
Fault Diagnosis of Distributed Systems using
Logic Programming

Iara de Almeida Móra∗

CRIA Uninova,Portugal and CPGCC UFRGS,Brasil

2825 Monte da Caparica, Portugal

(idm@fct.unl.pt)

José Alferes†

DM, U. Évora and CRIA Uninova

2825 Monte da Caparica, Portugal

(jja@fct.unl.pt)

Abstract

The diagnosis process consists of discovering the differences between the
expected and the real behavior of a system unit, and to identify their faulty
components. In this paper we report on the experience of using extended
logic programming to build an implementation for diagnosing distributed
computer systems. Some issue of the diagnosis process are automatically
dealt by the contradiction removal methods developed for extended logic
programming and the form of the resulting program is rather simple and has
a very clear and declarative reading.

Resumo

O processo do diagnóstico consiste em determinar as diferenças entre o com-
portamento esperado e o real comportamento de uma unidade do sistema, e
identificar seus componentes faltosos. Este trabalho apresenta a experiência
em utilizar programaccão em lógica extendida para implementar diagnóstico

∗Thanks to the CNPq-Brasil for their support.
†Partially supported by JNICT-Portugal and ESPRIT project Compulog 2 (no. 6810).

Thanks to Lúıs Moniz Pereira for his valuable comments.

1



em sistemas computacionais distribúıdos. Alguns problemas no processo de
diagnóstico são automaticamente resolvidos pelos métodos de remoção de
contradição desenvolvidos em programação em lógica extendida e a estru-
tura do programa resultante é bastante simples, com uma leitura clara e
declarativa.

Keywords: Fault Diagnosis; Extended Logic Programs; Contradiction Removal.

1 Introduction

Reliability is the property that allows one to fairly trust on the service pro-
vided by a computational system. For a computational system to have the
ability to perform a service according to its specification, it is required to
make use of additional procedures and/or methods. The purpose of fault
tolerance is to provide, through redundancy, a service that meets its specifi-
cations in spite of fault occurrence. When the desired reliability of a system
is greater than the actual reliability of its individual components, it is nec-
essary to use fault tolerance, at least to protect the systems against faulty
hardware, as the physical components tend to degrade.

Because of its autonomy and independence aspects, distributed systems
components present a series of potential advantages over nondistributed ones,
for the implementation of fault tolerance, such as: independence from hard-
ware faults, greater facilities to isolate errors, and greater flexibility to re-
configure the system after fault occurrence. Since the components are au-
tonomous, the faulty ones will not affect the correct behaviour of the others.
When a fault is detected, the faulty element is isolated from the system and
the other elements will not communicate with it any more. Moreover, be-
cause of the inherent distributed systems redundancy, the other components
will be able to supply the services of the faulty one.

For the reconfiguration to be possible it is necessary to identify the faulty
components. This identification procedure is called fault diagnosis. The
application of diagnosis at system level may occur on systems where units are
sufficiently complex to perform tests on other units. This diagnosis procedure
will be periodically started when an error is detected or before a critical
process is delivered to a specific unit. The diagnosis process consists of
discovering the differences between the ideal unit model and the real unit
behaviour. These differences are not the result of direct observations. On
the contrary they should be derived, through tests, from the behaviour of



the units components. To execute the diagnosis it is necessary to model
the system behaviour, i.e.: (a) the expected behaviour (logic description of
the correct working of the system components); (b) the system components
themselves; and (c) the observed behaviour(the results of the tests performed
in the systems).

Besides this system model, it is also necessary to define the units that
will perform the diagnosis and what units will be diagnosed. In this respect,
it is possible to distinguish between two approaches: (1) a centralised one,
where one system unit is responsible for the diagnoses of the the whole sys-
tem; or (2) a decentralised one, where a group of units starts by performing
individual systems diagnoses and, afterwords, reach a consensus about what
is the correct system diagnosis.

