outline of the proof of theorem 4.2 We will prove that

GeneratorS(P,M) ∪ R ∪ U = GeneratorD(P,M)

30 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

where R and U are definite logic programs such that GeneratorS(P,M), R
and U satisfy the hypothesis of Property 1. This, by such Property, implies:

least(GeneratorS(P,M)) = M

and prove the thesis. By the two definitions of of rejected rules we obtain

ρ (P) − RejS(P,M) ⊆ ρ (P) − RejD(P,M)

We define R in the following way

{τ | τ %∈ ρ (P) − RejS(P,M) ∧ τ ∈ ρ (P) − RejD(P,M) ∧ H(τ) ∈ M}

And U in the following way

{τ | τ ∈ ρ (P) − RejD(P,M) ∧ τ %∈ GeneratorS(P,M) ∧ H(τ) %∈ M}

By definition of GeneratorS(P,M) it follows

GeneratorS(P,M) = GeneratorD(P,M) ∪ U ∪ R

and, by definition of R it follows H(R) ⊆ least(GeneratorD(P,M)).
It remains to prove that M %|= B(τ) for any τ ∈ U . Let L be the head of

τ . By definition of U it follows that L %∈ M . There are two possibilities.

• L is the positive literal A and not A ∈ Def(P,M)). Then it does not
exists any rule in ρ (P) whose head is A and whose body is supported
by M , then M %|= B(τ).

• There exists a rule η ∈ ρ (P) − RejS(P,M) such that H(η) = not L
and M |= B(η). Suppose, by absurd, M |= B(τ), which implies that
M |= B(τ). Let i be the index such that τ ∈ Pi. Then, there exists
Pj such that η ∈ Pj and i < j otherwise η would not belong to
ρ (P) − RejS(P,M). Then, by definition, τ %∈ ρ (P) − RejD(P,M),
against hypothesis.

We proved that GeneratorS(P,M), U and R satisfy the hypothesis of
Property 1. Hence we obtain

least(GeneratorD(P,M)) = least(GeneratorS(P,M) ∪ U ∪ R)

and so, least(GeneratorS(P,M)) = least(GeneratorD(P,M)).

The Refined Extension Principle for Semantics of DLP 31

References

[1] Alferes, J. J., J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przy-

musinski, ‘Dynamic logic programming’, in A. Cohn, L. Schubert, and S. Shapiro,

(eds.), Proceedings of the 6th International Conference on Principles of Knowledge
Representation and Reasoning (KR-98), Morgan Kaufmann Publishers, 1998, pp. 98–

111.

[2] Alferes, J. J., J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przy-
musinski, ‘Dynamic updates of non-monotonic knowledge bases’, The Journal of

Logic Programming, 45(1–3):43–70, September/October 2000.

[3] Apt K. R., and R. N. Bol, ‘Logic programming and negation: A survey’, The
Journal of Logic Programming, 19 & 20:9–72, May 1994.

[4] Buccafurri, F., W. Faber, and N. Leone, ‘Disjunctive logic programs with in-
heritance’, in D. De Schreye, (ed.), Proceedings of the 1999 International Conference

on Logic Programming (ICLP-99), MIT Press, November 1999, pp. 79–93.

[5] Eiter, T., M. Fink, G. Sabbatini, and H. Tompits, ‘On properties of update
sequences based on causal rejection’ Theory and Practice of Logic Programming,

2(6), 2002.

[6] Van Gelder, A., K. A. Ross, and J. S. Schlipf, ‘The well-founded semantics for
general logic programs’, Journal of the ACM, 38(3):620–650, 1991.

[7] Gelfond, M., and V. Lifschitz, ‘The stable model semantics for logic program-

ming’, in R. Kowalski and K. A. Bowen, (eds.), 5th International Conference on Logic
Programming, MIT Press, 1988, pp. 1070–1080.

[8] Gelfond, M., and V. Lifschitz, ‘Representing actions and change by logic pro-

grams’, Journal of Logic Programming, 17:301–322, 1993.

[9] Kowalski, R. A., and M. J. Sergot, ‘A logic-based calculus of events’, New
Generation Computing, 4:67–95, 1986.

