Active Rules in the Semantic Web: Dealing with
Language Heterogeneity

Wolfgang May?, José Jilio Alferes?, and Ricardo Amador?

! Institut fiir Informatik, Universitit Gottingen
2 Centro de Inteligéncia Artificial - CENTRIA, Universidade Nova de Lisboa

Abstract. In the same way as the “static” Semantic Web deals with
data model and language heterogeneity and semantics that lead to RDF
and OWL, there is language heterogeneity and the need for a semanti-
cal account concerning Web dynamics. Thus, generic Rule Markup has
to bridge these discrepancies, i.e., allow for composition of component
languages, retaining their distinguished semantics.

In this paper we analyze the basic concepts for a general language for
evolution and reactivity in the Semantic Web. We propose an ontology
based on the paradigm of Event-Condition-Action (ECA) rules including
an XML markup. In this framework, different languages for events (in-
cluding languages for composite events), conditions (queries and tests)
and actions (including complex actions) can be composed to define high-
level rules for describing behavior in the Semantic Web.

1 Introduction

The goal of the Semantic Web is to bridge the heterogeneity of data formats,
schemas, languages, and ontologies used in the Web to provide unified view(s)
on the Web, as an extension to today’s portals. In this scenario, XML (as a
format for storing and exchanging data), RDF (as an abstract data model for
states), OWL (as an additional framework for state theories), and XML-based
communication (Web Services, SOAP, WSDL) provide the natural underlying
concepts. In contrast to the current Web, the Semantic Web should be able not
only to support querying, but also to propagate knowledge and changes in a
semantic way. This evolution and behavior depends on the cooperation of nodes.
In the same way as the main driving forces for XML and the Semantic Web idea
were the heterogeneity and the lack of accessing the semantics of the underlying
data, the heterogeneity of concepts for expressing behavior requires for an ap-
propriate handling on the semantic level. Since the contributing nodes are based
on different concepts such as data models and languages, it is important that
frameworks for the Semantic Web are modular, and that the concepts and the
actual languages are independent. While for a data model and for querying, a
“common” agreed standard evolves with RDF/RDFS, OWL and languages like
RDF-QL etc., the concepts for describing and implementing behavior are much
more different, due to different needs, and it is —in our opinion— unlikely that
there will be a unique language for this throughout the Web.

Here, reactivity and its formalization as Event-Condition-Action (ECA) rules
offer a suitable common model because they provide a modularization into clean
concepts with a well-defined information flow. An important advantage of them
is that the content of a rule (event, condition, and action specifications) is sep-
arated from the generic semantics of the ECA rules themselves that provides
a well-understood formal semantics: when an event (atomic event or compos-
ite event) occurs, evaluate a condition, and if the condition is satisfied then
execute an action (or a sequence of actions, a program, a transaction, or even
start a process). ECA rules provide a generic uniform framework for specifying
and implementing communication, local evolution, policies and strategies, and
—altogether— global evolution in the Semantic Web.

In the present paper, we describe an ontology-based approach for specifying
(reactive) behavior in the Web and evolution of the Web that follows the ECA
paradigm. We propose a modular framework for composing languages for events,
queries, conditions, and actions by separating the ECA semantics from the un-
derlying semantics of events, queries, and actions. This modularity allows for
high flexibility wrt. these sublanguages, while exploiting and supporting their
meta-level homogeneity on the way to the Semantic Web.

Moreover, the ECA rules do not only operate on the Semantic Web, but are
themselves also part of it. In general, especially if one wants to reason about
evolution, ECA rules (and their components) must be communicated between
different nodes, and may themselves be subject to being updated. For that, the
ECA rules themselves must be represented as data in the (Semantic) Web. This
need calls for an ontology and a (XML) Markup Language of ECA Rules. A
markup proposal for active rules can be found already in RuleML [RML], but
it does not tackle the complexity and language heterogeneity of events, actions,
and the generality of rules, as described here.

