A general language for Evolution and Reactivity
in the Semantic Web

José Julio Alferes', Ricardo Amador!, and Wolfgang May?

1 Centro de Inteligéncia Artificial - CENTRIA, Universidade Nova de Lisboa
2 Institut fiir Informatik, Universitat Gottingen

Abstract. In this paper we define the basic concepts for a general lan-
guage for evolution and reactivity in the Semantic Web. We do this by
exposing an UML model that specifies an ontology for the language. The
proposed language is based on Event-Condition-Action rules, where dif-
ferent languages for events (including languages for composite events),
for conditions (queries) and actions (including complex actions) may be
composed, this way catering for language heterogeneity (besides hetero-
geneity on the data-model) that we think is essential for dealing with
evolution and reactivity in the Semantic Web.

1 Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living
organism” combining autonomously evolving data sources, each of them possibly
reacting to events it perceives. The dynamic character of such a Web requires
declarative languages and mechanisms for specifying the evolution of the data.
This vision of the Web, as well as a state of the art overview of related areas, is
described in our previous work [18].

Rather than a Web of data sources, we envisage a Web of Information Sys-
tems, where each such system, besides being capable of gathering information
(querying, both on persistent data, as well as on volatile data such as occurring
events), is capable of updating persistent data, communicating the changes, re-
questing changes of persistent data in other systems, and being able to react
to requests from other systems. As a practical example, consider a set of data
(re)sources in the Web of travel agencies, airline companies, train companies,
etc. It should be possible to query the resources about timetables, availability
of tickets, etc. But in such an evolving Web, it should also be possible for a
train company to report on late trains, and travel agencies (and also individual
clients) be able to detect such an event and react upon it, by rescheduling travel
plans, notifying clients that in turn could have to cancel hotel reservations and
book other hotels, or try alternatives to the late trains, etc.

The importance of being able to update the Web has long been acknowledged,
and several languages exist (e.g. XUpdate [25], XML-RL [16], XPathLog [17])
for just that. More recently some reactive languages have been proposed, that
not only allow for updating Web data as the above ones, but are also capable

of dealing-with /reacting-to some forms of events, evaluate conditions, and upon
that act by updating data. These are the cases of the XML active rules of [6],
of Active XQuery [5], of the Event-Condition-Action (ECA) language for XML
defined in [2], and RDFTL [19], which is an ECA reactive language on RDF data.
The common aspect of all of these languages is the use of ECA (declarative) rules
for specifying reactivity and evolution. Such kind of rules (also known as triggers,
active rules, or reactive rules), that have been widely used in other fields (e.g.
active databases [20, 24]) have the general form on event if condition do action.
They are intuitively easy to understand, and provide a well-understood formal
semantics: when an event (atomic or composite) occurs, evaluate a condition,
and if the condition is satisfied then execute an action (or a sequence of actions,
a program, a transaction, or even start a process).

In fact, we agree with the arguments exposed for the definition of the above
languages in what regards adopting ECA rules for dealing with evolution and
reactivity in the Web (declarativity, modularity, maintainability, etc). But in our
opinion, these languages fall short in various aspects, when the goal is aimed at
the general view of an evolving Web as described above. Namely, they lack on
allowing for more complex events and actions and, most important, on dealing
with heterogeneity at the level of the language. Autonomous web nodes will
use different formalisms for ECA rules, and also different formalism for events,
conditions and actions, depending on the requirements of their applications.

In general, actions are more than just simple updates to Web data (be it
XML or RDF data). As said above, besides that, actions can be notifications
to other resources, update requests of other resources, can be composition of
simpler actions (like: do this, and then do that), or even transactions whose
ACID properties ensure that either all actions in a transaction are performed,
or nothing is done. In our view, a general language should cater for such richer
actions. Moreover, events may in general be more than simple atomic events
in Web data, as in the above languages. First, there are atomic events other
than physical changes in Web data: events may be received messages, or even
“happenings” in the global Web, which may require complex event detection
mechanisms (e.g (once) any train to St. Wendel is delayed ...). Moreover, as in
active databases [10,26], there may be more complex (composite) events. For
example, we may want a rule to be triggered when there is a flight cancellation
and then the notification of a new reservation whose price is much higher than the
previous (e.g. to complain to the airline company). In this respect, there is some
preliminary work on composite events in the Web [3], but that only considers
composition of events of modification of XML-data in a single document.