[10] Leite, J. A., Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications, IOS Press, 2003.

[11] Leite, J. A., J. J. Alferes, and L. M. Pereira, ‘Multi-dimensional dynamic

knowledge representation’, in T. Eiter, M. Truszczynski, and W. Faber, (eds.), Pro-
ceedings of the 6th International Conference on Logic Programming and Nonmono-

tonic Reasoning (LPNMR-01), volume 2173 of LNAI, Springer, 2001, pp. 365–378.

[12] Leite, J. A., and L. M. Pereira, ‘Generalizing updates: From models to programs’,
in J. Dix, L. M. Pereira, and T. C. Przymusinski, (eds.), Selected Extended Papers

of the ILPS’97 3th International Workshop on Logic Programming and Knowledge

Representation (LPKR-97), volume 1471 of LNAI, Springer Verlag, 1997, pp. 224–
246.

32 J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite

[13] Leite, J. A., and L. M. Pereira, ‘Iterated logic program updates’, in J. Jaffar,
(ed.), Proceedings of the 1998 Joint International Conference and Symposium on Logic

Programming (JICSLP-98), MIT Press, 1998, pp. 265–278.

[14] Leone, N., G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter,
G. Gottlob, G. Ianni, G. Ielpa, S. Perri C. Koch, and A. Polleres, ‘The

DLV system’, in Procs. of JELIA’02, volume 2424 of LNAI, Springer-Verlag, 2002.

[15] Levesque, H., F. Pirri, and R. Reiter, ‘Foundations for the situation calculus’,

Linkoping Electronic Articles in Computer and Information Science, 3(18), 1998.

[16] Lifschitz, V., and T. Woo, ‘Answer sets in general non-monotonic reasoning (pre-
liminary report)’, in B. Nebel, C. Rich, and W. Swartout, (eds.), Proceedings of the

3th International Conference on Principles of Knowledge Representation and Reason-
ing (KR-92), Morgan-Kaufmann, 1992.

[17] McCarthy, J., and P. J. Hayes, ‘Some philosophical problems from the standpoint

of artificial intelligence’, in B. Meltzer and D. Michie, (eds.), Machine Intelligence 4,
Edinburgh University Press, 1969, pp. 463–502.

[18] Niemela, I., and P. Simons, ‘Smodels: An implementation of the stable model and
well-founded semantics for normal LP’, in J. Dix, U. Furbach, and A. Nerode, (eds.),

Proceedings of the 4th International Conference on Logic Programing and Nonmono-

tonic Reasoning (LPNMR-97), volume 1265 of LNAI, Springer, 1997, pp. 420–429.

[19] Przymusinska, H., and T. Przymusinski, ‘Weakly perfect model semantics for

logic programs’, in R. A. Kowalski and K. A. Bowen, (eds.), Proceedings of the Fifth
International Conference and Symposium on Logic Programming, The MIT Press,

1988, pp. 1106–1120.

[20] Sakama, C., and K. Inoue, ‘Updating extended logic programs through abduction’,
in M. Gelfond, N. Leone, and G. Pfeifer, (eds.), Proceedings of the 5th International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-99), vol-

ume 1730 of LNAI, Springer, 1999, pp. 147–161.

[21] Zhang, Y., and N. Y. Foo, ‘Updating logic programs’, in H. Prade, (ed.), Pro-

ceedings of the 13th European Conference on Artificial Intelligence (ECAI-98), John
Wiley & Sons, 1998, pp. 403–407.

José Júlio Alferes
CENTRIA
Universidade Nova de Lisboa
2829-516 Caparica,
Portugal
jja@di.fct.unl.pt

Federico Banti
CENTRIA
Universidade Nova de Lisboa
2829-516 Caparica,
Portugal
banti@di.fct.unl.pt

Antonio Brogi
Dipartimento di Informatica
Università di Pisa
Pisa, Italy
brogi@di.unipi.it

João Alexandre Leite
CENTRIA
Universidade Nova de Lisboa
2829-516 Caparica,
Portugal
jleite@di.fct.unl.pt

