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Abstract

Over the last years various semantics have been
proposed for dealing with updates in the setting
of logic programs. The availability of different
semantics naturally raises the question of which
are the most adequate to model updates. A
systematic approach to face this question is to
identify general principles against which such
semantics should be tested. In this paper we
introduce a new such principle — the refined ez-
tension principle — which is satisfied by the sta-
ble model semantics for (static) logic programs.
It turns out that none of the existing semantics
for logic program updates, eventhough based
on stable models, satisfy this principle. For this
reason, we define a refinement of the semantics
of Dynamic Logic Programs that is proved to
satisfy the principle.

1 Introduction and motivations

Most of the work done in the field of logic program-
ming for representing knowledge that evolves over time,
mainly deals with changes in the extensional part of
knowledge bases (factual events or observations). This
is what happens, e.g., with the event calculus [Kowal-
ski and Sergot, 1986], with logic programming forms
of the situation calculus [Levesque et al., 1998; Mc-
Carthy and Hayes, 1969] , or with logic programming
representations of action languages [Gelfond and Lifs-
chitz, 1993] . In all these works, the problems of updat-
ing the intensional part of the knowledge base (rules or
descriptions of actions) remained basically unexplored.
However, in the last years various attempts have been
made for dealing with such updates in the setting of
logic programs, and different semantics have been pro-
posed [Alferes et al., 1998; Buccafurri et al., 1999; Eiter
et al., 2002; Leite and Pereira, 1997; 1998; Leite, 2003;
Sakama and Inoue, 1999; Zhang and Foo, 1998].
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In logic program updates, a meaning is given to se-
quences of sets of rules, where later sets in the sequence
are read as updates to the previous ones. It is hence nat-
ural that most of these semantics [Alferes et al., 1998;
Buccafurri et al., 1999; Eiter et al., 2002; Leite and
Pereira, 1997; 1998; Leite, 2003; Zhang and Foo, 1998]
are based on causal rejection, i.e., on the rejection of a
prior rule if there is a more recent one that conflicts with
it.

While the existing semantics based on causal rejection
coincide on a large class of program updates, there are
situations in which they differ one another, and there is
no common agreement on which is the “right” semantics
to take in such cases. A systematic approach to answer
the above question is described in [Eiter et al., 2002;
Leite, 2003], where some principles to analyze and com-
pare these semantics are set forth. It is our stance that,
besides the principles described in [Eiter et al., 2002;
Leite, 2003], another important principle is needed to
test the adequacy of semantics of logic program updates
in some important situations. In this paper we propose
a new principle, that we call the refined extension princi-
ple and that can be used to compare different semantics
for updates based on the stable model semantics — as it
is the case for all the above mentioned ones.

Informally, the semantics based on stable models are
obtained by taking the least Herbrand model of the defi-
nite program obtained by adding some assumptions (de-
fault negations) to the initial program. Intuitively speak-
ing, the refined extension principle states that the addi-
tion of rules that do not change that least model should
not lead to obtaining more (stable) models.

Before providing an example, let us try to explore
a bit further the intuition behind this principle. It is
now well known that the stable model semantics, and
its corresponding implementation systems (e.g., smodels
[SMODELS, 2000] and DLV [DLV, 2000]), can be fruit-
fully used to compute solutions for NP-complete prob-
lems. The idea is to write a logic program whose stable
models are exactly the solutions of the problem [Marek
and Truszczyniski, 1987; Niemeli, 1999] . For doing so,
a widely used technique consists of first writing a set
of rules that would generate a larger amount of stable
models, and then add extra rules to impose integrity



constraints over this larger set of models. In this per-
spective, it is important to guarantee that the rules used
for imposing constraints have no other effects apart from
pruning models, i.e., they do not introduce new models.

Remarkably, while in (static) stable models semantics
the introduction of such rules does not add new mod-
els, this is not the case in general for any of the existing
semantics for updates. For instance, all the semantics
fail to satisfy this principle in examples where the unde-
sired behaviour is determined by a tautological update.
We claim that this is clearly counterintuitive, since one
would expect tautologies to be completely irrelevant for
the semantics of a logic program (update). Let us now
show an example to illustrate the problem.