The quite recent work on the language XChange [8] already aims at having
more complex actions and events for evolution and reactivity on the Web and, in
our opinion, is an important contribution in this direction. However, having in
mind the requirements we set up for the general evolving Semantic Web, there
are still some important aspects, that are not yet dealt with by XChange, namely
that of language heterogeneity.

The problem of language heterogeneity will definitely appear when dealing
with evolution and reactivity on the Web. This calls for more general languages.
In such an open and heterogeneous environment as the Web, it is difficult to
assume that there will be a single event language, or a single way to deal with
actions. Our view is that a general language for evolution and reactivity in the
Web should allow for the usage of different event languages, different condition
languages, and different action languages, considering ontological descriptions
and mappings for these languages. Each of these different (sub)languages should
have some minimal requirements, but it should be as free as possible. The task
of the general ECA language is then to combine these various (sub)languages
for reacting and performing evolution in the (Semantic) Web. This requirement
is far from the goals of XChange, which is based on a concrete language for all
the parts of ECA.

Moreover, the ECA rules do not only operate on the Semantic Web, but
are themselves also part of it. In general, especially if one wants to reason about
evolution, ECA rules (or parts of them) must be communicated between different
nodes, and may themselves be subject to being updated. For that, the ECA rules
themselves must be represented as data in the (Semantic) Web. This need calls
for a (XML) Markup Language of ECA Rules. A markup proposal for active
rules can be found already in RuleML [4], but it does not tackle the complexity
of events, actions, and the generality of rules, as described here. Moreover, to
deal with the requirements of heterogeneity and of reasoning about rules, an
ontology of ECA rules and (sub)ontologies for events, conditions and actions,
with rules possibly specified in RDF/OWL, is required.

In this paper we define the basic concepts of a general language for evolution
and reactivity in the Semantic Web that responds to the requirements just ex-
posed. Rather than presenting an RDF/OWL ontology, in this paper we present
a UML 2.0 [15] model. By doing this, we not only consubstantiate the language
concepts, but also provide an abstract syntax for it, which is already a step for
having a markup (XML) language for general ECA rules. For defining such a
markup, it is worth noting that the UML model we present is mappable into
XMI [14], this directly providing an XML representation. The modelling of the
language starts in Section 2, where the global aspects are spelled out, and the
composition between the various parts is discussed. The common structure of
the (sub)languages for the rule parts discussed in Section 3. Then, in Section 4,
the specific aspects each of the E, C and A parts is discussed and an illustrative
concrete (instantiation) of each of these (sub)languages is given. We end the
paper by mentioning ongoing and future work.

2 Global aspects for a general ECA language

In order to cope with the Semantic Web heterogeneity, the target of development
and definition of languages for (ECA) rules, for events, for conditions and for
actions should be a semantic approach, i.e., an approach based on an (extensible)

ontology for rules, events, conditions and actions that also allows for reasoning
about these concepts.

Rule
rulepart
* ECARule
La rulepart <> rulepart
nguage rulepart
* +event 0.1 | + condition + action
| EventPart | | ConditionPart| | ActionPart |
{ ordered }

RulePart
1..%

Fig. 1. General UML model for ECA rules

At a quite abstract level a rule is a composite aggregation of ruleparts and
an ECA rule may be defined by the UML diagram of Figure 1. As expected, an
ECA rule has 3 different parts: event, condition and action. The condition part
is optional, in the sense that it can be omitted, or that languages may allow
to integrate the evaluation of the condition with the event part, or with the
action part. This model can be readily extended by adding a fourth rule part
(also optional) — the post-condition (a ConditionPart) — resulting in a variation
usually called ECAP rules. In most cases, this post-condition part can be omitted
by allowing the action language to test for conditions inside the action part.
But this rule part may have particular relevance when considered together with
cascading reactions and transactional rules, in which case the post-condition
part allows the declarative specification of restrictions that must apply after the
whole transaction, given by the action part, is successfully executed. This will
be further detailed below, when discussing action languages.