Related Work — Concepts that have to be covered and integrated by
this approach. The importance of being able to update the Web has long been
acknowledged, and several language proposals exist (e.g. XUpdate [XMLO00] and
an extension to XQuery in [TTHWO1]) for just that. More recently some reactive
languages have been proposed that are also capable of dealing-with/reacting-
to some forms of events, evaluate conditions, and upon that act by updating
data. These are e.g. XML active rules in [BCP01,BBCC02], an ECA language
for XML [BPWO02], and RDFTL [PPW04], which is an ECA language on RDF
data. These languages do not provide for more complex events, and they do not
deal with heterogeneity at the level of the language. Relating to our approach,
these rules will be used on a low abstraction level.

The recent work on the language XChange [BP05] already aims at specifying
more complex events and actions; nevertheless, it still presents a monolithic
language for ECA rules in the Web, not dealing with the issue of language
heterogeneity.

Structure of the paper. In the next section, we analyse the abstraction levels
of behavior (and ECA rules) in the Semantic Web. The modular structuring of

our approach into different language families is presented in Section 3. Section 4
then analyzes the common structure and requirements for the E, Q, T and A
languages. Section 5 describes the global semantics of the rules, focussing on the
handling of variables for communication between the rule components. Section 6
concludes the paper.

2 Behavior: Abstraction Levels

As described above, the Semantic Web can be seen as a network of autonomous
(and autonomously evolving) nodes. Each node holds a local state consisting of
extensional data (facts), metadata (schema, ontology information), optionally a
knowledge base (intensional data), and, again optional, a behavior base. In our
case, the latter is given by the ECA rules under discussion that specify which
actions are to be taken upon which events under which conditions.

In the same way as the “Semantic Web Tower” distinguishes between the data
level and the semantic (RDF/OWL) level, behavior can be distinguished wrt.
different levels. There is local behavior of Web nodes, partially even “hidden”
inside the database, and local rules on the logical level, and Business Rules on the
application level. The cooperation in the Semantic Web by global Business Rules
is then based on this local behavior. The proposed comprehensive framework for
active rules in the Web integrates all these levels.

Physical Level: Database Triggers. The base level is provided by rules on
the programming language and data structure level that react directly on changes
of the underlying data. Usually they are implemented inside the database as
triggers, e.g., in SQL, of the form ON database-update WHEN condition BEGIN
pl/sql-fragment END. In the Semantic Web, the data model level is assumed to
be in XML (or RDF, see below) format. While the SQL triggers in relational
databases are only able to react on changes of a given tuple or an attribute of
a tuple, the XML and RDF models call for more expressive event specifications
according to the (tree or graph) structure. Work on triggers for XML data or the
XQuery language has e.g. been described in [BBCC02,BPW02,PPW03,MAA05].

Logical Level: RDF Triggers. Triggers for RDF data have been described
in [PPW04,MAAO05]. Triggering events on the RDF level should usually bind
variables Subject, Property, Object, Class, Resource, referring to the modified
items (as URIs), respectively in the same form as SQL’s OLD and NEW values.
In case that data is stored in an RDF database, these triggers can directly be
implemented on the physical, storage level. RDF trigger events already use the
terminology of the application ontology but still the RDF structures of the logical
level. Application-level events can be raised by such rules, e.g.,

ON INSERT OF has_professor OF department
% (comes with parameters $subject=dept, $property, and $object=prof)
% Suniversity is a constant defined in the (local) database

RAISE EVENT (professor_hired($object, $subject))

which is then actually an event professor_hired(prof, dept) of the application on-
tology on which business rules can react.

On the physical and logical levels, in general actions and events coincide (an
update to a data item).

