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Abstract 
The sidetracking principle is nothing but an instance of the well-known principle of procrastination, 
advising postponement of the problematic until the inevitable has been dealt with, in the hope that 
the problematic will either be no longer an issue or becomes less problematic. The aim of this paper 
is to show how the sidetracking principle as a method and technique is applicable to meta-
interpreters for a variety of logic programming semantics. To this effect, we present sidetracking 
for logic programs in  the form of an abstract and modular meta-interpreter schema which can be 
specialized for particular logic programming semantics. Besides, as a programming principle, it can 
benefit from, and be beneficial to, other declarative concepts and methods. 
We illustrate the approach and techniques by applying them to a variety of such semantics. In 
particular to one of the first implementations of Well Founded and Extended Stable Models 
Semantics, developed by us. This is, on its own, an important contribution of this paper regarding 
declarative logic programming implementation techniques. 

Introduction and motivation 
"In that which I now propose, we will discard the interior points [...], and concentrate 
our attention upon its outskirts. Not the least unusual error in investigations such as 
these is the limiting of enquiry to the immediate, with total disregard of the collateral 
or circumstancial events."     [Poe, Edgar Allan 1908] 

The sidetracking principle is nothing but an instance of the well-known principle of 
procrastination, advising postponement of the problematic until the inevitable has been dealt 
with, in the hope that the problematic will either be no longer an issue or becomes less 
problematic. 

A sidetracking strategy for logic programs was first detailed in [Pereira and Porto 79a] and 
implemented in Prolog in [Pereira and Porto 79b]. In [Kowalski 79] (p.93), the equivalent 
"principle of eager consideration of subgoals" was formulated. 

Sidetracking is an appropriately evocative designation in the logic programming context. 
Instead of pushing ahead at a non-deterministic choice point in the present goal/subgoal track 
of a derivation, one sidetracks to a lateral goal in the resolvant, namely a deterministic one, 
i.e. having at most one clause matching it. 

The aim of this paper is to show how the sidetracking principle as a method and technique is 
applicable to meta-interpreters for a variety of logic programming semantics. Besides, as a 
programming principle, it can benefit from, and be beneficial to, other declarative concepts 
and methods. 

To this effect, we present sidetracking for logic programs in  the form of an abstract and 
modular meta-interpreter schema which can be specialized for particular logic programming 
semantics. We illustrate the approach and techniques by applying them to a variety of such 
semantics. In particular to one of the first implementations of Well Founded and Extended 
Stable Models Semantics. This is, on its own, an important contribution of this paper 



regarding declarative logic programming implementation techniques. The resulting meta-
interpreters were successfully tested. 

Sidetracking has been used in the Andorra parallel logic programming language [Janson and 
Haridi 91], embedded at the C implementation level, under the name of "Andorra Principle". 

The structure of this paper is as follows. In section 1 we describe sidetracking for pure Prolog 
as it was defined in [Pereira and Porto 79a], and produce a meta-interpreter. Next we proceed 
to abstract and apply this sidetracking meta-interpreter to other logic programming semantics. 
In particular, in section 3, we present an implementation of Well Founded and Extended 
Stable Models Semantics. Some final considerations close the paper. 

1. Sidetracking - the principle applied to logic programming and a 
simple implementation 
In this section we describe the sidetracking strategy, first detailed in [Pereira and Porto 79a] 
and implemented in Prolog in [Pereira and Porto 79b], and present an interpreter (for pure 
Prolog) based on the one in [Pereira 84].  

Sidetracking is defined as a strategy for the execution of pure Prolog programs which is 
essentially dynamic, since it relies upon runtime evaluation of the deterministic or non-
deterministic character of the goal invocation awaiting activation. 

A goal call is said to be non-deterministic, at some stage of the derivation, if at that stage it 
matches more than one clause head, and deterministic otherwise, i.e. it unifies with at most 
one head. 

An execution step is the replacement of a single goal in the conjunction of goals (or 
resolvant) that represents a derivation stage, by the conjunction of goals which constitutes the 
body of a clause activated by matching the goal. This activation and matching may cause 
instantiation of variables of the goal also present in other pending goals in the resolvant, 
possibly influencing the matching possibilities of those goals, and consequently their 
character with respect to determinism. 