Current databases already support active concepts by triggers (e.g., SQL)
where the distinction between events, conditions and action is not necessarily
explicit. Such rules can be handled as opaque rules of a given language that
are understood as a whole by an underlying system. Note that there exist well-
defined mappings into the above ECA model.

When defining (ECA) rules, language heterogeneity has to be considered not
only at the global rule level, but also at the rule part level. As stated before,
several reactive rule languages have already been proposed (e.g. XChange [§],

RDFTL [19]), introducing heterogeneity at the rule level. A generic approach
for rules in the Semantic Web must be able to cover all such explicit language
proposals. In most of these proposals there exists a pattern of language reuse,
usually a query (sub)language that already exists (e.g. XQuery) is chosen for
the condition part and either an existing update (sub)language is chosen (e.g.
XQuery+Updates [22]) or an extension is built over the query language (e.g.
Xcerpt [21]) in order to obtain a new (sub)language (e.g. XChange [8]) for the
action part. Finally, an event (sub)language is defined (often based on an exist-
ing one from the field of Active Databases, e.g. the SQL3 standard).

A general approach should lead to a clean distinction between the three parts
E, C, and A on the ontology level of the rules (as shown in Figure 1). Given
this, additional heterogeneity is provided by using and combining different event,
condition, and action sublanguages according to a global ECA schema. At the
most basic level, a rule part has a textual specification. To achieve language
heterogeneity at the rule part level, one must define precisely how the different
parts of a rule can exchange information and interact with each other. This
is achieved by a set of “bindable” names (logical variables), cf. Figure 2. These
variables are declared on the rule level. In every rule part that uses them, it must
be declared if they are bound by that part, or used (which requires that they are
bound in the same or a preceding part). A variable must be bound only once to a
value; in case that an already bound variable is “bound” again, the values must
coincide, i.e., yielding an analogous semantics as in logic programming (this e.g.
allows an event part that in some cases binds a variable, which is then used as
a join variable in the condition part, and is otherwise bound by the latter). For
each use of a logical variable (of the rule) its name in the opaque code must
also be given as a use attribute (e.g., for embedding JDBC where variables are
only given as 71, 72 etc.). Variables can be bound by (i) matching them — logic
programming style, (ii) or assigning the result set of a query to them.

In case that a variable is to be bound to a result set (e.g., of a query), no use
is given. This binding mechanism can be extended with a type system.

Ezxample 1. Consider an ECA rule expressing the idea that whenever a flight is
cancelled, every customer who has a reservation for this flight must be notified,
preferably by SMS. Using XML, this rule could take the following form (name-
space declarations omitted):

<eca:rule>
<eca:bind-variable name="Reservations” >
http://www.reservations.nop/actual.xml
< /eca:bind-variable>
<eca:variable name="Flight" />
<eca:variable name="Customers” />
<eca:event lang="http://www.flights.org/datalog” >
<eca:bind-variable name=""Flight" use="F" mode="match" />
<eca:opaque>
flight_cancelation(F) <!-- matches literal against incoming event in datalog -->

/declare

bind
* *
. . . Variable
declare = bin-r union bind-rp
rulepart . .
use contained or equal to declare +name:string
* *

{ordered }| 1..*
RulePart

* bind

use

Fig. 2. Rules and Variables

</eca:opaque>
</eca:event>
<eca:condition lang="http://www.w3.org/XPath” >
<eca:use-variable name="Flight” use="$Flight” />
<eca:use-variable name="Reservations” use="$Reservations” />
<eca:bind-variable name="Customers” mode="result-set” />
<eca:opaque>
document($Reservations)//flight[@Qid=$Flight] /reservation/customer
</eca:opaque>
<l-- evaluates XPath expression, binds the result to the variable 'Customers’
and checks if it is not empty -->
</eca:condition>
<eca:action lang="http://www.pseudocode-actions.nop” >
<eca:use-variable name="Customers" use="Customers" />
<eca:use-variable name="Flight" use="Flight" />
<eca:opaque>
for each C in Customers do
notify_cancelation(Flight, sms:C)
otherwise notify_cancelation(Flight, mail:C)
otherwise signal_failure(notify_cancelation(Flight, C))
done
</eca:opaque>
</eca:action>
</eca:rule>

Note in this example that each of the rule parts has a different lang attribute,
i.e. each of the parts uses a different language.