Example 1.1 Consider the program Py describing some
knowledge about the sky. In each moment it is either day
time or might time, we can see the stars whenever it is
night time and there are no clouds, and currently it is
not possible to see the stars.

Py Day <« not Night.
Night <« not Day.
See_stars <« Night, not Cloudy.
not See_stars.

The only stable model of this program is {Day}. Sup-
pose now the program is updated with the following tau-
tology:

P, : See_stars <« See_stars.

It is worth noting that this tautological update intro-
duces a new stable model, namely {Night, See_stars},
in all the semantics based on causal rejection [Alferes
et al., 1998; Buccafurri et al., 1999; FEiter et al., 2002;
Leite and Pereira, 1997; 1998; Leite, 2003]. We argue
that this behaviour is counterintuitive as the addition of
the tautology in Ps should not add new models.

In this paper we will formally introduce the refined ex-
tension principle in order to avoid counterintuive mod-
elizations, such as the one illustrated in the previous
example. Since none of the existing semantics for logic
program updates will turn out to fully comply with the
refined extension principle, we shall present here a new
compliant semantics for logic program updates. Such
semantics will be obtained by refining the semantics of
Dynamic Logic Programming [Alferes et al., 2000]. The
choice of this extant semantics as the basis for our defi-
nition is justified by the fact that, among all the existing
semantics, it is the one that satisfies the refined exten-
sion principle on the largest class of programs.

The rest of the paper is organized as follows. Section 2
recalls some preliminary notions and establishes the no-
tation. Section 3 is devoted to motivate and present the
refined extension principle, while in Section 4 a refined
semantics for logic program updates that satisfies the
principle is presented. Section 5 is devoted to compare
the new semantics with other existing semantics, and to
analyze these with respect to the refined extension prin-
ciple. Finally, some concluding remarks are drawn.

2 Background: Concepts and notation

In the paper we extensively use the concept of general-
ized logic programs [Lifschitz and Woo, 1992]. General-
ized logic programs are sets of rules that admit default
negated literals both in the heads and in the bodies. A
generalization of the stable models semantics for nor-
mal logic programs [Gelfond and Lifschitz, 1988] to the
class of generalized programs was defined by Lifschitz
and Woo [Lifschitz and Woo, 1992]. Here we present this
semantics differently from [Lifschitz and Woo, 1992], the
equivalence of both definition being proven in [Alferes et
al., 2000].

In the following, given a generalized program P, we
will use the notation least(P) to denote the least Her-
brand model of the definite program obtained by inter-
preting all default negated literals as new atoms. An in-
terpretation I over a language L is a set of literals such
that for each atom A in £, exactly one of the two literals
A, not A belongs to I. For simplicity we sometimes omit
the negative literals from the extensive enumeration of
the members of I. Finally, given an interpretation I, we
use the expression I~ for the set of negative literals in I.
With an abuse of notation, we will also use I~ to refer
to the set of facts not A « such that notA belongs to I.
Given a generalized program P and an interpretation M,
we say M is a stable model of P iff M = least(PUM ™).

As mentioned in the Introduction, we are interested
in studying updates in logic programs. For the language
to express such updates, we follow [Alferes et al., 1998;
Leite and Pereira, 1998; Leite, 2003] where updates are
expressed by sequences Pi,..., P, of generalized logic
programs. For notational convenience, we often refer to
one such sequence by P; & ... @ P,, or simply by ®&P;.
We also use the notation P for |JPFP;, E for |JE;, and
®PF for a sequence @(P; U E;), where all the P; and
E; are sets of rules. Finally, by P we simply mean an
empty set of rules.

Two literals L1 and Lo in the language of a given pro-
gram are called conjugate iff L1 is some atom A and Lo
is not A, or viceversa. We say that two rules 7 and 7 are
conflicting, and denote it by 7 > n, iff their heads are
conjugate.

A sequence P @ ... @ P, is viewed as starting from
the initial program Pj, then updating it with the rules
in Ps, ..., then updating it with the rule in P,. In all
the above mentioned semantics that are based on causal
rejection of rules, the meaning of such a sequence can be
obtained as follows. Given an interpretation I:

e First choose from the union of all the rules in the se-
quence @P; the subset Residue(®F;, I)(P) of those
that are not rejected by any update,

e Then add to the resulting logic program a set of
default assumptions Assumptions(®P;,I), simi-
larly to what is done in the stable models semantics
of generalized programs, where assumptions of the
form not A are added for every A ¢ I.