The centralised diagnosis for distributed systems requires the unit that
performs the diagnosis to be fault-tolerant, i.e., it must have redundant com-
ponents and use special algorithms. This makes the system more expensive.
In the decentralised approach, there can be different possible units organ-
isations that perform the system diagnosis. In this paper, we follow the
organisation proposed in [8], consisting of: one group of units, the diagnosis
group, knows only another group of system units, the test group. From this
modelling, it is necessary to specify the diagnosis steps: each diagnosis group
unit request tests for all its test group units and performs the individual di-
agnosis. When all diagnosis group units compute their results, they should
reach a consensus about each test group unit diagnosed. Finally, the correct
diagnosis result is sent to all components of the system.

The evolution of Logic Programming semantics has included the intro-
duction of an explicit form of negation, beside the older defaulf negation
typical of Logic Programming, cf. [10, 12, 18]. The richer language, called
Extended Logic Programming (ELP), has been shown adequate for a spate
of knowledge representation and reasoning forms (see e.g. [5, 14]). For these
new semantics of logic programming implementations exist (e.g. [1, 6]).

By adding the possibility of expressing, in the language of logic pro-
grams, both truth and falsity of propositions, a new issue was raised in logic
programming – how to remove contradictions. Several approaches to contra-
diction removal in ELP appeared [7, 13, 16]. The possibility of expressing
inconsistencies, and removing them, within the language of ELP, opened
logic programming for the application to several new domains. This is the
case of declarative debugging of programs [15], where there is a contradic-



tion between the result given by the program and the results expected by the
user, and also of model-based diagnosis [16], where there is a contradiction
between the observations made in the artifact and its expect behaviour.

In this paper we report on an implementation of diagnosis of distributed
system, that uses ELP. By using ELP, we can rely on a well established
language, with a clear declarative semantics, and for which implementations
exist. Moreover, as we shall show, some issue of the diagnosis process are
automatically dealt by the contradiction removal methods developed for ex-
tended logic programming. Due to the greater expressive power of ELP, the
process of implementing diagnosis of distributed systems has been quite sim-
plified. The form of the resulting program is rather simple and has a very
clear and declarative reading.

The remainder of the paper is structured as follows: first, we briefly review
some definitions of ELP semantics needed in the sequel; we then elaborate
on the decentralization of diagnosis; next we concentrate on the modeling of
each computer of the network, and on the process of diagnosing each machine;
finally we draw some conclusions and mention future work.

2 Review of the logic programming basis

Here we recall the language of logic programs extended with explicit negation,
or extended logic programs for short, and briefly review the WFSX semantics
[12]. We also present the definition of contradiction removal for extended
programs, as in [16].

An extended program is a (possibly infinite) set of ground rules of the
form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln (0 ≤ m ≤ n)

where each Li is an objective literal (0 ≤ i ≤ n), plus a set of integrity
contraints. An integrity constraint is simply a rule whose head (L0) is the
reserved atom ⊥. For simplicity, in examples we use non-ground rules. These
non-ground rules simply stand for its grounded version, i.e. for the ground
rules obtained from it by substituting in all possible ways each of the variables
by elements of the Herbrand universe.

An objective literal is either an atom A or its explicit negation ¬A. The
set of all objective literals of a program P is called the extended Herbrand
base of P and denoted by H(P ). The symbol not stands for negation by



default. not L is called a default literal. Literals are either objective or
default literals. By not {a1, . . . , an, . . .} we mean {not a1, . . . , not an, . . .}.
An interpretation of an extended program P is denoted by T ∪not F , where
T and F are subsets of H(P ). Objective literals in T are said to be true in
I, objective literals in F false by default in I, and in H(P )− I undefined.

WFSX follows from WFS for normal programs [9] plus the coherence
requirement relating the two forms of negation: “For any objective literal L,
if ¬L is entailed by the semantics then not L must also be entailed”. This
requirement states that whenever some literal is explicitly false then it must
be assumed false by default.

Here we present WFSX in a distinctly different manner with respect to
its original definition. This presentation is based on the alternating fixpoints
of Gelfond-Lifschitz Γ-like operators1. For lack of space we do not present
here the definition of Γ (see [10]). To impose the coherence requirement 2 we
introduce:

Definition 2.1 (Seminormal version of a program) The seminormal
version of a program P is the program Ps obtained from P by adding to the
(possibly empty) Body of each rule L ← Body the default literal not ¬L,
where ¬L is the complement of L wrt explicit negation.

