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Abstract

An important question for the upcoming Semantic Web is how to best combine
open-world ontology languages, such as the OWL-based ones, with closed-world
rules paradigms. One of the most mature proposals for this combination is
known as hybrid MKNF knowledge bases [41], which is based on an adaptation
of the Stable Model Semantics to knowledge bases consisting of ontology axioms
and rules. In this paper, we propose a well-founded semantics for such knowl-
edge bases which promises to provide better efficiency of reasoning and is com-
patible both with the OWL-based semantics and the traditional Well-Founded
Semantics for logic programs. Moreover, our proposal permits the detection
of inconsistencies possibly occuring in tightly integrated ontology axioms and
rules with only little additional effort. We also identify tractable fragments of
the resulting language.
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1. Introduction

. The Semantic Web has recently become a major source of inspiration for
Knowledge Representation and Reasoning (KR). The underlying idea of the
Semantic Web is to use KR techniques to enhance data on the World Wide
Web with knowledge bases, in order to make this data available for processing
by intelligent systems. Semantic Web has become a mature field of research
and a considerable industrial uptake for the use of Semantic Web technologies
on and off the web can be observed. Semantic Web is a topic which is clearly
here to stay.

∗Corresponding author, mknorr@di.fct.unl.pt, Tel. (+351) 21 294 8536, FAX (+351) 21
294 8541

1jja@di.fct.unl.pt
2pascal@pascal-hitzler.de

Preprint submitted to Elsevier June 14, 2010



1.1. Open vs. Closed World Reasoning
The most prominent expressive KR approach employed in Semantic Web

research is based on Description Logics [3, 22]. In particular, the Web Ontology
Language OWL3 is based on the description logic SHOIN (D) and a recom-
mended standard by the World Wide Web Consortium (W3C) for modeling
Semantic Web knowledge bases, commonly known as ontologies.

Description Logics (DLs), in turn, bear a first-order predicate logic seman-
tics, and are thus monotonic and adhere to the Open-World Assumption (OWA).
This means that (negative) conclusions drawn from a knowledge base must be
based on information explicitly present in the knowledge base. As such, DLs dif-
fer from other KR formalisms studied e.g. in nonmonotonic reasoning, which are
usually based on the Closed-World Assumption (CWA), and generally assume
all non-provable expressions to be false.

The decision to base OWL on the OWA appears to be a natural one in
light of the envisioned applications on the World Wide Web, where the absence
of a piece of knowledge should not generally be taken as an indication of it
being false. However, there are also natural application scenarios where the
CWA, or at least the partial closure of the knowledge base, is the more natural
choice. Such scenarios can occur e.g. if ontology-based reasoning is done in
conjunction with data stored in a database, which is usually considered to be
complete in the sense that an item which is not present in the database should
be considered false. As a case in point [44] describes a large case study about
matching patient records for clinical trials criteria containing up to millions of
assertions. In that clinical domain, open world reasoning is needed in radiology
and laboratory data, because, for example, unless a lab test asserts a negative
finding no arbitrary assumptions about the results of the test can be made.
E.g. we can only be certain that some patient does not have a specific kind of
cancer if the corresponding test has a negative result. However, in pharmacy
data, the closed world assumption can be used to infer that a patient is not on
a medication if this is not asserted. The work of [44] applies only open-world
reasoning but claims that the usage of closed world reasoning in pharmacy data
would be highly desirable and that the combination of OWA and CWA is an
open problem in their work.

It is thus apparent, and frequently being voiced by application developers,
that it would be favorable to have local closed-world modeling as an additional
feature for ontology-based systems, i.e. to have modelling capabilities which
allow to interpret parts of the knowledge base under the CWA, and other parts
under the OWA. Such modelling capabilities would enhance the usability of
OWL for knowledge modellers considerably. A corresponding study for match-
making using Semantic Web Services, for example, is given in [19]. Other natural
scenarios such as the one above occur in the medical domain.

In fact, life sciences, including medicine, are a prominently studied appli-
cation area for OWL, and in this area several large-scale ontologies have been

3See http://www.w3.org/2004/OWL/ and for the revision, called OWL 2, see [25].
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developed which are in practical use, e.g. GALEN4 and SNOMED.5 Ontolo-
gies like these provide unified medical terminologies for the management and
exchange of clinical information. The knowledge bases typically consist of infor-
mation about anatomy, diseases, procedures, drugs, etc., and their applications
reach from medical record management to diagnostics support. SNOMED is for
example used in the application which matches patient records for clinical trials
criteria described above.