An interpretation M is a stable model of a sequence



DF; iff

where

P(P;, M) = least ( Residue(&P;, M)(P) ) |

U Assumptions(@®P;, M)

From [Leite, 2003] it is easy to see that all the exist-
ing semantics for updates based on causal rejection are
parameterizable using different definitions of Residue!
and Assumptions. The dynamic logic programming se-
mantics [Alferes et al., 1998] is obtained by putting:

Assumptions(®F;,I) = Default(®P;,I)
Residue(®P;,I)(X) = X\ Rej(®PF;,I)

where Default(®P;, I) is the set:
{not A—| BA«— B € Pj and I = B}
and Rej(@P;,I) is the set
{reP|3In €Pj, i<j: tanand I |=body(n)}.

3 Refined extensions

We are interested in finding conditions guaranteeing that
the addition of a set of rules E to a logic program does
not generate new stable models. The concept of refined
extension and the results proven in this paper are a step
in this direction. We start by defining these concepts on
single (static) programs, and then proceed for sequences
of programs.

3.1 Refined extensions of a single program

We first define the notion of syntactic extension of a pro-
gram. Namely, we say that PUFE is a syntactic extension
of P iff the rules in F have no effect on the least Her-
brand model of P. A rule is deemed uneffective in case
its addition yields a syntactic extension of the original
program.

Definition 3.1 Let P be a definite logic program, and
let E be a set of rules. We say PUFE is a syntactic exten-
sion of P iff P and P U E have the same least Herbrand
model.

For normal and generalized programs, in this pa-
per we only focus on those semantics whose models
can be computed as the least Herbrand model of the
definite logic program P U Assumptions(P, M), where
Assumptions(P, M) is simply a set of default negated
literals (viewed as new atoms), whose definition depends
on the semantics in use. Note that all of the stable
models [Gelfond and Lifschitz, 1988] , the well-founded
[Gelder et al., 1991] and the weakly perfect model se-
mantics [Przymusinska and Przymusinski, 1988] can
be defined in this way. For example, the stable model
semantics of normal and generalized programs can be
obtained by putting

Assumptions(P, M) = {notA | A ¢ M}.

! Residue(®P;, I) is viewed as a function from a set of
rules X to the set of rules of X that are not rejected.

In the sequel, by Sem(P) we denote the set of all
models of a given program P, obtained by a semantics
Sem that can be defined as above.

Consider now a generalized program P, and a set of
rules E. A model M of PU FE in the semantic Sem is
computed as the least Herbrand model of the definite
logic program obtained by adding the set of default as-
sumptions to P U E. It is then possible to apply the
concept of syntactical extension to verify whether the
addition of the rules of E does not influence the com-
putation of M. When this happens for all Sem models
of the program P U E, we call such program a refined
extension of the original program P.

Definition 3.2 Let P be a generalized program, M an
interpretation of P, E a set of rules, and Sem a seman-
tics for generalized logic programs. We say that P U E
s an extension of P with respect to M iff

P U Assumptions(PUE, M)UE
s a syntactic extension of
P U Assumptions(P U E, M).

We say that P U E is a refined extension of P iff PUFE
is an extension of P with respect to all the models in
Sem(P).

Example 3.1 Consider the programs Py and P, from
Ezxample 1.1. It is clear that no matter what are the
negative assumption S added given any model M, the
least model of P U S will be the same as the least model
of PLUSUP,. Thus, P U P, is a refined extension of
Py.

We can now formulate the refined extension principle
for the case of generalized logic programs by stating that
a refined extension of a program P should not have more
models than P.

Principle 1 (Refined extension — static case) A
semantic Sem for generalized logic programs complies
with the refined extension principle iff for any program
P and set of rules E, if PUFE is a refined extension of
P then

Sem(PUE) C Sem(P).