The main idea behind sidetracking is to postpone, at any stage, the replacement of non-
deterministic goals until all pending deterministic ones have been replaced. This is an 
instance of the principle of procrastination, advising postponement of the problematic until 
the inevitable has been dealt with, in the hope that the problematic will either be no longer an 
issue or becomes less problematic. Alternatively, the sidetracking meta-principle can be 
stated as "tackle the inevitable first; then consider options". This translates into "inevitability-
first" search strategies for logic programming. 

The main advantages of this (pointed out in [Pereira and Porto 79a]) are: 
• First, doing all replacements of deterministic goals first, before activating non-

deterministic ones, avoids the failure and reactivation of such deterministic goals 
when backtracking now takes place only among the non-deterministic goals that 
follow. 

• Second, if a failing deterministic replacement path exists then we are sure to spot that 
failure before any (useless) choice for non-deterministic goals is ever made. 

1.1. The sidetracking procedure 
Starting with the goal statement, and throughout the execution, we assume we have always a 
conjunction of goals (the resolvant) one of whose goals is considered the current goal (at the 
start it will be the leftmost goal in the conjunction). 

An execution step is performed as follows: 



(1) If the current goal call is non-deterministic then the next goal in the resolvant becomes the 
current goal; otherwise, it is replaced in the resolvant by the body of its matching clause if 
there is one, and then the next goal in the resolvant becomes the current goal. If there is no 
matching clause  for a deterministic goal activation, we are in presence of a failure, and 
backtracking must ensue, to a goal activation and replacement that was non-deterministic 
(whose occurrence is described next). Occurrences of the special goal true are eliminated 
from the conjunction as they are found. 

(2) When the end of the resolvant is reached two possibilities arise. Either at least one 
deterministic goal was found, and in this case the whole resolvant is searched again for more 
deterministic goals; or no deterministic goal was found, and in this case the current goal is 
then replaced by the body of one of its matching clauses, and execution restarts at (1). 

(3) A solution to the problem is found if the resolvant becomes empty. o 

1.2. The chocolate meta-interpreter 
In order to present an interpreter for pure Prolog programs using sidetracking, we begin by 
rewriting the vanilla meta-interpreter using the replacement method. We call this interpreter 
the chocolate meta-interpreter. 

The main predicate of this interpreter is C#RC, meaning that the resolvant conjunction C can 
be replaced by the resolvant conjunction RC. The code for it is1: 
true#true :- !. 
(A,B)#NC :- !, A#NA, B#NB, conjunction(NA,NB,NC). 
G#NG :- clause(G,BG), BG#NG. 

where conjunction(NA,NB,NC) is a predicate that produces the conjunction of NA and NB as 
the new resolvant, eliminating any excessive occurrences of true. 

Remark: the above cuts can be eliminated, but with a loss of efficiency. 
conjunction(true,A,A) :- !. 
conjunction(A,true,A) :- !. 
conjunction(A,B,(A,B)). 

Remark: the above cuts can be eliminated with recourse to system predicate \=/2. 

Finally, a top goal is solved if it can be replaced by true, i.e.:   o 

1.3. The sidetracking meta-interpreter 
It is now easy to write the chocolate interpreter with sidetracking strategy. The inner loop of 
searching for deterministic goals is similar to the chocolate meta-interpreter, except that it 
only replaces the deterministic goals, and leaves the non-deterministic ones as they were. 
true#true :- !. 
(A,B)#NC :- !, A#NA, B#NB, conjunction(NA,NB,NC). 
G#NG :- deterministic(G), !, clause(G,BG), BG#NG. 
G#G. 

The cut in the third clause ensures that no useless backtracking is made into deterministic 
goals2. 

                                                 
1Note the one-to-one correspondence between the clauses of this interpreter and of the vanilla one. 

2 If (A#NA, B#NB) in the second clause is replaced by (side(A,NA), side(B,NB)), the search for 
deterministic goals is depth first, instead of breadth first, as above. This is more efficient because normally the 
influence of variable bindings on determinism is greater from left to right than vice-versa; also, less rewriting in 
general is performed on goal conjunctions, since the resolvant is divided into smaller subresolvants. 



In order to ensure that if deterministic goals are found then the whole resolvant is searched 
again for more deterministic goals, we introduce the predicate side(C,ND), where C is a 
conjunction of goals, and ND is the conjunction of non-deterministic goals resulting from all 
replacements of deterministic goals in C. 
% cut included for efficiency 
side(true,true) :- !. 
side(C,ND) :- C#NC, (C == NC, ND = NC; C \== NC, side(NC,ND). 