As another example we can consider that such a medical knowledge base is
used to decide whether a certain anaesthetic is applied before surgery, depending
on whether the patient is allergic to it or not. In case of an emergency this
information might not be available so we model it with the so-called default
negation: unless we know explicitly about an allergy we assume that the patient
is not allergic and we apply the anaesthetic. Other examples can be found if
we were to model exceptions in anatomical terminology, e.g. the existence of
persons whose heart is actually on the right-hand side. Exception modelling is
not directly possible in OWL and this lack has led to several investigations into
combinations of closed-world rules paradigms with DLs. However, this area of
research must still be considered to be in its early stages.

1.2. Combining Rules and Ontologies
Combining rules and ontologies is a non-trivial task since a naive combina-

tion is undecidable ([27]). In fact, both formalisms differ substantially on how
decidability is achieved. In case of ontologies decidability is achieved by certain
syntactic restrictions on the available first-order predicates and the way these
can be related. Rules do not have these restrictions but are limited in their
applicability to the finitely many different objects in the knowledge base. An
immediate effect of these differences is the availability of expressive features that
are each only available for one of the two approaches. Rules permit to express
non-treeshape-like relationships ([54])6 such as ”an uncle is the brother of one’s
father,”, integrity constraints [47] to state e.g. that a certain piece of information
is explicitly present in the database, and closed-world reasoning and exceptions
as presented above. Ontologies on the contrary allow open-world reasoning
and reasoning with unbounded or infinite domains and are thus well-suited to
represent many types of incomplete information and schema knowledge. For
example, in rule-based formalisms one typically cannot say that ”every person
has a father and a mother who are both persons” without listing all the parents
explicitly. A combination of rules and ontologies is therefore not only of interest
for current applications in the web but also as a highly sophisticated means of
knowledge representation in general.

The proposed solutions on such a joint formalism differ substantially but we
follow [43] and want the following criteria to be satisfied.

4http://www.opengalen.org/
5http://www.ihtsdo.org/snomed-ct/
6The DL SROIQ [28] also provides role composition axioms, which can be used to address

some, but by no means all use cases.
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• Faithfulness: The integration between DLs and rules should preserve the
semantics of both formalisms—that is, the semantics of a hybrid KB in
which one component is empty should be the same as the semantics of the
other component. In other words, the addition of rules to a DL should
not change the semantics of the DL and vice versa.

• Tightness: Rules should not be layered on top of a DL or vice versa; rather,
the integration between a DL and rules should be tight in the sense that
both the DL and the rule component should be able to contribute to the
consequences of the other component.

• Flexibility: The hybrid formalism should be flexible and allow one to view
the same predicate under both open- and closed-world interpretation. This
allows the rules to enrich a DL with nonmonotonic consequences, and a
DL to enrich the rules with the capabilities of taxonomic reasoning.

• Decidability: To obtain a practically useful formalism that can be used in
applications such as the Semantic Web, the hybrid formalism should be
at least decidable, and preferably of low worst-case complexity.

1.3. Hybrid MKNF and Stable Models vs. Well-founded Semantics
As shown in [43], among the various proposals (e.g. [7, 11, 12, 14, 32,

43, 49, 50]) for combining rules and ontologies the only one satisfying all the
four criteria is known as Hybrid MKNF knowledge bases [43], which draws on
the logics of Minimal Knowledge and Negation as Failure (MKNF) [37]. An
involved discussion of the importance of Hybrid MKNF knowledge bases for
modeling knowledge in the Semantic Web can be found in [26], and [19] and
[20] provide arguments for the usefulness of epistemic reasoning the way it is
done in MKNF logics. The proposal by Motik and Rosati ([43]) seamlessly
integrates arbitrary decidable description logics with essentially (disjunctive)
logic programming rules allowing to reason over a combination of monotonic
open world knowledge and nonmonotonic closed world knowledge within one
framework.

Several reasoning algorithms are presented for the framework and one result
shows that the data complexity of reasoning with Hybrid MKNF knowledge
bases is in many cases not higher than reasoning in the corresponding fragment
of logic programming. Thus, adding an ontology to rules does in general not
increase the data complexity when compared to rules alone, but the very same
cannot be said for adding rules to ontologies, e.g. we have at least a data
complexity of coNP for a combination of normal logic programming rules with
ontologies even if the data complexity of the Description Logics fragment is P.
Indeed, although the approach of Hybrid MKNF knowledge bases is powerful,
whenever we add rules with arbitrary nonmonotonic negation to an ontology,
we loose in general tractability.