As one may expect, the principle properly deals with
the case of adding tautologies, i.e., for any semantics
Sem that satisfies the principle, the addition of tautolo-
gies (i.e., rules of the form L « Body with L € Body)
does not generate new models.

Proposition 3.1 Let Sem be a semantics for general-
ized programs, P a generalized program, and T a tau-
tology. If Sem satisfies the refined extension principle
then

Sem (P U {r}) C Sem(P).

Most importantly, the stable semantics does satisfy
the refined extension principle, as stated in the following
proposition.

Proposition 3.2 The stable model semantics satisfies
the refined extension principle.



As an immediate consequence of these two proposi-
tions, we get that the addition of tautologies to a gener-
alized program does not introduce new stable models.

3.2 Refined extensions of program updates

It would be desirable to have some form of refined exten-
sion principle also for the semantics of updates, in order
to guarantee that updates of integrity constraints do not
generate new models. Unfortunately, it turns out that
none of the existing semantics for logic program updates
fully satisfies such a principle. Intuitively speaking, the
reason of the difficulty is that the rules in a program se-
quence are both used to derive conclusions and to reject
other rules. To formally state the problem, let us first
lift the definition of (syntactic) extension to the case of
program updates.

Definition 3.3 Let ®P; be a sequence of generalized
logic programs, Sem a semantics for updates and M an
interpretation of ®P;.

We say that @PiEi s an extension of @ P; with respect
to M iff

Residue(®P" , M)(P) U
Assumptions(®PF, M) |
Residue(®PF, M)(E)

is a syntactical extension of
Residue(®PF, M)(P)U Assumptions(®P, M).

We say that @PiEi is a refined extension of ®F; iff
®PF is an extension of ©P; with respect to all models
in Sem(SPF).

Note that the above definition is the straightfor-
ward lifting of Definition 3.2 to the case of updates.
Roughly speaking, we simply replaced P and E with
Residue(®P;, M)(P) and Residue(®P;, M)(E), respec-
tively.

Example 3.2 Consider again programs Py and P from
Ezxample 1.1, the sequence Py ® Py, E1 = 0, and Ey =
Py. The residue of E, independently of the model M in
consideration, can only be either the empty set of rules
or Py. In both cases, the addition of the residue does
not change the least model. Thus Py ® P, is a refined
extension of Py @ Py.

The refined extension principle is then formulated as
follows.

Principle 2 (Refined extension principle) A  se-
mantics Sem complies with the refined extension
principle iff for any sequences of programs @©P; and
@PiE'i, if @PiE'i s a refined extension of ®P; then

Sem(@P) C Sem(aP).

As for the case of generalized programs, for any se-
mantics Sem that satisfies the principle, the addition of
tautologies does not generate new models. This is stated
by the following proposition that lifts Proposition 3.1 to
the case of program updates.

Proposition 3.3 Let Sem be a semantics for logic pro-
gram updates, BP; a sequence of generalized programs,
and ®F; be a sequence of sets of tautologies. If Sem
satisfies the refined extension principle then

Sem(@PF) C Sem(aP;).

Unfortunately, as we already pointed out in the Intro-
duction, the existing semantics for logic program updates
based on causal rejection do not satisfy the refined exten-
sion principle. Indeed tautological updates may generate
new models, as shown in Example 1.1. It is worth ob-
serving that tautological updates are not the only cases
in which these semantics fail to satisfy the principle, as
illustrated by the following example of an update con-
taining a rule whose head is self-dependent®.

Example 3.3 Consider again program P, of Exam-
ple 1.1, and suppose that Py is now updated with:

P See_stars < See_Venus.
See_Venus < See_stars.

While Py has only one stable model (viz., {Day}). In
all the existing semantics for updates based on causal
rejection the update Py adds a second stable model:

{See_stars, See_Venus, Night}

Intuitively speaking, this new model arises since the up-
date Py causally rejects the rule of Py which stated that
it was not possible to see the stars.

The presence of the new model contrasts with the re-
fined extension principle. Indeed, if we consider the
empty update Py, then the program Py & Py has only one
stable model (viz., {Day}). Since P, @ Py is a refined
extension of Py @ Py, then according to the principle all
models of Py & P, must also be models of P, ® Py.