Note that the conjunction C is replaced by itself iff no deterministic goal replacement takes 
place during the search for them in C3. 

Now a top level is needed for dealing with non-deterministic replacements. 
demo(true). 
demo(G) :- G \= true, side(G,ND), replace_one_nd(ND,NG), demo(NG). 

replace_one_nd(true,true) :- !. 
replace_one_nd((A,B),(RA,B)) :- !, replace_one_nd(A,RA). 
replace_one_nd(A,RA) :- clause(A,RA). 

The only predicate missing to complete the interpreter is deterministic(Goal), which 
determines whether a goal call is deterministic. One possible away of implementing this in 
Prolog is4: 
% if there is at least one matching clause make a note of it 
deterministic(G) :- one(clause(G,B)), assert(one_clause(B)), fail. 

% if there is another one the call is non-deterministic 
deterministic(G) :- retract(one_clause(B)), clause(G,BB), B \= BB, !, fail. 

% otherwise; one_clause/1 will have been abolished in any case 
deterministic(G). 

% one solution is enough 
one(G) :- G, !. 

2. Sidetracking applied to other semantics for logic programs 
In this section we generalize the vanilla meta-interpreter, and make the corresponding 
generalizations to the sidetracking interpreter, in order to compute with the sidetracking 
strategy semantics other than that of pure Prolog, i.e. we will apply sidetracking to Prolog 
meta-interpreters, for other logic program semantics. This generalization is made in such a 
way that the code for sidetracking is completely independent from the semantics it 
implements. The particular semantics is specified by Prolog predicates called from the 
sidetracker. This has the advantages of modularity of code, and that the code responsible for 
the sidetracking strategy does not need rewriting when the semantics is changed. 

We end up by describing a schema for applying the sidetracking strategy to interpreters, 
general enough for implementing many well-known semantics. At the end of this section we 
exemplify how the schema is specified to compute some of them. In the next section we 
obtain, based on this schema, a sidetracking interpreters for the well founded semantic [Van 

                                                 
3Remarks: (1) For efficiency C \== NC can be omitted if a cut is inserted at the end of the first disjunct. (2) 
Another option (cf. [Pereira and Porto 79b]) is to couple with each resolvant pass a new control variable, which 
is bound whenever a deterministic goal call is found; the == test is then replaced by a var test. 

4Remarks: (1) Since the interpreter only rewrites goals, it does not affect the semantics of programs; in fact, its 
clauses can be regarded as logical theorems. (2) For efficiency, memoizing techniques could be used for 
deterministic/1. 



Gelder et al. 1990] and the stationary (or extended stable models) semantics [Przymusinska 
and Przymusinski 1990; Przymusinski 91] by providing their specific semantic predicates 
which specialize the sidetracking schema. 

2.1. Generalizing the sidetracking interpreter with abstraction and pruning 
The first generalization we make is in what regards the replacement of a single goal. In fact, 
there is no need to require that the replacement of a single goal be made by the body of a 
definite clause for it. Consider, for example, that clauses are of the form clause(A1 ! … ! 
An),  where the Ais are classical literals. In a classical theorem prover, a goal G for which 
there is a clause statement of the form clause(A1 ! … ! ¬G ! … ! An)5 can be replaced 
by A1 ! … ! An. Another example is well founded semantics, where the rule for replacing 
negative literals is more elaborate (c.f. section 3). 

Since nothing in the interpreters, both the vanilla and the sidetracker, depends on the form of 
clauses, the generalization of clause form is achieved simply by substituting every goal of the 
form clause(A,B) by rule(A,B), where rule(A,B) is a predicate that depends on the 
semantics to be implemented. Note the definition of deterministic(G) now must refer to 
rule instead of clause. 

Another useful generalization is the notion of context of a goal. For example in SL-
Resolution any goal can cancel with a clause for it or with complement ancestor. Here, its 
ancestors can be viewed as context for the goal. 

In order to keep this notion more general, the sidetracking schema should not impose 
anything about the data structure of the context. Thus two predicates must be defined when 
implementing any particular semantics context: initial_Cx(I), which determines the 
structure of context and its initial element; and add_to_Cx(G,Cx,NewCx), which determines 
how a goal G is added to a context Cx, giving the new context NewCx as a result . 