The reason for that lies in the way the reasoning algorithms work: models
are in general guessed and then verified against several criteria yielding a lower
bound on data complexity of at least NP. This is not surprising since [37] showed
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that there is a close correspondence between the logics of MKNF and Stable
Model Semantics (SMS) [17] for logic programs whose reasoning algorithms
are also based on guessing and checking models, so that any improvements
based on SMS are rather unlikely. Instead, the other major semantics in Logic
Programming (LP), the Well-Founded Semantics (WFS) [53], seems to offer
a solution. WFS is a three-valued semantics allowing the truth values ’true’,
’false’ and ’undefined’, while stable models only admit ’true’ and ’false’. The
value ’undefined’ can be understood as delaying the decision whether some piece
of information is true or false until clarifying information is available. This
also permits to compute the unique well-founded model for a logic program
in contrast to the possibly various stable models which have to be guessed.
Though in general semantically weaker in terms of the derivable consequences,
the lower complexity class (e.g. for normal programs the data complexity is P
for the WFS instead of coNP for SMS [6]) makes WFS more promising for the
intended application area, the World Wide Web, and applications like the one
mentioned above ([44]) matching patient records for clinical trials with data of
approximately 240,000 patients. In fact, the time required to answer example
queries to such a large database in [44] varies from 26 minutes to more than
6 hours. According to [44] this is still within acceptable parameters but the
addition of the desired non-monotonic feature as described above must avoid
lifting the problem to a higher computational complexity, otherwise the solution
is not feasable any longer. Additionally, SMS requires to obtain the entire model
(just like [43] for combinations of rules and ontologies) for reasoning while the
WFS permits top-down reasoning envolving only the part of the knowledge base
relevant for the information of interest making WFS all the more suited for large
scale applications. It would therefore be interesting to have a combination of
rules and ontologies satisfying the 4 criteria mentioned above. Fortunately,
there is a correspondence between Stable Model and Well-Founded semantics
[52] relating the definition of the well-founded model to the operator used to
verify stable model candidates and we want to explore this relation to adapt the
approach presented in [43] to the WFS.

1.4. Contribution
In this paper, we thus define a new semantics, restricted to non-disjunctive

rules, which soundly approximates the semantics of [43] but is in general in a
strictly lower complexity class. In particular, when dealing with a tractable
description logic our combined approach remains tractable w.r.t. data complex-
ity. We extend the two-valued MKNF semantics from [43] to three truth values
where each two-valued model from [41] corresponds to a total three-valued one of
our approach (and vice versa) and where the least (w.r.t. derivable knowledge)
three-valued MKNF model is the well-founded MKNF model. Our proposal sat-
isfies straightforwardly the four criteria on a combination of rules and ontologies
we presented above and the semantics guarantees the following properties:

• The well-founded MKNF model is faithful w.r.t. the two-valued models of
[43], i.e. whatever is true, resp. false, in the well-founded MKNF model is
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also true, false resp., in each two-valued MKNF model as defined in [43].

• Our proposal yields the original DL-semantics when no rules are present,
and the original WFS of logic programs if the DL component is empty.

• If the knowledge base is consistent then the approach is coherent in the
sense of [45], i.e. whenever a formula is first-order false then it is enforced
to be nonmonotonically false as well and not possibly undefined.

• If the knowledge base is inconsistent then our approach allows for detecting
inconsistencies which might appear in tightly integrated ontologies and
rules where information is spread out in both components of the knowledge
base, e.g. if some formula is derivable from a rule to be true but also
(first-order) false in the ontology. This detection is achieved without any
substantial additional computational effort.

• The computational data complexity of our approach is dependent on the
computational complexity of the applied DL but if the considered DL is
of polynomial data complexity then the combination with rules remains
polynomial.

1.5. Outline
The paper is structured as follows. We first recall preliminaries on Descrip-

tion Logics, the logics of Hybrid MKNF, and Hybrid MKNF knowledge bases in
Section 2. Then we present the semantic framework in Section 3 which extends
MKNF semantics to three truth values based on which the well-founded MKNF
model is defined. In Section 4 we show how to obtain the well-founded MKNF
model and also how the mentioned inconsistency detection works. It is also
shown that the obtained result fits into the framework presented in Section 3.
A comparison to related work follows in Section 5 before we conclude in Section
6 7.