3 Common Structure of E, C and A Sublanguages

The level of reasoning that can be performed with the model defined so far is
yet restricted. In order to improve this level of reasoning one must know more
about the structure of a (sub)language.

The generic structure of (sub)languages, independently of whether they are
event, condition or action languages, is modelled in Figure 3. Each such language
consists of a set of composers and is parameterized with a separate language of
atomic elements. Expressions of the language are then (i) atomic elements, or
(ii) composite expressions recursively obtained by applying composers to expres-
sions. The atomic elements are part of a domain language, and in most cases
come from an application-dependent ontology.

Language | Engine

+id:uri

3k
| AlgebraicLanguage |<H Composer

+/arity:int
+cardinality:int

| DomainLanguage |

* 1 { ordered }

Parameter

+name:string[0..1]

Fig. 3. Composers

Each composer has a given cardinality that denotes the number of expressions
it can compose, and optionally has a number of parameters that determines its
arity. Due to their structure, these languages are called algebraic languages, e.g.
used in event algebras.

For instance, “F; followed_by F5 within ¢” is a binary composer to recognize
the occurrence of two events (atomic or not) in a particular order within a time
interval, where t is a parameter. A language for atomic events that is consistent
with this event algebra could define an event “received_message(M)” for receiving
a message. Together with an action language that provides an action for sending
a message, one could easily define a negotiation dialog between two systems by
means of a set of reactive rules.

Each of these languages has an associated engine that captures the semantics
of the (composers of the) language. The engines provide the (expected) inter-
faces for communication, must keep their own state information, including at
least the current variable bindings. Specific tasks of the engines then include e.g.
the evaluation of composite events (for the event languages), or the execution of
transactions (for the action engines). The issue of transactions is of particular
importance (see Section 4.3).

As mentioned above, for using such a language it must be parameterized with
a language for atomic elements, this latter language being (an appropriate) part
of a domain language. Such a domain language (e.g. a language for the domain of
travels, or banking, or ...) is induced by an ontology, and provides atomic events,
predicates or literals (for conditions), and atomic actions of that specific domain
(e.g. events of train schedule changes, actions of reserving tickets, ...). Moreover,
primitive constructs (with arguments) for events, conditions and actions must
also be provided by the domain language. The above received_message(M) event
is an example of such a primitive construct for the language of atomic events,
where M is an argument for the message, itself described in the ontology of the
domain.

Given the additional level of knowledge about the structure of a (sub)language,
the modelling of the rule part specifications can be more detailed, as shown in
Figure 4. Here, more information about the actual bindings of the available
variables is provided. This raises the level of reasoning that may be performed
about ECA rules, regardless of the degree of language heterogeneity that may
be present.

The specification of a rule part (PartSpec in Figure 4) in its simplest (opaque)
form is just some text (understood by some language engine) associated with a
set of variables that can either be bound or simply used in that part. When this
text is given to the respective language engine together with a set of variables,
some of them already bound, the engine interprets this text, optionally produc-
ing new bindings for some of the yet unbound variables. Instead of a simple text
(like the opaque specifications - eca:opaque - used in Example 1), a specification
may also be marked up according to the composers of the language (see Example
2), defining an abstract tree. This abstract tree is built from atomic elements and
composite specifications, respecting the defined arity and cardinality for com-
posers. In this case, the bindings of variables can be made either inside atomic
elements (described in the domain language), or with parameters of composers.