Definition 2.2 (Paraconsistent WFSX) The paraconsistent well founded
model (WFM) of a program P is T ∪ not F , where T is the least fixpoint3 of
ΓP ΓPs and F = H(P )− ΓsT.

Definition 2.3 (Contradictory programs) A program P is contradictory
iff the paraconsistent WFM, T ∪ not F , of P either contains ⊥ or a pair of
¬-complementary objective literals L and ¬L.

Example 1 It is easy to check that the paraconsistent WFM of P :

⊥ ← not c ¬a
a ← not b

is {¬a, a,⊥, not b, not c, not a, not ¬a}. So P is contradictory (it contains a
and ¬a; moreover, it contains ⊥).

1The equivalence between both definitions is proven in [4].
2[4] shows how the use of semi-normal programs in fact imposes coherence.
3The proof of existence of such a least fixpoint can be found in [4].



Definition 2.4 (WFSX semantics) If P is non-contradictory, then the
WFSX semantics of P is determined by its WFM. Otherwise the semantics
of P is simply ⊥.

For this semantics, top-down query evaluation procedures have been de-
fined in [2, 1]. The description of such methods is, however, beyond the scope
of this paper.

Now we briefly recap contradiction removal of extended logic programs
as defined in [16]. Here we simply present a declarative definition of what is
expected to be a revision. For a description of the method for achieving these
revision, and a discussion on the revision semantics obtained, see [3, 7, 16]4.

Without loss of generality (cf. [3]), contradiction removal is obtained
by changing the truth value of objective literal with no rules in the original
program. Moreover, not every such literal is allowed to change its truth value
– only those in a pre-defined set of revisable literals. This set is provided by
the user along with the program (see [16] for how the use of revisable allows
for control over revisions).

Definition 2.5 (Removal Set) A set of objective literals S is a removal
set of a program P iff all elements of S are revisables and P ∪ S is non-
contradictory.

Definition 2.6 (Revision of a Program) A set of objective literals R is
a revision of a program P iff R is a minimal removal set of P .

3 Decentralised Diagnosis Organisation

In decentralised diagnosis, the ideal organisation would be to have all units
diagnosing the system. However, such an organisation would be very expen-
sive, since it would cause a great increase in message exchange and processing.
In this paper, we will assume an organisation such as proposed in [8], con-
sisting in a group of units - the diag group - that knows only another group
of system units - test group. This grouping strategy avoids the overloading
of communication means, because each unit exchanges messages only with a

4The implementation of both the contradiction removal method, and the top-down
procedures for WFSX are available on request.



subset of the system units. Also, it is easy to include a new unit in the system
diagnosis, because it is included5 in one group of units and it immediately
know its test group and is known by its diag group; and exclusion of a faulty
unit follows from a similar method.

Besides the groups definition, the diagnosis process proposed in [8] con-
sists of: each diagnosis group unit request tests for all its test group units and
performs the individual diagnosis; when all diagnosis group units compute
their results, they should reach a consensus, based on a majority function,
about each test group unit diagnosed; finally, the correct diagnosis result is
sent to all components of the system. More detailedly, and assuming a one
to one relation between diag group and test group, the step to be followed
in the decentralized diagnosis process are:

• Step I - Testing Request : consists in requesting the performence of tests
defined for each unit component to be diagnosed. At this stage, the
only activity is to send messages, and only one unit of the diag group
is responsible for sending them to each unit in its test group6.

• Step II - Testing : each unit of a test group performs the requested
tests. They can execute all the tests defined for each component, what
is very expensive and time-consuming, or they can execute a subset
of such tests, to determine just if such components are faulty or not.
Afterwards, when necessary, refined tests (the remaining ones) would
be executed to better define the fault and to help locating it.

• Step III - Tests Results Gathering : each test group unit sends its test
results to the whole diag group. At this stage, it is possible that the
testing results are not delivered, meaning that: (a) a component of an
unit is faulty, if that component has not sent back any of its results; or
(b) the whole unit is considered faulty - fail-stop - if none of the unit
components have answered to any request.

• Step IV - Diagnosis : given the tests results and the expected behaviour
of units, each diag group unit generates a diagnosis for each test group
unit. Note that this stage does not require any message passing. The
diagnosis process used is further detailed in section 4.