2. Preliminaries

In this section we recall preliminary notions for Description Logics, the logics
of minimal knowledge and negation as failure, and Hybrid MKNF knowledge
bases.

2.1. Description Logics
Our approach is basically independent of the underlying description logic. To

make the exhibition self-contained, we recall the description logic ALC, which is
considered to be a foundational description logic for the research around OWL,
and some standard extensions appearing for example in lightweight decription
logics such as EL++ ([2]). This will suffice for the purpose of our paper, and

7A short version of this paper appeared in [33].
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the reader familiar with description logics will have no difficulties adjusting our
approach to more expressive description logics such as SHOIN or SROIQ,
which underlie OWL resp. OWL 2. For further background on description
logics we refer to [3, 22].

The basic elements to represent knowledge in DLs are individuals that repre-
sent objects in a domain of discourse, concepts that group together individuals
with common properties, and roles that put individuals in relation. The sets
NI , NC and NR of individual names, concept names and role names, respec-
tively, form the basis to construct the syntactic elements of ALC according to
the following grammar, in which A ∈ NC denotes an atomic concept, C(i) denote
complex concepts, r ∈ NR denotes a role and ai ∈ NI denote individuals.

C(i) −→ ⊥ | > | A | ¬C | C1 u C2 | C1 t C2 | ∃r.C | ∀r.C

The semantics of the syntactic elements of ALC is defined in terms of in-
terpretations I = (∆I , ·I) with a non-empty set ∆I as the domain and an
interpretation function ·I that maps each individual a ∈ NI to a distinct el-
ement aI ∈ ∆I and that interprets (possibly) complex concepts and roles as
follows.

>I = ∆I

⊥I = ∅
AI ⊆ ∆I

rI ⊆ ∆I ×∆I

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀r.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI implies y ∈ CI}
(∃r.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI and y ∈ CI}

An ALC knowledge base O is a finite set of axioms formed by concepts,
roles and individuals. A concept assertion is an axiom of the form C(a) that
assigns an individual a to a concept C. A role assertion is an axiom of the
form r(a1, a2) that relates two individuals a1, a2 by the role r. Concept and
role assertions form the ABox. A concept inclusion is an axiom of the form
C1 v C2 that states the subsumption of the concept C1 by the concept C2,
while a concept equivalence axiom C1 ≡ C2 is a shortcut for two inclusions
C1 v C2 and C2 v C1. Concept inclusions and concept equivalences form the
TBox. An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , a role
assertion r(a1, a2) if (aI1, a

I
2) ∈ rI , a concept inclusion C1 v C2 if CI1 ⊆ CI2 and

a concept equivalence C1 ≡ C2 if CI1 = CI2 . An interpretation that satisfies all
axioms of a knowledge base O is called a model of O. A concept C is called
satisfiable with respect to O if O has a model in which CI 6= ∅ holds.
ALC is a decidable logic; it is ExpTime-complete.
One common extension are role inclusion axioms appearing in the TBox. A

role inclusion is an axiom of the form r v s that states the subsumption of two
roles r and s. A role composition is an axiom of the form r◦s v t that states the

7



subsumption between a role composition r ◦ s and a role t. An interpretation
I satisifies a role inclusion r v s if rI v sI and a role composition r ◦ s v t
if ∀a1, a2, a3 ∈ ∆I : (a1, a2) ∈ rI ∧ (a2, a3) ∈ sI → (a1, a3) ∈ tI . We note
that role compositions can be used to express transitivity of roles and left-and
right-identity roles.

Example 1. We use the following example throughout the paper to illustrate
the notions and definitions of our work. Note that we adopt the convention
that names starting with a capital letter represent concepts/roles (termed DL-
atoms below) and objects/individuals while names starting with a lower case
letter represent variables and predicates not appearing in the ontology (non-DL
atoms below).