4 Concrete languages for Events, Conditions and Actions

In the previous sections we have defined a general model for ECA rules. This
model allows for combining different event, condition and action languages. Ac-
cording to the model, each such language is specified by a set of composers,
and elements of a domain language that may include basic constructs possibly

*
{ ordered }

|

Variable ParameterBinding
ES
*
bind use
* * #* OpaqueSpec

RulePart

ES

PartSpec
{ ordered }

Expression

Language

AtomicElement

| AlgebraicLanguage | | DomainLanguage [<_>

*

.
Composer CompositeSpec

*

Fig. 4. Model of the Rule Part

with arguments. In this section we discuss the definition of these constructs and
composers for basic languages of events, conditions and actions.

4.1 A language for events in the Web

In the context of the Semantic Web, an (atomic) event is in general any de-
tectable occurrence. Events in the Web can be local events, e.g. updates of local
data, but also incoming messages, and (explicitly communicated, or otherwise)
changes in other nodes. Accordingly, a general event language should have con-
structs for specifying these various kinds of events, besides the domain specific
ones.

Atomic Fvents on Web data. In the most basic (physical) level, there should
be constructs to cater for the detection of changes on local data, be it on XML
or RDF data, similar to those found in database triggers. Work on triggers for
XQuery has e.g. been described in [5] with Active XQuery and in [2], emulating
the trigger definition and execution model of the SQL3 standard that specifies a
syntax and execution model for ECA rules in relational databases. The former
uses the same syntax and switches as SQL. For modifications of an XML tree,
we propose the following basic constructs for atomic events of modifications of
XML data, that have been developed in [1]:

— ON {DELETE|INSERT|UPDATE} OF xsl-pattern: if a node matching the xsl-
pattern is deleted /inserted /updated,

— ON MODIFICATION OF xsl-pattern: if anything in the subtree is modified,

— ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node
matching the xsl-pattern,

— ON INSERT [IMMEDIATELY] BEFORE|AFTER xsl-pattern: if a node is inserted
(immediately) before or after a node matching the xsl-pattern.

In all these constructs, xsl-pattern is a (typically input) argument. Moreover,
these events should make relevant values accessible, e.g., OLD AS ... and NEW
As ... (like in SQL), both referencing the complete node to which the event
happened, additionally INSERTED AS, DELETED AS referencing the inserted or
deleted node. These relevant values are additional arguments of the above con-
structs, typically (output) to be bound with variables. The implementation of
these events in XML repositories is probably to be based on the DOM Level 2/3
Events [11].

Regarding RDF data, RDF triples, describing properties/values of a resource,
are much more similar to SQL. In contrast to XML, there is no assignment of
data with subtrees, which makes it impossible to express “deep” modifications in
a simple event. A proposal can be found in [19], and in [1]. The latter considers
the following basic constructs:

— ON {DELETE|INSERT|UPDATE} OF property [OF class]: if a property is re-
moved from/added to/updated of a resource of a given class, then such an
event is raised;

— ON CREATE OF class: it is raised if a new resource of a given class is created;

— ON NEW CLASS: is raised if a new class is introduced,

— ON NEW PROPERTY [OF CLASS class]: is raised, if a new property (option-
ally: to a specified class) is introduced.

Besides the OLD and NEW values mentioned for XML, these events should
consider as arguments (to bind variables) RESOURCE AS ... and PROPERTY AS
. referring to the modified resource and the property (as URIs), respective.

Communication events. Besides the above events that react on updates on a
given data model level, communication events are raised by messages, inde-
pendent from the abstraction level of the rule. We propose the following basic
constructs:

— ON MESSAGE content [OF sender] [AT time]
— ON MESSAGE MATCHING pattern [OF sender] [AT timel

In the first construct, typically both the content and time arguments are to be
bound to variables upon receipt of the message. However, one might want to
trigger such an event only when a message with a specific content (or a content
matching a given pattern) is received, as in the second construct. In this case
a methodology for making the matching of pattern must be specified. More
elaborate constructs for incoming messages are possible, e.g. with parameters
for specifying an ontology describing the language of the message, or along the
lines of the FIPA language for communication among agents [12].