Semantic Level: Active Rules. In rules on the semantic level, the events,
conditions and actions refer to the ontology level:

ON (professor_hired($prof, $dept, $univ))
WHEN $Books := select relevant books for people at this dept
BEGIN do something END

Here, there is an important difference between actions and events: an event
is a visible, possibly indirect or derived, consequence of an action. E.g., the
action is to “debit 200E from Alice’s bank account”, and visible events are “a
change of Alice’s bank account” (that is immediately detectable from the update
operation), or “the balance of Alice’s bank account becomes below zero” (which
has to be derived from an update).

More complex rules use also composite events and queries against the Web.
Composite events in general consist of subevents at that are oroginally located
at different locations.

3 Language Heterogeneity and Structure: Rules, Rule
Components and Languages

An ECA concept for supporting interoperability in the Semantic Web needs to be
more flexible and adapted to the “global” environment. Since the Semantic Web
is a world-wide living organism, nodes “speaking different languages” should be
able to interoperate. So, different “local” languages, be it the condition (query)
languages, the action languages or the event languages/event algebras have to
be integrated in a common framework. There is a more succinct separation
between event, condition, and action part, which are possibly (i) given in separate
languages, and (ii) possibly evaluated/executed in different places. For this, an
(extendible) ontology for rules, events, and actions that allows for interoperability
is needed, that can be combined with an infrastructure that turns the instances
of these concepts into objects of the Semantic Web itself.

In the present paper, we will focus on the language and markup issues; a
service-oriented architecture is discussed in [MAAO5].

3.1 Components of Active Rules in the Semantic Web

A basic form of active rules are the well-known database triggers, e.g., in SQL, of
the form ON database-update WHEN condition BEGIN pl/sql-fragment END. In
SQL, the condition can only use very restricted information about the immediate
database update. In case that an action should only be executed under certain
conditions which involve a (local) database query, this is done in a procedural
way in the pl/sql-fragment. This has the drawback of not being declarative;

reasoning about the actual effects would require to analyze the program code
of the pl/sql-fragment. Additionally, in the distributed environment of the Web,
the query is probably (i) not local, and (ii) heterogeneous in the language —
queries against different nodes may be expressed in different languages. For our
framework, we prefer a declarative approach with a clean, declarative design
as a “Normal Form”: Detecting just the dynamic part of a situation (event),
then check if something has to be done by first obtaining additional information
by a query and then evaluating a boolean test, and, if “yes”, then actually do
something — as shown in Figure 1.

| Event | Condition | Action
' dynamic ' static ' dynamic
| event | query , test | action

I 1 1 1

| | |

' collect " test | act

Fig. 1. Components and Phases of Evaluating an ECA Rule

With this further separation of tasks, we obtain the following structure:

— every rule uses an event language, one or more query languages, a test lan-
guage, and an action language for the respective components,

— each of these languages and their constructs are described by metadata and
an ontology of its semantics, and their nature as a language, e.g., associating
them with a processor,

— there is a well-defined interface for communication between the E, Q&T, and
A components by variables.

Sublanguages and Interoperability. For expressing and applying such rules
in the Semantic Web, a uniform handling of the event, condition, and action sub-
languages is required. Rules and their components are objects of the Semantic
Web, i.e., subject to a generic rule ontology as shown in the UML model in Fig-
ure 2. The ontology part then splits in a structural and application-oriented part,
and an infrastructure part about the language itself. In this paper, we restrict
ourselves to the issues of the ECA language structure language and the markup
itself. From the infrastructure part, we need here only to know that each lan-
guage is identified by a URI with which information about the specific language
(e.g, an XML Schema, an ontology of its constructs, a URL where an interpreter
is available) is associated; details about a service-oriented architecture proposal
that makes use of this information can be found in [MAAO5].