CD v ∃HasPiece.Piece (1)
Piece v ∃HasArtist.Artist (2)

HasPiece ◦HasArtist v HasArtist (3)
Topseller t SpecialOffer v Recommend (4)

HasPiece(BNAW, BlueTrain) (5)
HasArtist(BlueTrain, JohnColtrane) (6)

Consider an online store selling audio CDs. In order to attract more clients and
raise sales, sophisticated tools for recommending CDs and searching for them
shall be provided permitting the interaction of customized settings by the user
with general guidelines by the company. For that purpose, an ontology is used
for structuring and maintaining the database of CDs. Each CD is associated
with a unique identifier, a publisher, a release date, and the pieces of music it
contains. Each piece of music consists of at least one track but also permit-
ting pieces with several tracks (as common for classical music). Additionally,
each piece has its own unique identifier and can be associated with its artist,
composer, genre, origin and so on. Axiom (1) states for example that each CD
consists of at least one piece and axiom (2) expresses that each piece of music
has an artist. We can also add role inclusions like (3) to formalize that if x is
related to y by HasPiece and y related to z by HasArtist then x is related to
z by HasArtist, i.e. HasArtist is a left-identity role. This enables us to derive
from (1) - (3) that the artist of a piece on a certain CD is an artist of that CD.
Note that this conclusion can be drawn without any present CDs, artists or
pieces of music, as intended when reasoning with schema knowledge in an infi-
nite domain. Of course, once specific information such as (5), i.e. the piece ’Blue
Train’ appears on the album ’The best Blue Note Album in the World. . . Ever’
(BNAW), and (6), i.e. ’John Coltrane is the artist of Blue Train’, is available,
we are able to derive that John Coltrane appears as an artist on the album
BNAW, and likewise for all the other artists appearing on this CD.

Moreover, we are able to express general guidelines for recommendations
which the online store wants to apply. For example, CDs which are special
offers or top sellers are automatically recommended to the customers (4).
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2.2. Logics of Minimal Knowledge and Negation as Failure
The logic of minimal knowledge and negation as failure (MKNF) [37] extends

first-order logic with two modal operators K and not which allow to inspect
the knowledge base: intuitively, given a first-order formula ϕ, Kϕ asks whether
ϕ is known while notϕ is used to check whether ϕ is not known. The two modal
operators thus allow local closed-word reasoning, in particular the operator not
enables to draw conclusions from the absence of information, similar to default
negation in Logic Programming. We present the syntax and the semantics of
MKNF in the way introduced in [41, 43] and start with the syntax of MKNF
formulas.

Let Σ = (Σc,Σf ,Σp) be a first-order signature, where Σc is a set of constants,
Σf is a set of function symbols, and Σp is a set of predicates containing the
binary equality predicate ≈. The syntax of MKNF formulas over Σ is defined
as follows. A first-order atom P (t1, . . . , tn) is an MKNF formula where P is a
predicate and the ti are first-order terms. Sometimes, we also refer to such a
predicate by P leaving the terms ti implicit. If ϕ is an MKNF formula then
¬ϕ, ∃x : ϕ, Kϕ and notϕ are MKNF formulas and likewise ϕ1 ∧ϕ2 for MKNF
formulas ϕ1, ϕ2. Moreover, ϕ1 ∨ϕ2, ϕ1 ⊃ ϕ2, ϕ1 ≡ ϕ2, ∀x : ϕ, t, f , t1 ≈ t2 and
t1 6≈ t2 are abbreviations for ¬(¬ϕ1 ∧ ¬ϕ2), ¬ϕ1 ∨ ϕ2, (ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1),
¬(∃x : ¬ϕ), a ∨ ¬a, a ∧ ¬a, ≈ (t1, t2), and ¬(t1 ≈ t2). First-order atoms of
the form t1 ≈ t2 and t1 6≈ t2 are called equalities and inequalities, respectively.
Substituting the free variables xi in ϕ, i.e. the variables which are not in the
scope of any quantifier, by terms ti is denoted ϕ[t1/x1, . . . , tn/xn]. Given a
(first-order) formula ϕ, Kϕ is called a modal K-atom and notϕ a modal not-
atom; modal K-atoms and not-atoms are modal atoms. If a modal atom does
not occur in scope of a modal operator in an MKNF formula then it is strict.
An MKNF formula ϕ without any free variables is closed, and it is ground if it
does not contain variables at all. It is modally closed if all modal operators (K
and not) are applied in ϕ only to closed subformulas and positive if it does not
contain the operator not. An MKNF formula ϕ is subjective if all first-order
atoms of ϕ occur within the scope of a modal operator and flat if it is subjective
and all occurrences of modal atoms in ϕ are strict.