5The process of how to choose this group of units is omitted for lack of space, and can
be found in [8].

6The process of how to choose this unit is omitted for lack of space, and can be found
in [8].



• Step V - Consensus : diag group units exchange messages about the
resulting diagnoses and reach a consensus on the final diagnosis of every
test group unit.

• Step VI - Diagnosis Propagation : the consensus result is sent to the
other groups, so that the whole system has its real state registered
everywhere; as in step I, here also a single unit per diag group is re-
sponsible for sending all necessary messages.

For the diagnosis organisation described above, a system may be in one
of the three states: (1) both diag group units and test group units are OK;
(2) diag group units are OK, but test group units are faulty; and (3) some
of the diag group units are faulty. In the first two cases, as all units in
diag group are OK, unanimity is expected with regard to the diagnoses of
group test units, and so reaching a consensus is trivial. However, in the
last case, at least one unit of diag group is faulty. The result obtained by
faulty diag group units must be suppressed, during consensus (step V), by
the results of correct diag group units. As in [8], the method for reaching the
consensus and making sure that all correct units know the consensus results
is based on Lamport’s Bizantine Generals Problem [11].

The Bizantine Generals Problem, to be used in a critical system, models
a situation where most computers work correctly, but some faulty computers
may influence the behavior of others by sending incorrect results, changing
information that it routes, or only by omitting answers. Lamport proposes
the Bizantine Deal garanteeing that the following conditions hold: (a) all
correct units return the same value; and (b) a small number of faulty units
do not influence the correct value. Condition (a) is achieved when all units
use the same method to combine information, and condition (b) is achieved
by the use of a robust method to determine the correct information.

The method, necessary to condition (b), assumes that there is a ma-
jority function such that if the majority of its values is equal to v, then
Majority(v1, . . . , vn) is v; otherwise one default value is assumed. Notice
that the bigger the ammount of values, more incorrect values are ignored,
namely a total of n supports (n−1)/3 incorrect values. In our proposal, this
deal is quite a realistic assumption since there is a group of units that perform
the same service, and correct service providers produce the same diagnosis in
acceptable time bounds. So, by using Majority(v1, . . . , vn), and when that
the number of faulty diag group units does not exceed (n− 1)/3 (where n is
the total number of units in the considered diag group), we guarantee that



diagnoses provided by faulty units are indeed suppressed.

The organisation proposed in [8] allows us to perform a system diagnosis
in an efficient way: the diag group units individually perform the diagnosis
in all test group units and reach a consensus about their results, such that
faulty diag group units do not interfere in the final decision about the system
state. Also, it is sufficiently generic to be applied to different distributed
systems without requiring fault tolerant hardware, as the units diagnosis is
generated by the units themselves and the messages are sent in the same
computer network.

4 Diagnosing system units

In this section we concentrate on the process of diagnosing system units (step
IV above). As already mentioned, each unit in some diagnosis group must
provide a diagnosis for all units in its respective test group. For performing
the diagnosis, each diagnosis group unit will execute a contradiction removal
process on a given extended logic program. The contradictions to be removed
are those resulting from differing expected and observed system behaviour.
Thus, the revisions of the program are the diagnoses of test group units.

The extended program of each diagnosis group unit must contain a de-
scription of: the system’s expected behaviour (a logic description of the correct
behaviour of the system members); and the system’s observed behaviour (the
results of the tests performed).

The system expected behaviour does not depend on the previous steps
of the diagnosis process. The system’s observed behaviour is the result of
the previous steps in the whole diagnosis process. Here we assume that the
result of each test (generated by step III) is asserted in the logic program of
each diagnosis group unit as a fact of the form exc(u,c,t,r) where u (resp.
c, t) is the name of the test group unit (resp. component, test) and r is the
result of the test.

Before starting performing the diagnosis, a diagnosis group unit must
know what are the units of the system in its test group, and which are each
test group units components. Moreover, it is also necessary to model the
tests for each system component. This is done simply by inserting facts to
describe units, components and component tests, of the form:

unit(unit_name).



component(unit_name,component_name).
tests(component_name,[test_names]).