Changing the vanilla meta-interpreter in order to define a particular notion of context is quite 
straightforward. We just add to predicate demo an extra argument that accumulates the 
context, i.e.: 
demo(true,_) :- !. 
demo((A,B),Cx) :- !, demo(A,Cx), demo(B,Cx). 
demo(G,Cx) :- rule(G,RG), add_to_Cx(G,Cx,NewCx), demo(RG,NewCx). 

and a top level that introduces the initial context: 
demo(G) :- initial_Cx(In), demo(G,In). 

For the sidetracking schema we must redefine the structure of the resolvant to be, instead of a 
conjunction of goals, a conjunction of pairs goal/context: gc(Goal,Cx). Modification of the 
schema in order to add the ancestor to the context every time a goal is replaced is rendered 
by: 
demo(G) :- initial_Cx(In), demo(gc(G,In)). 
demo(gc(true,_)) :- !. 
demo(G) :- side(G,ND), replace_one_nd(ND,NG), demo(NG). 

replace_one_nd(gc(true,Cx),gc(true,Cx)). 
replace_one_nd((A,B),(RA,B)) :- replace_one_nd(A,RA). 
replace_one_nd(gc(A,Cx),RA) :- 
 rule(A,NA), add_to_Cx(A,Cx,NewCx), insert_Cx(NA,NewCx,RA). 

side(gc(true,Cx),gc(true,Cx)) :- !. 
side(C,ND) :- C#NC, (C == NC, ND = NC; C \== NC, side(NC,ND). 

                                                 
5Where ¬G is the logically complementary literal of G. 



gc(true,Cx)#gc(true,Cx). 
(A,B)#NC :- A #NA, B#NB, conjunction(NA,NB,NC). 
gc(G,Cx)#NG :- deterministic(G), rule(G,BG), add_to_Cx(G,Cx,NewCX), 
     insert_Cx(BG,NewCx,RG),!, RG#NG. 
R#R. 

with the appropriate changes to conjunction, and where insert_Cx(C,Cx,CCx) is a 
predicate that builds CCx as the conjunction of all gc(Goal,Cx), for every Goal in 
conjunction C. 

Of course, contextual information like this does not change anything in the interpreters, 
because, up to now, contexts are never used. In order to make use of this contextual 
information we introduce a context sensitive pruning device. For example, for the SL-
Resolution rule of cancelling a goal with its complement ancestor, pruning is used to solve 
the goal. Also, pruning combined with contextual information about ancestors is used for 
semantics with loop detection, but this time to fail a goal subsumed by an ancestor. 

To accomplish this generalization, we introduce in the schema calls to the predicate 
pruning(G,Cx,Control), defined according to the semantics being implemented, where 
Control can be either true or fail depending on the pruning result we want. This is done 
simply by introducing, just before the clause for replacing a single goal, a clause for pruning 
it, i.e.: 
gc(G,Cx)#gc(true,Cx) :- pruning(G,Cx,Control), !, Control. 
before the clause gc(G,Cx)#NG :- deterministic(G), … . 

Some interpreters also make use of global information, i.e. information that is common to the 
whole resolvant. An example is the WFM interpreter described in section 3. This global 
information can also be used for extracting information about the whole derivation, such as 
the AND derivation tree, the number of total goal replacements, etc. 

In order to provide this generalization in the sidetracking schema, we introduce two 
arguments to predicates, one being the global information before activating the goal, and the 
other being the global information after replacing the goal. 

We also pass this information to the pruning device. This is needed for example in the WFM 
interpreter. 

To keep the schema independent of the data structure coding this information, like we did for 
contexts, we introduce two predicates that must be defined when implementing any particular 
semantics: initial_Int(I), which determines the structure of global information and its 
initial element; and add_to_Int(G,Int,NewInt), which determines how replacing a goal G 
changes the global information Int giving as a result the new global information NewInt. 

The complete schema is listed below. 