Let Σ be a signature and ∆ a universe. Just like in first-order logic, a first-
order interpretation I over Σ and ∆ assigns an object aI ∈ ∆ to each constant
a ∈ Σc, a function f I : ∆n → ∆ to each n-ary function symbol f ∈ Σf , and a
relation P I ⊆ ∆n to each n-ary predicate P ∈ Σp, and it interprets the predicate
≈ as equality - that is, for α, β ∈ ∆, we have (α, β) ∈≈I iff α = β. Unlike in
standard first-order logic, for each element α ∈ Σ, the signature Σ is required
to contain a special constant nα - called a name - such that nIα = α. The
interpretation of a variable-free term t = f(s1, . . . , sn) is defined recursively as
tI = f I(sI1, . . . , s

I
n).

The semantics of an MKNF formula over a signature Σ (henceforth consid-
ered implicit in all definitions) is defined as follows. An MKNF structure8 is

8in [43] the term MKNF triple is used.
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a triple (I,M,N) where I is a first-order interpretation over ∆ and Σ, and M
and N are nonempty sets of first-order interpretations over ∆ and Σ. MKNF
structures (I,M,N) define satisfiability of closed MKNF follows as follows:

(I,M,N) |= P (t1, . . . , tn) iff (tI1, . . . , t
I
n) ∈ P I

(I,M,N) |= ¬ϕ iff (I,M,N) 6|= ϕ
(I,M,N) |= ϕ1 ∧ ϕ2 iff (I,M,N) |= ϕ1 and (I,M,N) |= ϕ2

(I,M,N) |= ∃x : ϕ iff (I,M,N) |= ϕ[nα/x] for some α ∈ ∆
(I,M,N) |= Kϕ iff (J,M,N) |= ϕ for all J ∈M
(I,M,N) |= notϕ iff (J,M,N) 6|= ϕ for some J ∈ N

Note that even though K and not are somehow related in the sense that not
relates to ¬K , in fact even identify if M = N , their evaluation is kept separate.
The reason for that can be found in the nonmonotonic semantics presented in
the following.

An MKNF interpretation M over a universe ∆ is a nonempty set of first-
order interpretations. For a closed MKNF formula ϕ, we say that M satisfies
ϕ, i.e. M |= ϕ, if (I,M,M) |= ϕ for each I ∈ M . This is still monotonic so we
define a preference on those MKNF interpretations which satisfy the considered
formula ϕ. An MKNF interpretation M over ∆ is an MKNF model of a closed
MKNF formula ϕ if (1) M satisfies ϕ and (2) for each MKNF interpretation
M ′ such that M ′ ⊃ M we have (I ′,M ′,M) 6|= ϕ for some I ′ ∈ M ′. An MKNF
formula ϕ is MKNF satisfiable if an MKNF model exists; otherwise ϕ is MKNF
unsatisfiable. Furthermore, ϕ MKNF entails ψ, written ϕ |=MKNF ψ if M |= ψ
for each MKNF model M of ϕ.

Example 2. Intuitively, an MKNF interpretation M is an MKNF model of an
MKNF formula ϕ if M satisfies ϕ and if there is no superset M ′ of M which
satisfies ϕ as well, using however M for the evaluation of modal not-atoms. The
definition is thus asymmetric w.r.t. K and not : though M = {{p}} satisfies
both Kp and ¬notp, it is only an MKNF model for the first, not for the second
since (I ′,M ′,M) |= ¬not p holds for any M ′ with M ′ ⊃M .

The MKNF semantics as defined in [37] shows certain undesirable properties
which is why [43] applies additionally the standard name assumption. We recall
briefly the argument and the notion itself from [43].

One problem when using MKNF as in [37] for the integration of rules and
ontologies is the usage of arbitrary universes. Let ϕ = ϕ1 ∧ ϕ2 where ϕ1 =
KA(A) and ϕ2 = notA(B) ⊃ f . Intuitively, one would expect that ϕ is not
satisfiable, however, if the universe contains only one element, then A and B
are interpreted as the same object and ϕ is satisfied. We thus unintendedly
derive that ϕ |= A ≈ B, a conclusion we want to avoid in such cases. Another
problem is caused by constants which are interpreted differently in different
interpretations. Given ϕ1 = K A(A) and ϕ2 = ∃x : K A(x) we would expect
that ϕ1 |= ϕ2. However, let M be an MKNF interpretation containing two
elements I1 and I2 where each element maps A to a different name. Then, M
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is an MKNF model of ϕ1 but not for ϕ2 since we need one domain element
common to both interpretations.

Definition 1. (Standard Name Assumption [43]). A first-order interpretation
I over a signature Σ employs the standard name assumption if

(1) the universe ∆ of I contains all constants of Σ and a countably infinite
number of additional constants called parameters,

(2) tI = t for each ground term t constructed using the function symbols from
Σ and the constants from ∆, and

(3) the predicate ≈ is interpreted in I as a congruence relation - that is, it
is reflexive, symmetric, transitive, and it allows the replacement of equals
by equals [16].