Note that unit components and component tests are independantly de-
fined. This is so because, in fact, the tests do not depend on a given com-
ponent of a unit but rather on a component type. This allows for flexibility
on modifying the composition of the system: adding (resp. excluding) units
and components simply involves adding (resp. excluding) the facts for the
desired unit and its components.

In the following examples we consider that the test group in consideration
is described by:

unit(sirius). tests(cpu,[program]).
component(sirius,cpu). tests(memory,[mparity,mecc,mread,mwrite,madressing]).
component(sirius,memory). tests(disc,[dparity,decc,dread,dwrite]).
component(sirius,disc). tests(tape,[operator,tparity,tecc,tread,twrite]).
component(sirius,tape). tests(interface,[broadcast]).
component(sirius,interface). tests(video,[operator,vimage]).
component(sirius,video). tests(keyboard,[operator,caracters]).
component(sirius,keyboard). tests(printer,[operator,listing]).
component(sirius,printer). tests(scanner,[operator,simage]).
component(sirius,scanner). tests(modem,[operator,loopback]).
component(sirius,modem). tests(audio,[operator,sound]).
component(sirius,audio).

unit(spica). component(spica,disc).
component(spica,cpu). component(spica,video).
component(spica,memory). component(spica,keyboard).

4.1 Diagnosis Process – a first approach

Recall that the diagnosis process is performed using contradiction removal.
Contraditions appear when an expected behaviour and an observed behaviour
are compared and differ. In a simplified approach, the modelling of such
contradictions in logic programs could be done by introducing, for each test
of each unit component, an integrity contraint of the form:

⊥ ← test result(unit, comp, test, R), expected result(unit, comp, test, CR), R 6= CR.



However, for modularity, we prefer to model the possible contradictions
in the following way7:

false <- unit(U), problems(U).

problems(U) <- component(U,C),
problems(U,C).

problems(U,C) <- test(C,T),
test_result(U,C,T,R),
expected_result(U,C,T,CR),
R \= CR.

The predicate test/2 just picks up (from the facts for tests/2) one test
name for the component C. In this simplified version, test_result(U,C,T,R)
simply looks for a fact exc(U,C,T,R) in the program.

Now, it is necessary to model what is the expected result for each com-
ponent test: the expected result is the correct result for the test, on the
assumption that “the component is working properly”. This statement is
easily modelled in logic programming, by using default negation8:

expected_result(U,comp,test,CR) <- correct_result(comp, test, CR),
not abnormal(U,comp).

By default, not abnormal(U,comp) is assumed to be true, and so the ex-
pected result is the correct one. If this provokes a contradiction, then we must
revise our assumption of normality of the component. To achieve this, in the
framework we are using, it is enough to declare abnormal/2 as a revisable
literal.

Example 2 Suppose that, in the system described in 4, the dparity test on
sirius’s disc, and the program test on sirius’s cpu, return incorrect results, and
all other tests return correct results, i.e. the facts for exc/4 in the program
have incorrect results for those two tests, and the correct one for all other
tests. The revision of the resulting program is:

7In the implementation of contradiction removal, instead of ⊥, the reserved word
false+ is used.

8Of course, this modelling requires the addition to the program of a fact for defining
the correct result of each test.



?- revisions(X).
X = [[abnormal(sirius,cpu),abnormal(sirius,disc)]];
no

Note that, according to the definition of revision in section 2, this is
indeed the only revision of the program.

4.2 Components dependences

In the example above there is one problem: the diagnosis process did not
consider the dependence between components, i.e., it did not consider if one
of the faulty components could cause others to present a incorrect behaviour.
In fact, the result of the incorrect test on the disc could be the result of a
failure on the cpu and not on the disc. In this case, we would like the
system to present as faulty just the component capable of affecting the others
(the cpu, in the example); a verification of the possibly affected components
should be performed in subsequent diagnosis process.

It has been rather easy to model these dependences in logic programming.
Intuitively, we want to say that the result of the dparity test on the disc de-
pends not only on the disc itself, but also on the cpu of the unit. Translating
this statement directly to ELP we obtain:

expected_result(U,disc,dparity,correct_res) <-
correct_result(comp, test, CR),
not abnormal(U,disc),
not abnormal(U,cpu).