10

Composite events. In general, as argued above, events should not be restricted to
atomic ones. For dealing with composite events in the context of the ECA rules
proposed here, the event language must define several composers. We propose
at least the following composers of events: “F; OR Ey”, “E; AND Es”, and “E;
AND THEN FE5 [AFTER PERIOD time]” the latter one with two events and an
additional parameter time, standing for the time that has passed between the
occurrence of E; and E5. The actual semantics of composers must be done
similarly to that of operators in event algebras in the context of active databases
[26]. In it, detection of a composite event means that its “final” atomic subevent
is detected. Event algebras contain not only the aforementioned straightforward
basic conjunctive, disjunctive and sequential connectives, but also additional
operators. A bunch of event algebras have been defined that provide also e.g.
“negative events” in the style that “when E; happened, and then E3 but not
FE5 in between, then do something”, “periodic” and “cumulative” events, e.g.,
the SNOOP event algebra [9] of the “Sentinel” active database system. A quite
rich set of composers for events in the Web is being also considered in the
language XChange [8], where exclusions, repetitions, and cardinality are also
being explored.

Ezample 2. The following specifies, in an illustrative (XML) markup, an event
for (very simplified) detection of a late train. It is a composite event in the
SNOOP (algebraic) language, and uses a basic atomic event language of a domain
of train travels, including constructs of those just exposed. The detection of late
trains is made either by being warned by the travel agency, or by the occurrence
of domain specific event signaling changes in a given (pre-defined) source with
expected arrival times:

<eca:event xmlns:snoop="http://snoop.nop”
xmlns:msg="http://www.basic.nop/events”
xmlns:mytravel="http://www.trains.tr" >
<eca:bind-variable name="newArrival" />
<l-- The 2 variable below must be bound as constants on the rule level -->
<eca:use-variable name="myTravelAgent” use="$myAgent” />
<eca:use-variable name="myTrain" use="$myTrain" />
<snoop:or>
<snoop:atomic detect="xml-pattern” >
<msg:receive-message sender="$myAgent” >
<content> <delayed train={$myTrain}/> </content>
</msg:receive-message>
<snoop:variable name="newArrival’ select="
$event/content/delayed/@arrival Time" />
</snoop:atomic>
<snoop:atomic detect="xpath" >
<snoop:cond test=""%$event/name()="mytravel:changeTime"" >
<snoop:cond test=""%$event/@trainld=$myTrain"” >
<snoop:variable name="newArrival" select=""3$event/newTime" />
</snoop:atomic>
</snoop:or>

11

</eca:event>

This event part binds the variable newArrival with the (reported or detected)
new time of arrival. It is worth noticing here how, in each of these cases, the
variable is bound. In the case of reporting, there must occur an event of a received
message (marked-up in XML and represented by $event) with an attribute sender
which is equal to the value at the variable myAgent, and with a content with a
delayed element with an attribute train equaling that of myTrain. The mechanism
used here for testing this matching with the event that occurred is an xml-pattern.
In this case, newArrival is bound to the value in attribute arrivalTime of that
delayed element. In the other case, a domain specific event changeTime must
have occurred, and this event must have an attribute trainld equal to that in the
variable myTrain, this matching being made by xpath. In this case, newArrival is
bound to the value in element newTime of that delayed element.

4.2 Conditions in ECA rules for the Web

Conditions in ECA rules basically amount to queries in the (Semantic) Web,
that possibly bind rule variables to be then used in the action part. For this
purpose, and in case reasoning is not required inside the condition part, one
can envisage the condition language specification simply as opaque (see Section
2), where besides the reference for the language being used (possibly with URI
for the respective language and engine) one further gives a text string with the
query in that language. This way, e.g. XPath, XQuery, RDQL, or Xcerpt can be
used in the condition part.

In case reasoning about the condition part is desired, an ontology for the
query language(s) is needed, that models the basic constructs and composers
of the language in the terms described above. Such work in the direction of
modelling query languages for the Web already exists, e.g. in [23] where a UML
modelling of the language Xcerpt [21] is shown.

4.3 Actions and Transactions

As for events, also (atomic) actions in the Web can be considered at various
levels: there can be local actions of updating web data; event raising; external
update requests to other nodes; general (local or remote) method calls.