2.2. The sidetracking schema with goal contexts and global information 

demo(G) :- initial_Cx(Cx), initial_Int(Ii), demo(gc(G,In),Ii,Io). 
demo(gc(true,_),Ii,Io) :- !, add_to_Int(true,Ii,Io). 
demo(G,Ii,Io) :- 
 side(G,ND,Ii,I), replace_one_nd(ND,NG,I,II), demo(NG,II,Io). 
replace_one_nd(gc(true,Cx),gc(true,Cx),Ii,Io) :- !, add_to_Int(true,Ii,Io). 
replace_one_nd((A,B),(RA,B),Ii,Io) :- replace_one_nd(A,RA,Ii,Io). 
replace_one_nd(gc(A,Cx),RA,Ii,Io) :- 
 rule(A,NA), add_to_Cx(A,Cx,NewCx), insert_Cx(NA,NewCx,RA), 
 add_to_Int(G,Ii,Io). 

side(gc(true,Cx),gc(true,Cx),Ii,Io) :- !, add_to_Int(true,Ii,Io). 
side(C,ND,Ii,Io) :- 
 r(C,Ii)#r(NC,I), (C == NC, ND = NC; C \== NC, side(NC,ND,I,Io). 



r(gc(true,Cx),Ii)#r(gc(true,Cx),Io) :- !, add_to_Int(true,Ii,Io). 
r((A,B),Ii)#r(NC,Io) :- !, 
 r(A,Ii)#r(NA,I), r(B,I)#r(NB,Io), conjunction(NA,NB,NC). 
r(gc(G,Cx),Ii)#r(gc(true,Cx),Io) :- 
 pruning(G,Ii,Cx,Control), !, Control, add_to_Int(true,Ii,Io). 
r(gc(G,Cx),Ii)#r(NG,Io) :- 
 deterministic(G), rule(G,BG), add_to_Cx(G,Cx,NewCX), 
 insert_Cx(BG,NewCx,RG), add_to_Int(G,Ii,I), !, r(RG,I)#r(NG,Io). 
GCI#GCI. o 

The rest of this section will be devoted to exhibiting some example of completion of this 
schema in order to comply with some particular semantics. Note that when specification 
predicates are added to the sidetracking schema we obtain an interpreter for the specified 
semantics that uses sidetracking as a strategy. 

Example 2.3: Pure prolog with loop detection 
For this interpreter clauses are represented as usual, clause(Head,Body), and the rule of 
replacement is also the usual one. So: 
rule(G,B) :- clause(G,B). 

The contextual information needed is the list of ancestors. 
initial_Cx([]). 
add_to_Cx(G,Cx,[G|Cx]). 

The rule for pruning is that the derivation should fail if an ancestor subsumes the goal: 
pruning(G,_,Cx,fail) :- subsumes(Cx,G) 

where subsumes(Cx,G)enacts some subsumption algorithm. 

There is no need for global information for it is irrelevant. Thus: 
initial_Int(_). and add_to_Int(_,_,_). o 

Example 2.4: Pure Prolog with loop detection that counts the number of replacements 
Clauses for rule/2,initial_Cx/1,add_to_Cx/3 and pruning/4 are the same as in the last 
example. Now global information is needed. 
initial_Int(0). 
add_to_Int(true,I,I). 
add_to_Int(G,Ii,Io) :- G \= true, Io is Ii + 1.o 

Example 2.5: Classical Logic in propositional SL-Resolution 
Here clauses are represented as clause(L), where L is a list of literals, and stands for the 
disjunction of its elements. A literal is an atom A or its negation ¬A. As the schema is built 
with reference to clauses with a head and a body, predicate rule must function as if all 
contrapositives variants of a clause were present. Thus: 
rule(G,B) :- clause(L), variant_clause(G,L,B). 

where variant_clause produces a definite clause variant with G as the head. 

variant_clause(G,[G|B],CB) :- compl_list(B,CB). 
variant_clause(G,[A|B],(CA,NB)) :- compl(A,CA), variant_clause(G,B,NB). 

compl_list([],[]). 
compl_list([G|T],(CG,CT)) :- compl(G,CG), compl_list(T,CT). 

compl(¬A,A) :- !. 
compl(A,¬A). 

Context is the ancestors list. Thus its definition is the same as above. 