In general, to the body of the expected_result rule for a given test
we must add a literal not abnormal(U,compD) for each compD component on
which the test depends.

Example 3 By replacing in the program of example 2 the rule for the ex-
pected result of the dparity test by the one above, the single revision of the
program is now [abnormal(sirius,cpu)], as desired.

Note that this program has two removal sets, {abnormal(sirius, cpu)}
and {abnormal(sirius, cpu), abnormal(sirius, disc)}, but only the former is
a revision of the program (cf. definition 2.6).



4.3 Strong dependence

Unfortunately, this dependance modeling creates another problem: suppose
all sirius’s cpu tests return a correct result and the sirius’s disc dparity test
does not. The revisions of the resulting program are {abnormal(sirius, cpu)}
and {abnormal(sirius, disc)}. The rational for these diagnosis are, respec-
tively, that dparity returned the incorrect value because the cpu is influenc-
ing the disc behaviour, or simply because the disc is really faulty. However,
since all of sirius’s cpu tests return the correct value, and in our implemen-
tation we are considering quite a large set of tests for a realistic case, one
would prefer to assume that the cpu is in fact working properly, and that the
fault comes from the disc.

To obtain this result we simply declare that it can never happen that all
tests of a given component return the correct value and, simultaneously, the
component be assumed abnormal. In logic programming9:

false <- abnormal(U,C), -problems(U,C).

-problems(U,C) <- tests(C,LT),
all_ok(U,C,LT).

all_ok(_,_,[]).
all_ok(U,C,[T|L]) <- correct_result(C,T,R),

exec(U,C,T,R),
all_ok(U,C,L).

Note that, in the situation descriped above, {abnormal(sirius, cpu)} is
no longer a revision since it creates a contradiction between having and
not having problems with the cpu. So, as expected, the only diagnosis is
{abnormal(sirius, disc)}.

4.4 Non-responding units

With the above described model of the system behaviour, whenever some
component test does not return any result (i.e. there is no fact for exec

regarding that test) no contradiction is generated. In fact, the absence of
such fact simply causes the corresponding test_result to fail. So, when a
component test does not provide a result, the diagnoses are the same as if it

9In the implentation we are using explicit negation ¬ is denoted by -+.



had returned the correct result. This is clearly not the intended behaviour.
On the contrary, we wish the component to be assumed faulty. It is easy to
check that to obtain this desired behaviour, it is enough to add the rule:

test_result(U,C,T,not_responding) <- not exc(U,C,T,_).

When, for a given unit, none of the test’s results are returned then, instead
of having diagnoses stating that each component is faulty, we’d like to have
a single diagnosis stating that the unit is in a fail stop situation. In practice,
this situation occurs when the diagnostic group cannot “see” the unit, either
because there is some problem in communications, or because the unit is not
“alive”. To model this exceptional situation, we must add to the program
the integrity constraint:

false <- unit(U), not abnormal(U,fail_stop), not exec(U,_,_,_).

Moreover, when a fail stop abnormality is encountered, all other pos-
sible faults must be ignored. In other words, all other faults depend on
the fail stop abnormality. So, keeping to the way dependence was modeled
above, one must add the literal not abnormal(U,fail_stop) to each of the
expected_result rules. The intuitive reading of this addition is that the
expect result is the correct one if, among other things, the unit is not in
a fail stop situation. For example, the parity’s test expected result of disc
component - presented in the 4.2 - is changed to:

expected_result(U,disc,dparity,correct_res) <-
correct_result(comp, test, CR),
not abnormal(U,fail_stop),
not abnormal(U,disc),
not abnormal(U,cpu).

This addition presents a problem when only some components do not
respond. Suppose that: (1) the cpu component returns an incorrect re-
sult and the others return nothing; and (2) all components depend on the
correct behavior of the cpu component. The diagnosis has two revisions,
namely: {abnormal(U, cpu} and {abnormal(U, fail stop)}. This occurs be-
cause the diagnosis process considers that the unit U is fail stop (resp. that
the cpu is abnormal), since the literal not abnormal(U,fail_stop) (resp.
not abnormal(U,cpu)) is in all expected_result rules. It is intuitive that



the expected diagnosis is only {abnormal(U, cpu)}. So it presents a contra-
diction if an unit is considered fail stop and some test result is returned. In
logic programming, the integrity constraint necessary is as follows:

false <- unit(U),
abnormal(U,fail_stop),
component(U,C),
tests(C,L),
respond_something(U,C,L).

respond_something(U,C,[T|L]) <-
test_result(U,C,T,R),
R \== not_responding.

respond_something(U,C,[_|L]) <-
respond_something(U,C,L).