If we consider infinite logic programs, there is also an-
other class of examples where all the existing seman-
tics based on causal rejection fail to satisfy the princi-
ple. This second class of counterexamples consists of
sequences of updates containing an infinite number of
conflicting rules whose bodies are satisfied, i.e., an infi-
nite number of potential contradictions, such that each
potential contradiction is removed by a later update.

Example 3.4 Consider a language consisting of the
constant 0 and of the unary function successor. The
set of terms of such a language has an obvious bijection
to the set of natural numbers. In this context, given a
term n, we will use the expression n+1 for successor(n).
Let A be an unary predicate.

Consider the following sequence of programs:

P12 A(X)
not A(X).
Py : AX) — AX +1).

2For the definition of self-dependent literals in a logic pro-
gram, see [Apt and Bol, 1994].



In order to compute the stable model semantics, we
have to consider the ground versions of the two programs:

pground . A(n). YneN
not A(n). VneN
pgrovnd . A(n) — A(n+1). YneN
The program Plgmu"d ® Py is clearly contradictory,

and hence has no stable models. However, in all of
the above mentioned semantics based on causal rejection,

porevnd g pground g amits the whole Herbrand base as a

ground ground

fined extension of Plgmund @ Py, and so, according to
the refined extension principle, it should have no stable
models.

stable model. The program s a Te-

4 Refined semantics for logic program
updates

We are now going to define a new semantics for logic pro-
gram updates that satisfies the refined extension princi-
ple.

Before defining the new semantics, let us analyze the
reason why dynamic logic programming fails to sat-
isfy the refined extension principle in Example 1.1. In
this example the extra (counterintuitive) stable model
{Night, See_stars} is obtained because the tautology

See_stars < See_stars.

in P has a true body in that model, and hence it rejects
the fact
not See_stars.

of Py. After rejecting this fact, it is possible to consis-
tently conclude See_stars, and thus verify the fixpoint
condition, via the rule

See_stars « Night,not Cloudy.

of Pl.

Here lies the matrix of the undesired behaviour of dy-
namic logic programming: One of two conflicting rules
(of P1) is used to support a later rule (of P) that ac-
tually removes that same conflict. Informally, rules that
should be irrelevant may become relevant because they
can be used by one of the conflicting rules to defeat the
other.

A simple way to inhibit this behaviour is to let con-
flicting rules in the same state inhibit each over. This
can be obtained by slightly modifying the notion of re-
jected rules of dynamic logic programming, by also al-
lowing rules to reject other rules in the same state. Since
in dynamic logic programming rejected rules can reject
rules, two rules in the same state can reject each other,
thus avoiding the above described behaviour.

Definition 4.1 Let ®&PF; be a sequence of programs
and M an interpretation. The set of rejected rules

RejS(©P;, M) is defined as:
{reP|3dn €Pj, i <j: tanand M = body(n)}.

Then M is a stable model of ®P; iff:
M =T%@P;, M)
where TS (9 P;, M) is
least (P'\ Rej®(®P;, M) U Default(®P;, M)).

At first sight this modification seems to allow the ex-
istence of models in cases where a contradiction is ex-
pected (for example in a sequence where the last pro-
gram contains facts for both A and not A): If rules in
the same state can reject each other then the contradic-
tion is removed, and the program may have again un-
desired models. However, the converse is actually true
(cf. theorem 5.1), and the stable models in the refined
semantics are always stable models of the semantics of
dynamic logic programming, i.e., by allowing rejection of
rules in the same state no extra models are introduced.
To see why this is so, consider a sequence ®P; with two
conflicting rules (with heads A and notA) in one of its
programs. Take an interpretation M where the bodies
of those rules are both true (as nothing special happens
if a rule with false body is rejected) and check if M is a
stable model according to the new definition. By defini-
tion 4.1, these two rules reject each other, and reject all
other rules with head A or not A in that or in any pre-
vious state. Moreover not A is also rejected as a default
assumption, i.e., does not belong to Default(®P;, M).
This means that all the information about A is deleted.
Since M is two valued, the only possibility for M to be
a stable model is that there exists a rule 7 in some later
update whose head is either A or not A, and whose body
is true in M. This means that a potential inconsistency
can only be removed by some later update.