Local update actions can be specified in any appropriate language for chang-
ing web data, such as XUpdate [25], XML-RL [16], or XPathLog [17]. Their
integration in the ECA framework can be done as just described for conditions,
i.e. either as opaque specification, or by providing a proper ontology, based on
constructs and composers, specifying those update languages.

Activities of remote nodes can be invoked by sending a message with an
update (request) statement. Here a basic construct for sending a message is
required, the simplest one being: SEND MESSAGE message TO recipient. This mes-
sage sending can also be used for event-raising actions, in this case making sure
that the event raised is then collected by a corresponding ON MESSAGE construct.

12

As for events, more elaborate action constructs can be defined. General action
constructs that can be defined may be those for (remote) procedure/method
calls to Web Services, where the SOAP protocol can be used.

The execution of an action may in general succeed or fail. Considering fail-
ure of actions is important e.g. in the case of remote update requests: once the
request is issued, it is important to be able to receive feedback on whether the
update was actually done, or not. For example, upon request of a flight reser-
vation, it is important to know whether the reservation was accepted or not.
The operational semantics of a general language for actions, and a correspond-
ing processor, should thus allow for failure of atomic actions. Moreover, when
used with non-deterministic condition languages, the failure of an action should
somehow “backtrack” into the condition part to check for alternative bindings
of variables that may result in successful actions.

Complex actions can be defined by composing atomic actions. This is done
by enriching the action language with appropriate composers. The most basic
composers for actions are those of (parallel) conjunction of actions (A; AND As)
sequential execution of actions (A;; As). Other more elaborate composers can be
defined in action languages, such as if-then-else composers (IF test THEN A; ELSE
Asz), while-iterations (WHILE test DO A), and forall-iterations (FORALL variable
DO A). Note that some of these complex actions already require the use of a
condition language in the action language for evaluating conditions. This idea
can be further exploited by introducing an action construct — TEST CONDITION
condition which tests the condition and either fails if the condition is false, or
does nothing in case it is true but possibly binding some extra variables). With
such a rich action language, similar to Transaction Logic [7], combining condition
testing with (trans)actions, the condition part of rules can be omitted.

In general, each of the complex actions should be allowed to be specified as a
transaction with ACID properties, in particular where either all of the actions are
executed, or the whole composite actions fails, and no action is performed. This
can be done by having a composer TRANSACTION id A, where id is a parameter for
storing a unique identifier of the transaction, and A is the (complex) action. Note
here how some form of post-condition, in the line of those mentioned in Section
2 may be specified by combining these transactions with the above condition
testing. While the transaction composer is easy to understand in case all atomic
actions in A consist of local updates, this is not the case when A involves actions
like e.g. sending messages, or remote method calls. In fact, in these cases, what
should be the meaning of rolling back over such an action? When a message
is sent, what does it mean to rollback on sending it? It is our stance that in
these cases, compensation actions must be specified, to be executed when rolling
back is not possible. This, and a deeper study of transactions in this context
(including considering transactions that are not limited to a single rule), is not
detailed further here, and is subject of ongoing work.

13

5 Conclusions

In this paper we describe the basic concepts and a UML modelling of an ECA-
rules-based general language for the Semantic Web. Moreover, we discuss con-
crete languages for events, conditions and actions to be composed in this general
language. It is our stance that this sets the ground for a general framework for
evolution and reactivity on the Web, where heterogeneity of languages is taken
into account, and reasoning over the rules is made possible. In particular, it
may serve as a general framework for integrating several existing languages. The
integration of other ECA-based languages in this framework, such as the ones
mentioned in the introduction, is a subject of ongoing and future work. In this
respect, special attention will be paid to the language XChange, as it is the one
which already consider richer events and actions.