4.5 Fault modes

Until now, regarding tests results, we’ve only distinguish between the correct
and the incorrect ones. In fact, the expected result is always the correct one,
and all incorrect results are unexpected. However, for certain tests, some
incorrect results are well known. By taking into account the knowledge of
these incorrect results, more informative diagnoses can be provided. More-
over, this distinction helps on building the diagnoses, by eliminating sooner
some possibilities for diagnosis of the system10. How can this knowledge be
added to the logic program?

If a given incorrect result is well know then, when the test returns that
result, it is not completely unexpected. We can say that the given incor-
rect result is expected, on the assumption that the component has abnormal
behavior, and the abnormality is of a certain known type. In logic program-
ming:

10Lack of space preclude the discussion here on how fault modes can make diagnosis
more efficient.



expected_result(U,comp,test,IR) <-
-correct_result(comp,test,IR),
abnormal(U,comp),
known_fault(U,test,IR).

A fact of the form - correct_result(comp,test,IR) must be added for
each known incorrect result. Moreover, to relate the incorrect result with the
name of the fault type, we also add a rule of the form:

known_fault(U,test,faulty_result) <- fault_mode(U,comp,fault_type).

This rule can be read as: “the faulty_result is known on the assumption
that the component is in a given fault mode of type fault_type. fault_mode

is an assumption that can be revised in order to remove contradictions, i.e.
in order to find a diagnosis one can assume that the system is in a given fault
mode. Thus the predicate fault_mode/3 must be declared as revisable.

Now, whenever a test result equal one known incorrect result, the latter
most be expected. This is to say that if it is not expected, a contradiction
should appear. As before, for modularity in modeling units and components,
we represent contradictions in a component via the predicate problems/2.
So, we must also add the following rule for this predicate:

problems(U,C) <- test_result(U,C,T,R),
-correct_result(C,T,R),
not expected_result(U,C,T,R).

Example 4 Suppose the cpu component has a known fault, fault_1, when
the program test returns the incorrect result res_1. To introduce this knowl-
edge in the program, we must add:

-correct_result(cpu,program,res_1).
known_fault(U,program,res_1) <- fault_mode(U,cpu,fault_1).

If the sirius’s cpu program test returns res_1 and all other tests return
the correct result, the only diagnosis is:

[abnormal(sirius,cpu),fault_mode(sirius,cpu,fault_1)]



5 Conclusions and Future Work

Before opting for the ELP language, we’ve implemented diagnosis of dis-
tributed system using a representation formalism based on frame models,
where the hierarchy top level are the unit definitions with components as its
slots. Usual frame features, such as default and if-needed deamons were used
in the model.

Over the previous implementation, the one described in this paper pre-
sented several advantages. First, the representation formalism of the previous
implementation was not suitable for usage with the Reiter’s algorithm [17] for
diagnosis. This modification that had to be done took a great implementa-
tion effort. On the contrary, by using ELP, we could rely on its contradiction
removal methods to automatically deal with some issues of the diagnosis pro-
cess. Moreover the ELP implementation, contrary to what happened with
the previous one, resulted quite clear, and with an intuitive declarative read-
ing. It is also worth mentioning that some feature of diagnosis present here,
such as the usage of fault modes and treating fail-stop situations, were not
treated in the previous implementation due to the great complexity involved
in doing so. With the ELP implementation these issues were rather simple
to implement.

In the current implementation, logic programming is used only in the step
IV (diagnosis) of the decentralized diagnosis process. In the future we intend
to extend the use of logic programming to all other steps of the process. For
doing so we will rely on an execution enviroment of logic programming lan-
guages in heterogeneous multiple processor architectures, which is presently
being developed in our institute in the EERP project PADIPRO, supported
by DEC. We foresee that, except for step II (testing), the usage of logic
programming can bring several advantages:

By using logic programming in the testing request step the program could
make use of the set of facts, already necessary for the diagnosis step, defining
what are the test group units and what are the tests needed for each unit.
This would allow for an easy and modular way of gathering the knowledge
on what tests are need, and would avoid the duplication of information for
different steps.