Property (1) fixes the universe and property (2) makes constants rigid, i.e. as-
signs always the same domain elements to them, and together the two properties
make each model equal to an Herbrand model with an infinite supply of con-
stants. Property (3) itself treats ≈ not as true equality but as a congruence
relation. The reason for that can be seen when considering ϕ = ∀x : (x ≈ A)
and requiring (1) and (2) to hold in each interpretation. If ≈ is a true equality
then (1) requires an infinite universe ∆ but ϕ requires that ∆ contains at most
one element. Interpreting ≈ as a congruence relation enables a universe with
infinitely many elements which are all congruent to each other.

It was shown, that consequences of first-order formulas under the stan-
dard first-order semantics and the standard name assumption cannot be dis-
tinguished. We thus use in the rest of the paper the standard name assumption
for first-order inferences, but can consider them to be ordinary first-order dif-
ferences, as we cannot tell the difference.

2.3. Hybrid MKNF Knowledge Bases
Hybrid MKNF knowledge bases as introduced in [41, 43]9 essentially are

MKNF formulas restricted to a certain form. They consist of two components:
a decidable description logic knowledge base translatable into first-order logic
and a finite set of rules of modal atoms.

More precisely, the approach of hybrid MKNF knowledge bases is appli-
cable to any first-order fragment DL satisfying the following conditions: (i)
each knowledge base O ∈ DL can be translated10 into a formula π(O) of
function-free first-order logic with equality, (ii) it supports A-Box -assertions
of the form P (a1, . . . , an) for P a predicate and ai constants of DL and (iii) sat-
isfiability checking and instance checking (i.e. checking entailment of the form
O |= P (a1, . . . , an)) are decidable. In particular, description logics around OWL

9We will focus here on the presentation as in [41] and thus omit classical negation and
arbitrary first-order formulas in rules in opposite to [43].

10See [3] for standard translations of Description Logic axioms.
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satisfy these conditions. Note that we limit to function-free first order logic since
otherwise decidability would not be possible anyway. Thus for the remainder of
the paper, function symbols are not allowed in hybrid MKNF knowledge bases.

We recall MKNF rules and hybrid MKNF knowledge bases from [41].

Definition 2. Let O be a DL knowledge base. A function-free first-order atom
P (t1, . . . , tn) over Σ such that P is ≈ or it occurs in O is called a DL-atom; all
other atoms are called non-DL-atoms. An MKNF rule r has the following form
where Hi, Ai, and Bi are function free first-order atoms:

KH1 ∨ . . . ∨KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm (7)

The sets {KHi}, {KAi}, and {notBi} are called the rule head, the positive
body, and the negative body, respectively. A rule r is nondisjunctive if l = 1;
r is positive if m = 0; r is a fact if n = m = 0. A program P is a finite set
of MKNF rules. A hybrid MKNF knowledge base K is a pair (O,P) and K is
nondisjunctive if all rules in P are nondisjunctive.

We note that we will restrict our approach in the following sections to nondis-
junctive rules while [41] includes disjunctions in the heads of rules.

MKNF rules are syntactically not precisely MKNF formulas so we have to
transform them into MKNF formulas, respectively extend the transformation
π which turns description logics into an MKNF formula. The straightforward
extension is presented in the following.

Definition 3. Let K = (O,P) be a hybrid MKNF knowledge base. We extend
π to rules r of the form (7), P, and K as follows, where x is the vector of the
free variables of r.

π(r) = ∀x : (KH1 ∨ . . . ∨KHl ⊂ KA1 ∧ . . . ∧KAn ∧ notB1 ∧ . . . ∧ notBm)

π(P) =
∧
r∈P

π(r) π(K) = Kπ(O) ∧ π(P)

Even hybrid MKNF knowledge bases without function symbols are in general
undecidable unless restricted in some way because rules can be applied to all the
objects in the infinite domain. The basic idea to make reasoning with hybrid
MKNF knowledge bases decidable is to apply rules only to individuals which
appear in the knowledge base. This restriction is achieved by DL-safety.

Definition 4. An MKNF rule r is DL-safe if every variable in r occurs in
at least one non-DL-atom K B occurring in the body of r. A hybrid MKNF
knowledge base K is DL-safe if all its rules are DL-safe.