Pruning is necessary for loop detection: 
pruning(G,_,Cx,fail) :- subsumes(Cx,G). 



and for ancestor resolution: 
pruning(G,_,Cx,true) :- compl(G,CG), member(CG,Cx).6 

There is no need for global information. Thus predicates concerning it are as in example 2.3. 
o 

3. WFS and XSM Interpreter 
Using the meta-interpreter previously presented, we describe in this section one of the first 
interpreters implementing an inovative decision procedure for the Well Founded and the 
Extended Stable Model (or Stationary, [Przymusinski 91]) Semantics. This is, on its own, an 
important contribution of this paper regarding declarative logic programming implementation 
techniques. Well Founded Semantics (WFS) [Van Gelder et al. 90] and the Extended Stable 
Model Semantics (XSMS), introduced by [Przymusinska and Przymusinski 90], are 3-valued 
semantics defined for the class of all normal logic programs. We'll use the derivation 
procedure rules set forth in [Pereira et al. 91a] to write this new interpreter, and to do so we 
must first review and introduce some definitions. These procedures compute whether some 
literal belongs to the Well Founded Model (WFM) or to some Extended Stable Model (XSM) 
of a general logic program. 

Definition 3.1 (general logic program) 

A general logic program [Lloyd 87] " is a finite set of clauses of the form H # L1,...,Ln 
where n _ 0, H is an atom and each Li is a literal. A unit clause, H #, stands for H # true, 
with true an atom satisfied in all models of ". A negative literal is syntactical represented by 
not A, where A is an atom.o 

Definition 3.2 (ground program) 

$The set of all ground instances of the clauses of a logic program "% with respect to its 
Herbrand Universe, is denoted by ground(").o 

Definition 3.3 (ground literals of a program) 

The set of ground literals in program "%$Lit("), is the set of literals in ground(").o$

We need Lit(") and ground(") because both of the ensuing top-down derivation procedures 
are only defined, without loss of generality, for propositional rules. 

Definition 3.4 (interpretations) 

A positive (resp. negative) signed (partial) interpretation I of "$is a set of positive (resp. 
negative) signed literals from ground("&'$

Definition 3.5 (context) 
A context C is an ordered set of positive or negative interpretations S1S2...Sn. The length of 
context C, i.e., the number of interpretations in C, is denoted by |C|. The interpretation Si of 
context C, with 0 ( i ( |C|, is denoted by iC. We say that L �$)C iff L � |C|C. o 

Definition 3.6 (adding literal to context) 
Consider the context C, S1S2...Sn, and a literal L. The addition of a literal to a context, C+L, 
is defined by: C+L = S1S2...Sn{L},   iff G and Sn have different signs; 
  C+L = S1S2...(Sn *${L}),  otherwise. o 

                                                 
6 For non-propositional SL-resolution this isn't complete since there would be the need to backtrack into 
member/2. The search for an ancestor would be tackled in replace_one_nd/4. 



Definition 3.7 (C-formula) 
A contextual formula (C-formula) is a pair C|F, where C is a context and F is a C-expression, 
i.e. resolvant, inductively defined as follows: 
• An atom is a C-expression. 
• If E is a C-expression then not(E)7 is also a C-expression. 
• If E1 and E2 are C-expressions then (E1,E2) is a C-expression. 
• nothing else is a C-expression. 

An empty C-formula is the C-formula C|true. o 

Now, we can define the already mentioned top-down derivation procedures. We begin with 
the simpler one, the WFM-derivation, the derivation procedure for computing whether a 
literal belongs to the WFM of a program. 

Definition 3.8 (C-derivation) 

Given a logic program "%$let Rj = <Cj|Fj;Ij> where Cj|Fj is a C-formula and Ij a set of literals 
in Lit("). A C-derivation is a sequence from <Ci|Fi;Ii> to <Cn|Fn;In> such that for any 
<Ck|Fk;Ik>, i ( k ( n, some derivation rules apply. o 

Definition 3.9 (WFM-derivation) 

There is a WFM-derivation for G in "$iff there is a C-derivation using the rules below from 
<+|G;+> to <C|true;I> for some C and I; the literals in I also belong to the WFM8. When 
applying the following rules we assume Ck+1 = Ck and Ik+1 = Ik, unless stated otherwise. 

Rules for negative C-expressions: 
D1.1 If Fk=not G, and there is no rule G #$B in  ground(") then 
 Rk+1 = <Ck+Fk|true;Ik *$,Fk}>. 
D1.2 If Fk=not G, not G �$)Ck, and G � Ik, then Fk+1 = true. 
D1.3 If Fk=not (not G) then Rk+1 = <Ck|G;Ik>. 
D2.1 If Fk=not G, not G �$)Ck, G � Ik, and there are r rules in  ground(") 
  G1 #$B11, ..., Bm1 
   ... 
  Gr #$B1r, ..., Bm'r 
 with Gi as head, 1 ( i ( r, then 
 Rk+1 = <Ck+Fk|~G1,...,~Gr;Ik *$,Fk}> 
 where each ~Gi is shorthand for not(B1i, ..., Bmi). 
D2.2 If Fk = not(G1,...,Gm), then Rk+1 = <Ck|not Gi;Ik> for some 1 ( i ( m. 