3.2 Markup Proposal: ECA-ML

According to the above-mentioned structure of the rules, we propose the fol-
lowing XML markup. The connection with the language-oriented resources is
provided via the namespace URIs:

Rule Model
<

| |
| |
| v |
: OpaqueECARule ECARule :
| [theRule: text 1 1 |
' .1 !
| |
|

I Event Condition Action :
I Component Component Component [|
| |
I * 1 |
| |
: Query Test :
I Component Component |
[AN e g g S 1

Juses Juses Lusesi(: J(: uses uses

f————Y—— Y ¥ —] - ————
I Trigger Event Query Test Action I
: Language Language Language Language Language :
| \

| \ < £ :
I ﬁ Language [« Processor I
: Languages Model Name - service/plugin :
I URI impl_by syntax definition],

Fig. 2. ECA Rule Components and corresponding Languages II

<IELEMENT rule (event, query*, test?, action)>
<eca:rule declaration of namespaces e.g. xmIns:evlg="http://my.event-language.org” >
rule-specific contents
<eca:event> event specification as <evlg:sequence> ... </evlg:sequence> </eca:event>
<eca:query> query specification </eca:query>
<eca:test> test specification </eca:test>
<eca:action> action specification </eca:action>
<l— event, condition, and action specification use markup elements
of their sublanguage’s namespaces; see below —>
</eca:rule>

A similar markup for ECA rules has been used in [BCPO01] with fized languages
(using a basic language for atomic events on XML data, XQuery as condition
language and SOAP in the action part). This fixed approach falls short wrt. the
language heterogeneity, and especially the use and integration of languages for
composite events. In the same way, the XChange approach [BP05] uses a fixed
language for specifying the event, condition, and action part. In contrast, the
approach proposed here allows for using arbitrary languages. Thus, these other
proposals are just two possible configurations. Our approach even allows to mix
components of both these proposals.

Triggers as Rules. The above database triggers, where a rule is given in
an internal syntax, are just wrapped as opaque rules: the eca:rule element then

contains only an eca:opaque element with text contents (program code of some
rule language) and attributes lang (text) and ref (URI where an interpreter is
found, similar to the namespace); a similar meachanism to XML’s NOTATION can
also be applied:

<eca:rule>
<eca:opaque name="SQL trigger” ref= "“uri of the trigger language” >
ON database-update WHEN condition BEGIN action END
</eca:opaque>
</eca:rule>

Since opaque rules are ontologically “atomic” objects, their event, condition, and
action parts cannot be accessed by Semantic Web concepts. Note that there are
canonic mappings between such triggers and their components and the general
ECA ontology, where then the components still end up as opaque native code
segments (see e.g. the analysis of the components structure in Sec. 4; esp. Fig. 5).

3.3 Hierarchical Structure of Languages

The framework defines a hierarchical structure of language families (wrt. embed-
ding of language expressions) as shown in Figure 3: As described until now, there
is an ECA language, and there are (heterogeneous) event, query, test, and action
languages. Rules will combine one (or more) languages of each of the families.
In general, each such language consists of an own, application-independent syn-
tax and semantics (e.g., event algebras, query languages, boolean tests, process
algebras or programming languages) that is then applied to a domain (e.g. trav-
elling, banking, universities, etc.). The domain ontologies define the static and
dynamic notions of the application domain, i.e., predicates or literals (for queries
and conditions), and events and actions (e.g. events of train schedule changes,
actions of reserving tickets, etc.). Additionally, there are domain-independent
languages that provide primitives (with arguments), like general communication,
e.g. received_message(M) (where M in turn contains domain-specific content), or
transactional languages with an action commit(A4) and an event committed(A)
where A is a domain-specific action.

In the next section, we discuss common aspects of the languages on the
“middle” level (that immediately lead to the tree-style markup of the respective
components — thus, here the XML markup is straightforward). Section 5 then
deals with the interplay between the rule components.

4 Common Structure of Component Languages

The four types of rule components use specialized types of languages that share
the same algebraic language structure, although dealing with different notions:

— event languages: every expression gives a description of a (possibly composite)
event. Expressions are built by composers of an event algebra, and the leaves
here are atomic events of the underlying application;

ECA Language :
<event/> <query/> <test/> <action/>

- ‘MS/ \f“h\gmbe N

Event Query Test Action
Language Language Language Language

\embeds \\embeds //emb eds //embeds

t\iinguages for Ap\? \cation-Independent Domaing:

communication) messages,/tyansactions, etc.