The tests results gathering and the diagnosis step could be interleaves.
By implementing both these two step in logic programming, the finding of
the diagnoses of test group units could start before all results were returned.



The contradiction removal process needed in step IV, being based on a top-
down procedure, could start even without any of the results, and wait for
the result of a given test only when that result is indispensable. This would,
we expect, cater for an increase on the efficiency of the whole process. The
implementation of the consensus step could also gain from being described
in a declarative language.

The testing step, relying on hardware tests, is best suited for implemen-
tation on a low-level language. Thus we intend to keep with the low-level
implementation of tests. This implementation can easily be called from, and
return its results to, the logic programming environment.



References

[1] J. J. Alferes, C. V. Damásio, and L. M. Pereira. SLX - A top-
down derivation procedure for programs with explicit negation. In
M. Bruynooghe, editor, ILPS. MIT Press, 1994.

[2] J. J. Alferes, C. V. Damásio, and L. M. Pereira. Top-down query eval-
uation for well-founded semantics with explicit negati on. In A. Cohn,
editor, ECAI’94, pages 140–144. Morgan Kaufmann, 1994.

[3] J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming
system for non-monotonic reasoning. Journal of Automated Reasoning,
Special Issue on Implementation of NonMonotonic Reasoning, 1995. In
print.

[4] José Júlio Alves Alferes. Semantics of Logic Programs with Explicit
Negation. PhD thesis, Universidade Nova de Lisboa, October 1993.

[5] C. Baral and M. Gelfond. Logic programming and knowledge represen-
tation. J. Logic Programming, 19/20:73–148, 1994.

[6] W. Chen and D. S. Warren. Query evaluation under the well founded
semantics. In PODS’93, 1993.

[7] C. V. Damásio, W. Nejdl, and L. M. Pereira. REVISE: An extended logic
programming system for revising knowledge bases. In KR’94. Morgan
Kaufmann, 1994.

[8] Iara de Almeida Móra. Diagnóstico de Falhas em Sistemas Distribúıdos.
Master’s thesis, Universidade Federal do Rio Grande do Sul, Porto Ale-
gre, Brasil, March 1994. (In portuguese).

[9] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[10] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
Warren and Szeredi, editors, 7th Int. Conf. on LP, pages 579–597. MIT
Press, 1990.

[11] L.Lamport. The bizantine generals problem. ACM Transactions on
Programming and Systems, 4(3):382–401, 1982.



[12] L. M. Pereira and J. J. Alferes. Well founded semantics for logic pro-
grams with explicit negation. In B. Neumann, editor, European Conf.
on AI, pages 102–106. John Wiley & Sons, 1992.

[13] L. M. Pereira, J. J. Alferes, and J. N. Apaŕıcio. Contradiction Removal
within Well Founded Semantics. In A. Nerode, W. Marek, and V. S.
Subrahmanian, editors, LP & NMR, pages 105–119. MIT Press, 1991.

[14] L. M. Pereira, J. N. Apaŕıcio, and J. J. Alferes. Non–monotonic rea-
soning with logic programming. Journal of Logic Programming. Special
issue on Nonmonotonic reasoning, 17(2, 3 & 4):227–263, 1993.

[15] L. M. Pereira, C. Damásio, and J. J. Alferes. Debugging by diagnosing
assumptions. In P. A. Fritzson, editor, 1st Int. Ws. on Automatic Algo-
rithmic Debugging, AADEBUG’93, number 749 in LNCS, pages 58–74.
Springer–Verlag, 1993.

[16] L. M. Pereira, C. Damásio, and J. J. Alferes. Diagnosis and debugging
as contradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd
Int. Ws. on LP & NMR, pages 316–330. MIT Press, 1993.

[17] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32:57–96, 1987.

[18] G. Wagner. Logic programming with strong negation and innexact pred-
icates. J. of Logic and Computation, 1(6):835–861, 1991.