Rules for non negative C-expressions: 
D3.1 If Fk = G, where G is an atom, G �$)Ck, and not G � Ik, then for some rule G # 

B1,...,Bm � ground("), Rk+1 = <Ck+Fk#(B1,...,Bm);Ik *$,Fk}>. 
D4.1 Fk = (g,G) then Rk+1 = <Ck|G;Igk > 
 if there is a derivation from <Ck|g;Ik > to <C|G;Igk >. o 

In [Pereira et al., 1991a] it is proved that G �$WFM(") iff there is a WFM-derivation for G in 
", that is, showing the soundness and completeness of this derivation procedure. 

                                                 
7 We will discard the brackets where it is not ambiguous to do so. 

8 In fact any such I is a support set for C, as defined in [Pereira et al. 91b]. 



The other derivation procedure, for XSMS, reported in the same paper, succeeds iff a literal 
G is in some XSM of "' 

Definition 3.10 (XSM-derivation) 

There is a XSM-derivation for G in "$iff there is a sequence from <+|G;+> to <C|true;I> for 
some C and I. The rules to generate this sequence are obtained from the WFM-derivation 
rules by adding a new rule, D3.2, and changing rule D1.2 to D'1.2. 
 
D'1.2 If Fk=not G, G � Ik and for some i, Fk �$iCk, 1 ( i ( |Ck| then Fk+1 = true. 
D3.2 If Fk = G, where G is an atom, not G � Ik and for some i, G �$iCk, 1 ( i - |Ck| then 

Fk+1 = true. o 

We are now in a position to define our meta-interpreters for WFM and XSM with embedded 
sidetracking. We need only to specify the six predicates initial_Cx, add_to_Cx, 
initial_Int, add_to_Int, pruning and rule. 

As the reader may have noticed, there is a direct correspondence between the context Cj, and 
interpretation Ij, appearing in the definition of Rj for a WFM-derivation and a XSM-
derivation, and the Cx and I arguments of the sidetracking meta-interpreter. The data 
structure we use to represent a context is a list of lists. An interpretation Ij is simply a list. 
Their initial values are defined by the clauses: 
initial_Cx( [[]] ). 
initial_Int([]). 

The predicate add_to_Cx performs, as expected, the addition of a goal to a context. It is a 
direct translation of definition 3.6 into Prolog:   
add_to_Cx(G,[[]],[[G]]) :- !. 
add_to_Cx(G,[[L|RI]|Others], [[G,L|RI]|Others]) :- same_sign(G, [L|RI]), !. 
add_to_Cx(G,Cx, [[G]|Cx] ). 

% same_sign decides whether a literal has the same sign of an 
% interpretation of a context 
same_sign(not _,[not _|_]) :- !. 
same_sign(G,[C|_]) :- not functor(G, not, 1), not functor(C, not, 1). 

The addition of a goal G to an interpretation I is just the fronting of G to I: 
add_to_Int( G, I, [G|I] ). 

The sidetracking schema meta-interpreter defines rule as a goal rewriting predicate. This 
rewriting operation is performed, once some preconditions are verified, in rules D1.1, D1.3, 
D2.2, D3.1 and D4.1 of both derivation procedures. The implementation of the required 
rewriting is: 
% D1.1, D1.3, D2.1 and D2.2 
rule(not G,B) :- !, clause_neg(G,B). 
rule(G,B) :- clause(G,B).   % D3.1 

% D1.1, D1.3, D2.1 and D2.2 
clause_neg(G,Body) :- findall(B, clause(G,B) , L), one_from_each(L,Body). 

% i.e. constructs all possible "bodies" with a literal from each 
% clause 
one_from_each([B],CSB) :- !, member_conj(SB,B), compl(SB,CSB). 
one_from_each([B|T],(CSB,ST)) :- 
    !, member_conj(SB,B), compl(SB,CSB), one_from_each(T,ST). 
one_from_each([],true).    % D1.1 

% Selects, in turn, each literal from a clause 
member_conj(A,(A,_)). 
member_conj(A,(_,B)) :- !, member_conj(A,B). 
member_conj(A,A). 