Lack of space prevents us from elaborating here on further ongoing work
that is being developed by us in the context of the general language. Namely,
further detailing the concepts involved in the definition of domain languages,
and also the definition of a general architecture for executing the ECA-Rules
are left out. This general architecture also raises the issue of communication
strategies regarding event and actions (are events raised by actions “pushed”
into (respective) nodes? or do they (periodically) “pull” for events that may have
occurred?). Another important issue that is also related with the execution, and
that was only briefly addressed here is that of transactions. It is our belief that
the issue of transactions on the Web is an important and difficult subject, that
will gain increasing importance and interest in a near future. It is in our agenda
to continue working in this subject, along the lines exposed above.

Acknowledgements

This research has been funded by the European Commission within the 6th Frame-
work Programme project REWERSE, number 506779.

References

1. J. J. Alferes, M. Berndtsson, F. Bry, M. Eckert, N. Henze, W. May, P. L. Patranjan,
and M. Schroeder. Use-cases on evolution. Technical Report IST506779/Lisbon /I5-
D2/D/PU/al, REWERSE, 2005.

2. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An Event-Condition-
Action Language for XML. In Int. WWW Conference, 2002.

3. M. Bernauer, G. Kappel, and G.Kramler. Composite Events for XML. In 13th
Int. Conf. on World Wide Web (WWW 2004). ACM, 2004.

4. Harold Boley, Benjamin Grosof, Michael Sintek, Said Tabet, and Gerd Wagner.
RuleML Design. RuleML Initiative, http://www.ruleml.org/, 2002.

5. Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active
XQuery. In 7Intl. Conference on Data Engineering (ICDE)”, pages 403-418, 2002.

6. Angela Bonifati, Stefano Ceri, and Stefano Paraboschi. Pushing Reactive Services
to XML Repositories Using Active Rules. In WIWWW’01, pages 633-641, 2001.

14

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133(2):205-265, 1994.

F. Bry and P.-L. Patranjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In 20th ACM Symp. Applied Computing. ACM, 2005.
S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In 20th VLDB, 1994.
Sharma Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Data € Knowledge Engineering, 14:1-26, 1994.
Document object model (DOM). http://www.w3.org/DOM/, 1998.

Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specifi-
cation. Technical Report SC00061G, http://www.fipa.org, Dec. 2002.

Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification.
OMG, 2003. http://www.omg.org/cgi-bin/doc?ptc/2003-10-04.

Object Management Group. XML Metadata Interchange (XMI) 2.0 Specification.
OMG, 2003. http://www.omg.org/cgi-bin/doc?formal/2003-05-02.

Object Management Group. OMG Unified Modelling Language (UML) 2.0 Super-
structure. OMG, 2004. http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.
Mengchi Liu, Li Lu, and Guoren Wang. A Declarative XML-RL Update Language.
In Proc. Int. Conf. on Conceptual Modeling, pages 506-519. Springer, 2003.
Wolfgang May. XPath-Logic and XPathLog: A logic-programming style XML data
manipulation language. Theory and Practice of Logic Programming, 4(3), 2004.
Wolfgang May, José Jilio Alferes, and Francois Bry. Towards generic query, up-
date, and event languages for the Semantic Web. In PPSWR’04. Springer, 2004.
George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. RDFTL: An
Event-Condition-Action Rule Languages for RDF. In HDMS’04, 2004.

N. W. Paton, editor. Active Rules in Database Systems. Monographs in Computer
Science. Springer, 1999.

S. Schaffert and F. Bry. A practical introduction to Xcerpt. In Int. Conf. Extreme
Markup Languages, 2004.

Igor Tatarinov, Zachary G. Ives, Alon Halevy, and Daniel Weld. Updating XML. In
ACM Intl. Conference on Management of Data (SIGMOD), pages 133-154, 2001.
G. Wagner, C. V. Damadsio, and S. Lukichev. First-version rule markup languages.
Technical Report IST506779/Eindhoven/I1-D3/D/PU/abl, REWERSE, 2005.
Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

XML:DB Initiative, http://xmldb-org.sourceforge.net/. XUpdate - XML Update
Language, September 2000.

D. Zimmer and R. Unland. On the Semantics of Complex Events in Active Data-
base Management Systems. In 15th International Conference on Data Engineering,
pages 392-399. IEEE Computer Society Press, 1999.

15