W\ ANY

I Ato*nic Events I I\Litel alsﬁ I Atomic Ac{ions I

Vta/ks about
Application-Domjain Language
| Domp |

i AN

Atomic Events I therals I Atomic Actions

Fig. 3. Hierarchy of Languages

— query languages: expressions of an algebraic query-language;

— test languages: they are in fact formulas of some logic over literals (of that
logic) and an underlying domain (that determines the predicate and function
symbols, or class symbols etc., depending on the logic);

— action languages: every expression describes an (possible composite) activity.
Here, algebraic languages (like process algebras) or “classical” programming
languages (that nevertheless consist of expressions) can be used. Again, the
atomic items are actions of the application domain.

Algebraic Languages. As shown in Figure 4, all component languages con-
sist of an algebraic language defining a set of composers, and embedding atomic
elements (events, literals, actions) that are contributed by domain languages, ei-
ther for specific aplications or application-independent (e.g., messaging). Expres-
sions of the language are then (i) atomic elements, or (ii) composite expressions
recursively obtained by applying composers to expressions. Due to their struc-
ture, these languages are called algebraic languages, e.g. used in event algebras,
algebraic query languages, and process algebras. Each composer has a given car-
dinality that denotes the number of expressions (of the same type of language,
e.g., events) it can compose, and (optionally) a sequence of parameters (that
come from another ontology, e.g., time intervals) that determines its arity (see
Figures 4 and 5). For instance, “E; followed_by E» within ¢” is a binary com-
poser to recognize the occurrence of two events (atomic or not) in a particular
order within a time interval, where ¢ is a parameter.

I ComponentLanguage I

DomainEngine I % t\
*

Processor I

DomainLanguagell [AlgebraicLanguage Jimpl
name name
*, *
Semantics
*
- Composer
Primitive - p Parameter
- /arity
arity . . name
cardinality

Fig. 4. Notions of an Algeb

raic Language

represented_by :
RuleComponent I%

* R O
AtomicExpr | CompositeExpr I
*
ey [Opaqusspes] Q
Variable " " OpaqueSpec
. 1
Parameter
name 0%
" lhas_language |lhas_language
Jhas_language
Y

DomainLanguage I

| AlgebraicLanguage I

Y
Language i

Fig. 5. Syntactical Structure of Expressions of an Algebraic Language

Thus, language expressions are in fact trees

event/query /logic/action language, or a comp

internal structure in the domain’s namespace.

which are marked up accordingly.
The markup elements are provided by the definition of the individual languages,
“residing” in and distinguished by the appropriate namespaces: the expression
“structure” inside each component is built from elements of the algebraic lan-
guage. An expression is either an atomic one (atomic event, literal, action) that
belongs to a domain language, or an opaque one that is a code fragment, of some
osite expression that consists of a
composer (that belongs to a language) and several subexpressions (where each
recursively also belongs to a language). The leaves of the expression trees are
the atomic events, literals, or actions, contributed by the application domains
(and residing in the domain’s ontology and namespace); they may again have an

Note that it is also possible to nest composers and expressions from different
languages of the same kind (e.g., an event sequence where the first part is de-
scribed in event algebra A and the second in another algebra B), distinguishing
them by the namespaces they use. Thus, languages are not only associated once
on the rule component level, but this can also be done on the expression level.

5 Semantics of Rule Execution

For classical deductive rules in bottom-up evaluation, the body is evaluated and
produces a set of tuples of variable bindings. Then, the rule head is “executed” by
iterating over all bindings, for each binding instantiating the structure described
in the head (in some languages also executing actions in the head). The semantics
of ECA rules should be as close as possible to this semantics, adapted to the
temporal aspect of an event:

ON event AND additional knowledge, IF condition then DO something.