Finally, as this was the very motivation for introduc-
ing the refined semantics, it is worth observing that the
refined semantics does satisfy the refined extension prin-
ciple, as stated by the following theorem.

Theorem 4.1 The refined semantics satisfies the re-
fined extension principle.

By Proposition 3.3, it immediately follows from this
theorem that the addition of tautologies never adds mod-
els in this semantics. Moreover the refined semantics
preserves all the desirable properties of the previous se-
mantics for logic programs updates [Eiter et al., 2002;
Leite, 2003].

To give an insight view of the behaviour of the refined
semantics we show how the counterintuitive results of
dynamic logic programming in the example 1.1 are
corrected.

Example 4.1 Consider again the sequence Py & Ps of
example 1.1
P Day < not Night.
Night < not Day.
See_stars « Night, not Cloudy.
not See_stars.
P See_stars < See_stars.



This sequence has one single stable model, M =
{Day}. Thus the conclusions of the semantics match
with the intuition that it is day and it is not possible to
see the stars. We show that M is a stable model accord-
ing to the new definition. First of all we compute the
sets Rej®(®P;, M) and Default(®P;, M):

Rej® (&P, M)=0
De fault(®P;, M)={not Night, not See_Stars,
not Cloudy}

Then we check whether M s a stable model according
to definition 4.1 . Indeed:

rS(@P;, M)
= least((Py U P,) \ Rej®(®P;, M) U Default(®P;, M))
= {Day,not Night,not See_Stars, not Cloudy}
= M.

We already observed that in dynamic logic program-
ming, P1 ® Py has a second stable model

N = {Night, See_stars}.

The presence of this model violates the refined extension
principle. We show that N is not a stable model in the
refined semantics. As above we compute the sets:

Rej®(®P;,N) = { not See_stars. ,
See_stars «— Night.
not Cloudy. }

and
Default(®P;, N) = {not Day, not Cloudy}.

Hence:
FS(@Pia N)
= least((P, U Py) \ Rej®(®P;, N) U Default(®P;, N))
= {Night, not Day, not not Cloudy}
# N.

So, according to definition 4.1, N is not a stable model.

5 Comparisons

Unlike the semantics presented here, as shown by the ex-
amples above, none of the semantics based on causal re-
jection respects the refined extension principle and, con-
sequently, is not immune to the addition of tautologies.

It is clear from the definitions that the refined seman-
tics coincides with dynamic logic programming [Alferes
et al., 1998] for sequences of programs with no conflicting
rules in a same program. This means that the dynamic
logic programming semantics obeys the refined exten-
sion principle for that class of sequences of programs,
and it would have no problems if one restricts its ap-
plication to that class. However such limitation would
reduce the freedom of the programmer, particulary in
the possibility of using conflicting rules to represent in-
tegrity constraints. Since we have introduced the refined
extension principle as a property for programming with
integrity constraints, it would be weird to limit the use
of integrity constraints in order to satisfy such princi-
ple. Another limitation would result from the fact that

updates are also a tool to remove inconsistency in pro-
grams by rejecting conflicting rules. This feature would
be completely lost in tha case.

As for the other semantics, it is not even the case that
the principles is satisfied by sequences in that restricted
class. Update sequences [Eiter et al., 2002] and inheri-
tance programs [Buccafurri et al., 1999] also fail to be
immune to tautologies when no conflicting rules occur in
the same program.

Example 5.1 Consider the sequence of programs (taken
from [Leite, 2003]):

P : Day.
Py : not Day.
Ps;: Day — Day.

stating that wnitially it is day time, then it is no longer
day time, and finally (tautologically) stating that when-
ever it is day time, it is day time. While the se-
mantics of justified updates [Leite and Pereira, 1997;
1998] and the dynamic logic programming semantics of
[Alferes et al., 1998; Leite, 2003] select {Day} as the
only model, updates sequences [Fiter et al., 2002/ and
inheritance programs [Buccafurri et al., 1999] associate
two models: {Day} and {not Day} with such program

sequence3 .