% Rule D1.3 
compl(not G,G) :- !. 
compl(G,not G). 

Notes: The process of expanding a negative C-expression (predicate clause_neg) is 
guided by rules D2.1 and D2.2. The rewriting of a non-negative C-expression by the second 
clause of rule above is obvious and corresponds to the application of rule D3.1. The 
expansion of a conjunction of C-expressions, rule D4.1, is already contemplated in the 
sidetracker. 

 After the definition of the rewriting rules we must now ensure that their preconditions are 
satisfied, this and the implementation of the remaining rules is achieved with the pruning 
predicate.  
% Consistency check in rules D1.2 (or D'1.2), D2.1, D3.1 and D3.2  
pruning(G,I,_,fail) :- compl(G,CG), member(CG,I). 

% Negative goal with fact fails, just for efficiency 
pruning(not G,_,_,fail) :- clause(G,true). 

% Rule D1.2; usage of the double not saves space... 
pruning(not G, _, [LCx|_], true) :- 
 not not ( same_sign(not G,LCx), member(not G,LCx) ). 

% Loop detection ensuring not G � )Ck in rule D2.1, and G � )Ck in 
% D3.1 for the WFM-interpreter. 
pruning(G,_,Cx,fail) :- 
    flag(wfm), in_other_Cx(G,Cx). % flag tests whether wfm case 

% Loop detection on positive goals: test G � )Ck, rule D3.2 for the  
% XSM-interpreter. 
pruning(G, _, [Last|_], fail) :-  
 flag(xsm), same_sign(G,Last), member(G,Last). % xsm case 

% rules D'1.2 and and D3.2 for XSM-interpreter. 
pruning(G,_,Cx,true) :- 
    flag(xsm), compl(G,CG), in_other_Cx(G,Cx).  % xsm case 

% test of membership of goal G in a context 
in_other_Cx(G,[[G|_]|_]). 
in_other_Cx(G,[[H|T]|Cx]):- not same_sign(G,[H|T]), !, in_other_Cx(G,Cx). 
in_other_Cx(G,[[_|S]|Cx]):- !, in_other_Cx(G,[S|Cx]). 
in_other_Cx(G,[[]|Cx]) :- in_other_Cx(G,Cx). 

4. Final considerations 
Next we raise some points of interest regarding the sidetracking meta-principle. 

! One possible generalization of the sidetracking principle is in what regards the definition of 
determinism. Above, we said that a deterministic goal is one that activates at most one clause. 
Activation of a clause, however, should not be construed simply as the successful matching 
of the goal with the clause head. Additional conditions may be imposed. The motivation for 
doing so is that some tests on arguments of a goal cannot be performed by unification alone, 
but may be carried out within the body of the clause, up to some desired point (as in the 
notion of guard). Consequently, a goal may match several clause heads and yet be 
deterministic in the sense that on closer inspection, up to their guards, only one clause may 
execute the goal. This generalization is also mentioned in the context of the Andorra 
language [Janson and Haridi 91]. 

! The sidetracking strategy avoids useless backtracking, thus avoiding in many cases the 
need for intelligent backtracking. However, in the general case, intelligent backtracking can 



still improve sidetracking execution. An example of this can be found in [Pereira and Porto 
79a]. 

! Sidetracking can be viewed as a type of priority control strategy, where priority is given to 
deterministic goals. Of course, priority can be generalized for conditions other than 
determinism. 

! For languages with "negation as failure", it is appropriate to consider deterministic negative 
goal activations, not G, whenever there are no clauses for G. This can be achieved via 
predicate rule/2, as illustrated for the WFS-interpreter. Furthermore, if delaying of non-
ground negative goals is desired, care must be taken to do so by postponing them as long as 
possible (except in the foregoing case), during the non-deterministic goal choice step, and by 
never considering them as prioritary. 

An implementation for priority could be: 
priority(not G) :- not rule(G,_). 
priority(not G) :- at_least_one_var(G), !, fail. 
priority(G) :- deterministic(G). 

! A sidetracking meta-interpreter can be called from inside a program only on those goals for 
which sidetracking is desired. 
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