To support communication between heterogeneous languages at the rule com-
ponent level, there must be a precise convention between all languages how the
different components of a rule can exchange information and interact with each
other. In the following, we state some requirements on the contributing sub-
languages and provide technical means to integrate these languages with our
framework.

5.1 Logical Variables

We propose to use logical variables in the same way as in Logic Programming. For
each instance of a rule, a variable must bound only once. In case that a variable
occurs more than once, it acts then as a join variable. While in LP rules, variables
must be bound by a positive literal in the body to serve as join variables in the
body and to be used in the head, in ECA rules we have four components: A
variable must be bound in the rule, or in an “earlier” (E<Q<T<A) or at least
the same component as where it is used. Usage can be as a join variable in case
of the E, Q, or T component, or to execute (“derive”) an action in the action
component (that corresponds to the rule head). This leads to a definition of
safety of ECA rules that is similar to that of LP rules. Variables can be bound
to several things: values/literals, references (URIs), XML or RDF fragments, or
events (marked up as XML or RDF fragments). Expressions can also use local
variables, e.g., in first-order logic conditions e.g., scoped by a quantifier.

Variable Handling on the Rule Level. As in Logic Programming, the
semantics of rules is based on sets of tuples of (answer) variable bindings. We
propose to use a simple tuple-based representation for interchange of variable
bindings:

<variable-bindings>
<tuple>

<variable name="name" ref=""/>
<variable name="name" > contents </variable>

</tuple>
< /variable-bindings>

Variable Handling in E, Q, T, A Sublanguages. While the semantics
of the ECA rules provides the infrastructure for these variables, the markup of
specific languages must provide the actual handling of variables in its expressions.
Currently languages mainly use variables in two ways:

— Languages that bind variables by matching free variables (e.g. query lan-
guages like Datalog, F-Logic [KL89], XPathLog [May04]). Here, the matches
can be literals (Datalog) or literals and structures (e.g., in F-Logic, XPathLog,
Xcerpt [BS02]). Similar techniques can also be applied to design languages
for the event component.

— Functional-style languages: the sublanguages for the query and event com-
ponents can be designed as functions over a database or an event stream. In
the XML world, such languages that return a (nameless) data fragment (e.g.
XQuery; also the expressions of the above-mentioned F-Logic, XPathLog and
Xcerpt can be used in this way). For event languages, the “result” of an ex-
pression can be considered the sequence of detected events that “matched”
the event expression in an event stream (e.g., XChange [BP05]).

Variables: Syntax. We propose constructs for handling variables borrowed
from XSLT: use variables by {$var-name} and by <variable name="..." > elements:

— <eca:variable name="name” >content</eca:variable>
where content can be any expression whose value is bound to the variable
(i.e., an event specification or a query).

— <eca:variable name="name" select="ql-expr" />
Such expressions can be used for navigational access/comparison of values,
or for defining a new variable based on already bound ones in ezpr as a
shorthand for

<eca:variable name="name" >
<eca:query xmlins:ql="ql-url" >
<eca:opaque> expr </eca:opaque>
</eca:query>
</ eca:variable>

where g/ is a (simple!) query language, e.g. XPath.

Both constructs can be used on the rule level (e.g., for binding the result of the
event component; see later example), and we recommend also to consider them
when designing component languages.

5.2 Firing ECA Rules: the Event Component

Formally, detection of an event results in an occurrence indication, together with
information that has been collected: An ECA rule is fired for each successful
detection of the specified event. Thus, initial variable bindings are produced by
the event component. The event component consists —as shown above- of an
event algebra term whose leaves are atomic events. The pattern is “matched”
against the stream of detected events. Inside of <eca:atomic-event> elements, the
domain namespaces of the are used for specifying event patterns to be matched.
In the event component, variables can be bound as described above pattern-based
with <eca:variable name= “var-name” > ... </eca:variable> , or navigation-based:
inside the atomic event itself (as an XML fragment) is available as $event. Then,

<eca:variable name= "var-name" select= “$event/path...” />

can be used to match and access data within the event.