While the semantics of justified updates [Leite and
Pereira, 1997; 1998] works properly for the above ex-
ample, there are classes of program updates for which
it does not satisfy the refined extension principle. To
illusrate that, we show here a modified version of the
example used in [Leite, 2003] for the same purpose.

Example 5.2 Consider the sequence of programs

Py Day.
Py : not Day < not Day.

According to the semantics of justified updates, this pro-
gram has two stable models, M = {Day} and S =
{not Day}. If justified updates would follow the refined
extension principle, S should not be a stable model. In
fact S is not a stable model of P, ® Py then, according to
Proposition 3.3, it can not be a stable model of Py ® Py
as well.

Finally, observe that the refined semantics is more
credulous than all the other semantics, in the sense that
the set of its stable models is always a subset of the set
of stable models obtained with any of the others. Com-
paring first with dynamic logic programming;:

Theorem 5.1 Let ®P; be a sequence of programs, and
M an interpretation. If M is a stable model in the re-
fined semantics then it is also a stable model according
to dynamic logic programming.

3Notice that, strictly speaking, the semantics [Buccafurri
et al., 1999; Eiter et al., 2002] are actually defined for ex-
tended logic programs, with explicit negation, rather than
for generalized programs. However, the example can be eas-
ily adapted to extended logic programs.



This result generalizes to all the other semantics since
dynamic logic programming is the most credulous of
the existing semantics. Indeed, each stable model in
dynamic logic programming is also a stable model in
the justified update semantics [Leite, 2003]. Inheri-
tance programs are defined for disjunctive logic pro-
grams, but if we restrict to the non disjunctive case,
this semantics coincides with the update sequences se-
mantics of [Eiter et al., 2002], and each stable model
in dynamic logic programming is also a stable model
in this one [Leite, 2003]. The analysis of the seman-
tics for updates that are not based on causal rejec-
tion is beyond the scope of this paper. An analysis
of such semantics can be found in [Eiter et al., 2002;
Leite, 2003].

6 Concluding remarks

We have introduced the refined extension principle as
a property of the stable model semantics of generalized
programs that is helpful for programming with integrity
constraints. We have extended the principle to the se-
mantics of logic programs with updates to assess the
adequacy of the existing semantics for modelling real
problems. We have shown by examples that none of the
existing semantics satisfies the principle. Among the ex-
isting ones, the semantics of dynamic logic programming
satisfies the principle for the wider class of sequences of
programs, viz., for sequences without conflicting rules in
the same program. Then we have introduced a new se-
mantics that completely satisfies the principle and briefly
compared it with the existing ones. It turns out that the
new semantics is the one that admits the smallest set of
stable models and, moreover, it coincides with dynamic
logic programming semantics for the class of programs
without conflicting rules in the same program.

Future lines of research include extending this study
to deal with multi-dimensional updates. Such an ex-
tension for the semantics of dynamic logic programming
is already defined in [Leite, 2003]. Multi-dimensional
updates can be viewed as a tool for naturally encod-
ing knowledge bases that incorporate information from
different sources. In this scenario, the presence of con-
tradictory information is a common fact. Preliminary
investigations show that, whenever there is no hierar-
chy among conflicting information, the existing seman-
tics exhibits counterintuitive behaviours, This problem
raises the question of a proper formulation of the refined
extension principle for the multi-dimensional case, to-
gether with the definition of a semantics that satisfies
the principle.

Another line of research is the definition of a well-
founded based semantics for logic programs updates.
Preliminary results suggest the possibility to combine
the concepts of dynamic logic programming and the new
refined stable model semantics presented here, for defin-
ing the well-founded semantics via an alternating fix-
point operator.

Another important line for future work is the imple-

mentation of the refined semantics using a transforma-
tional approach. On top of this theoretical work, we
want to establish new techniques for solving real prob-
lems, like software specification, legal reasoning, multi-
agent architecture and updates of web-pages.

References

[Alferes et al., 1998] J. J. Alferes, J. A. Leite, L. M.
Pereira, H. Przymusinska, and T. C. Przymusinski.
Dynamic logic programming. In A. Cohn, L. Schubert,
and S. Shapiro, editors, Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-98), pages 98-111, San
Francisco, 1998. Morgan Kaufmann Publishers.