In many approaches (including the SNOOP event algebra [CKAK94]), the
“result” of event detection is the sequence of the events that “materialized”
the event pattern to be detected. In this case, an appropriate way is to bind
this result to a variable (in the present case, using the XML representations
of the events). Further variable bindings can then be extracted by subsequent
<eca:query> or <eca:variable> elements.

Example 1. Consider the following scenario: “when registration for an exam of
subject S is opened, students X register, and registration for S closes, then ...
do something”. This cumulative event can be specified in SNOOP as

A*(reg-open(Subj), register(Subj, Stud), reg_close(Subj)) .
The incoming domain-level events are e.g. of the form <uni:register subject= "Databases”
name= “John Doe” />. The following markup of the event component binds the

complete sequence to regseq and the subject to Subj (note that Subj is used as a
join variable):

<eca:rule ... >
<eca:variable name="regseq” >
<eca:event xmlns:xmlsnoop="http://xmlsnoop.nop” >
<xmlsnoop:cumulative>
<xmlsnoop:atomic>
<uni:reg_open>
<xmlsnoop:variable name="Subj" select="$event/@Subject” />
</uni:reg_open>
</xmlsnoop:atomic>
<xmlsnoop:atomic> <uni:register subject="$Subj" /> </xmlsnoop:atomic>
<xmlsnoop:atomic> <uni:reg_close subject="$Subj" /> </xmlsnoop:atomic>
</xmlsnoop:cumulative>
</eca:event>
</eca:variable>

</eca:rule>

Note the namespaces: eca for the rule level, xmlsnoop for the event algebra level
(which also supports the variables) and uni for the domain level.

The event component collects the relevant events, and returns them as a
sequence, resulting in the following variable bindings:

<variable-bindings>
<tuple>
<variable name="regseq" >
<reg-open subject="Databases" />
<register subject="Databases” name="John Doe" />
<register subject="Databases” name="Scott Tiger" />

<reg_close subject="Databases" />
</variable>
<variable name="Subj" >Databases</variable>
</tuple>
< /variable-bindings>

5.3 The Query Component

The query component is concerned with static information that is obtained and
restructured from analyzing the data that has been collected by the event com-
ponent (in the variable bindings), and based on this data, stating queries against
databases and the Web. Whereas the firing of the rule due to a successful de-
tection of an event results in exactly one tuple of variable bindings, the query
component is very similar to the evaluation of database queries and rule bodies
in Logic Programming: in general, it results in a set of tuples of variable bind-
ings. We follow again the Logic Programming specification that every answer
produces a variable binding. For variable binding by matching (as in Datalog,
F-Logic, XPathLog, Xcerpt etc.), this is obvious. Since we also allow variable
bindings in the functional XSLT style, the semantics is adapted accordingly:

— each answer node of an XPath expression yields a variable binding;

— each node that is returned by an XQuery query yields a variable binding; if
the XQuery query is of the form
<name>{ for ... where ... return ...} </name> |
then the whole result yields a single variable binding.

Ezample 2. Consider again Example 1 where the resulting event contained sev-
eral registrations of students. The names of the students can be extracted as
multiple string-valued variables:

<eca:rule ... >
... same as above, binding variables “Subj” and “regseq” ...
<eca:variable name="Student” >
<eca:query>
<eca:opaque lang="xpath’>

$regseq/ /register[@subject=$Subj]/@name/string()
</eca:opaque>
</eca:query>
</eca:variable>

</eca:rule>

The above query generates the extended variable bindings
f1 = {Subj — 'Databases’, regseq — (as above), Student — 'John Doe’},
f2 = {Subj — 'Databases’, regseq — (as above), Student — 'Scott Tiger'}.