[Alferes et al., 2000] J. J. Alferes, J. A. Leite, L. M.
Pereira, H. Przymusinska, and T. C. Przymusinski.
Dynamic updates of non-monotonic knowledge bases.
The Journal of Logic Programming, 45(1-3):43-70,
September /October 2000.

[Apt and Bol, 1994] K. R. Apt and R. N. Bol. Logic
programming and negation: A survey. The Journal of
Logic Programming, 19 & 20:9-72, May 1994.

[Buccafurri et al., 1999] F. Buccafurri, W. Faber, and
N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the
1999 International Conference on Logic Programming
(ICLP-99), pages 79-93, Cambridge, November 1999.
MIT Press.

[DLV, 2000] DLV. The DLV project - a disjunctive
datalog system (and more), 2000. Available at
http://www.dbai.tuwien.ac.at/proj/dlv/.

[Eiter et al., 2002] T. Eiter, M. Fink, G. Sabbatini, and
H. Tompits. On properties of semantics based on
causal rejection. Theory and Practice of Logic Pro-
gramming, 2:711-767, November 2002.

[Gelder et al., 1991] A. Van Gelder, K. A. Ross, and
J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620-650,
1991.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifs-
chitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. A. Bowen, editors,
5th International Conference on Logic Programming,
pages 1070-1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifs-
chitz. Representing actions and change by logic pro-
grams. Journal of Logic Programming, 17:301-322,
1993.

[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot.
A logic-based calculus of events. New Generation
Computing, 4(1):67-95, 1986.

[Leite and Pereira, 1997] J. A. Leite and L. M. Pereira.
Generalizing updates: from models to programs. In
LPKR’97: ILPS’97 workshop on Logic Programming
and Knowledge Representation, 1997.



[Leite and Pereira, 1998] J. A. Leite and L. M. Pereira.
Iterated logic program updates. In J. Jaffar, editor,
Proceedings of the 1998 Joint International Confer-
ence and Symposium on Logic Programming (JICSLP-
98), pages 265-278, Cambridge, 1998. MIT Press.

[Leite, 2003] J. A. Leite. Evolving Knowledge Bases, vol-
ume 81 of Frontiers in Artificial Intelligence and Ap-
plications. 10S Press, December 2003.

[Levesque et al., 1998] Hector Levesque, Fiora Pirri,
and Ray Reiter. Foundations for the situation cal-
culus. Linkdping Electronic Articles in Computer and
Information Science, 03, 1998.

[Lifschitz and Woo, 1992] V. Lifschitz and T. Woo. An-
swer sets in general non-monotonic reasoning (prelim-
inary report). In B. Nebel, C. Rich, and W. Swartout,
editors, Proceedings of the 3th International Confer-
ence on Principles of Knowledge Representation and

Reasoning (KR-92). Morgan-Kaufmann, 1992.

[Marek and Truszczytiski, 1987] Victor ~Marek  and
Miroslaw Truszczynski. Foundations of Logic Pro-
gramming. Springer—Verlag, Berlin, 2 edition,
1987.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes.
Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4. Edinburgh University
Press, 1969.

[Niemeli, 1999] Ilkka Niemeld. Logic programs with
stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial In-
telligence, 1999.

[Przymusinska and Przymusinski, 1988] H. Przymusin-
ska and T. Przymusinski. Weakly perfect model se-
mantics. In R. Kowalski and K. A. Bowen, editors,
5th International Conference on Logic Programming,
pages 1106-1122. MIT Press, 1988.

[Sakama and Inoue, 1999] C. Sakama and K. Inoue. Up-
dating extended logic programs through abduction. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, Proceed-
ings of the 5th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR-
99), volume 1730 of LNAI, pages 147-161, Berlin,
1999. Springer.

[SMODELS, 2000] SMODELS. The SMOD-
ELS system, 2000. Available  at
http://www.tcs.hut.fi/Software/smodels/.

[Zhang and Foo, 1998] Y. Zhang and N. Y. Foo. Updat-
ing logic programs. In Henri Prade, editor, Proceedings
of the 13th FEuropean Conference on Artificial Intel-
ligence (ECAI-98), pages 403-407, Chichester, 1998.
John Wiley & Sons.