5.4 The Test Component

In general, the evaluation of conditions is based on a logic over literals with
boolean combinators and quantifiers. A Markup Language exists with FOL-
RuleML [BDG™]. Instead of first-order atoms, also “atoms” of other data mod-
els can be used. Note that XPath expressions are also literals that result in a
true/false (true if the result set is non-empty) value. The result of the test com-
ponent is the set of tuples of variable bindings that satisfy the condition (for
further propagation to the action part).

5.5 The Action Component

The action component is the one where actually something is done in the ECA
rule: for each tuple of variable bindings, the action component is executed. The
action component may consist of several <eca:action> elements which contain ac-
tion specifications, possibly in different action languages, e.g., the CCS process
algebra [Mil83]. This can be updates on the database level, explicit message send-
ing (e.g. to Web Service calls), or actions on the ontology level (that must then
be implemented appropriately). The semantics is that all actions are executed.

6 Conclusion

We described the concepts and proposed an XML markup for a general ECA-
rule framework for the Semantic Web, taking into account the heterogeneity of
(existing) languages. By using the namespace/URI mechanism for identifying
the languages, also appropriate services can be located. Such an architecture
based on this framework is described in [MAAO5].

Although the above examples all used “syntactical” languages in XML term
markup for the components, also languages using a semantical, e.g., OWL-based
representation (which have to be developed) can be used.

There are several issues that are explicitly not dealt with in our approach —
because they are encapsulated inside (and “bought with”) the concepts to be in-
tegrated: The detection of complex events is done and provided by the individual
event languages and their engines — the framework provides an environment for

embedding them. In the same way, query evaluation itself is left to the original
languages and processors to be embedded into the global approach; also actual
execution of actions (and transactions) is left with the individual solutions.

Acknowledgements. This research has been funded by the European Com-
mission within the 6th Framework Programme project REWERSE, number 506779.

References

[BBCCO02] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Inil.
Conference on Data Engineering (ICDE), pp. 403-418, 2002.

[BCP01] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing Reactive Services to XML
Repositories Using Active Rules. In WWW Conf. (WWW 2001), 2001.

[BDG™] H.Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet, and G. Wagner.
FOL RuleML: The First-Order Logic Web Language. http://www.ruleml.org/fol/.

[BP05] F. Bry and P.-L. Pitranjan. Reactivity on the Web: Paradigms and Applica-
tions of the Language XChange. In ACM Symp. Applied Computing. ACM, 2005.

[BPWO02] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action
Language for XML. In WWW Conf., 2002.

[BS02] F. Bry and S. Schaffert. Towards a declarative query and transformation lan-
guage for XML and semistructured data: Simulation Unification. In Intl. Conf. on
Logic Programming (ICLP), Springer LNCS 2401, 2002.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. In VLDB, 1994.
[KL89] M. Kifer and G. Lausen. F-Logic: A higher-order language for reasoning about

objects, inheritance and scheme. In ACM SIGMOD, pp. 134-146, 1989.

[MAA05] W. May, J. J. Alferes, and R. Amador. An Ontology- and Resources-Based
Approach to Evolution and Reactivity in the Semantic Web. In Ontologies, Databases
and Semantics (ODBASE), to appear in Springer LNCS, 2005.

[May04] W. May. XPath-Logic and XPathLog: A Logic-Programming Style XML Data
Manipulation Language. Theory and Practice of Logic Programming, 4(3), 2004.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Sci-
ence, pp. 267-310, 1983.

[PPWO03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action
Rule Languages for the Semantic Web. In Workshop on Semantic Web and Databases
(SWDB’03), 2003.

[PPW04] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-
Condition-Action Rule Languages for RDF. In Hellenic Data Management Sympo-
sium (HDMS’04), 2004.

[RML] Rule Markup Language (RuleML). http://www.ruleml.org/.

[TIHWO01] I. Tatarinov, Z. G. Ives, A. Halevy, and D. Weld. Updating XML. In ACM
SIGMOD, pp. 133-154, 2001.

[XML00] XML:DB. XUpdate - XML Update Language. http://xmldb-org.
sourceforge.net/xupdate/, 2000.