In the following we suppose that all MKNF knowledge bases are DL-safe.
Then, grounding the knowledge base ensures that all the individuals ap-

pearing in it are applicable to rules and DL-safety guarantees that no other
individual can be used.
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Definition 5. Given a hybrid MKNF knowledge base K = (O,P), the ground
instantiation of K is the KB KG = (O,PG) where PG is obtained from P by
replacing each rule r of P with a set of rules substituting each variable in r with
constants from K in all possible ways.

It was shown in [43], for a DL-safe hybrid KB K that the MKNF models of K
and KG coincide.

Several reasoning algorithms were provided for combinations of arbitrary
description logic fragments and rules of differing expressivity in [43] and their
corresponding data complexities, and some of those we recall in the following
table. The table mentions the results for combinations with nondisjunctive rules
(with or without not in the rules) and description logics fragments of differing
computational complexity for instance checking.

not DL = ∅ DL ∈ P DL ∈ coNP
no P P coNP
yes coNP coNP Πp

2

We point out that allowing not , i.e. nonmonotonic negation, increases data
complexity drastically and in particular beyond tractability. In the following
sections we will provide a semantics and its computation which improves this
issue substantially, but before coming to that, we finish this section with the
continuation of the running example related to recommending CDs.

Example 3. Consider Example 1 where we show some ontology axioms to rep-
resent the schema knowledge for audio CDs and a guideline for recommending
CDs from the store. Now we want to present a hybrid MKNF knowledge base
K = (O,P) which enables recommending CDs based on the guidelines from the
company and the customer-specific settings. Therefore, we suppose that the
ontology contains the statements shown in Example 1 and similar statements
such as ’every piece has a composer’ which are only mentioned in the example
but not explicitly listed. Now, let us add some rules ro realize personalized
recommendations.

K Recommend(x) ← K CD(x),not owns(x),not LowEval(x),
K interesting(x). (8)

K interesting(x) ← K CD(x),K CD(y),K owns(y),not owns(x),
K similar(x, y). (9)

K similar(x, y) ← K CD(x),K CD(y),K Artist(z),
K HasArtist(x, z),K HasArtist(y, z). (10)

K owns(EnConcert) ← (11)
K HasArtist(EnConcert,JackJohnson) ← (12)
K HasArtist(ByTheSea,JackJohnson) ← (13)

K SpecialOffer(BNAW) ← (14)
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Imagine that we want to get recommendations for interesting CDs which we
do not own and which do not get a low evaluation (8). Note that we use
closed-world reasoning for owns and lowEval. In case of owns it is reasonable
to assume that the knowledge about owned CDs is fully available. In case of
lowEval it might happen that there is no evaluation yet available and we want
the recommendation anyway. A CD shall only not be considered for recom-
mendation if there actually is a known low evaluation for it. This evaluation
could be taken from other customers of the store or from a web page of profes-
sional reviews, here, for simplicity, we keep this part of the reasoning process
implicit. A CD could be interesting if there is a another similar CD wich is
already owned (9) and two CDs are similar if e.g. their artists correspond (10).
Note that e.g. the predicate CD is used to ensure DL-safety, and we assume
that the instances of that predicate relevant for any drawn conclusion are always
appropriately defined. If we now add the facts (11) - (14) then we can derive
Recommend(ByTheSea), since no low evaluation is known for that CD, and
Recommend(BNAW) as it is a special offer. Hybrid MKNF knowledge bases
thus allow us to obtain consequences for predicates which are ’defined’ both in
the ontology and in the rules. The result might then be further applied to derive
subsequent consequences either in rules or in the ontology without any prob-
lems. Note that the facts (12) and (13) are here explicitly added, representing
the implicit consequences derivable from the appropriate ontology alone, similar
to HasArtist(BNAW,JohnColtrane) in Example 1.

3. Three-valued MKNF Semantics

In this section, we introduce a three-valued semantics for hybrid MKNF
knowledge bases. The rationale behind it, and main motivation, is to obtain a
semantics which is related to the well-founded semantics in order to take advan-
tage of its (data) complexity which is lower than the (data) complexity of the
corresponding two-valued semantics which is based on stable models. Neverthe-
less, the DL-part of a hybrid MKNF knowledge base is desirably still interpreted
under two-valued semantics, simply because this is sufficient to obtain the de-
sired complexity results, and obviously it is advantageous to change as little as
possible.

3.1. Evaluation in MKNF Structures
The two-valued hybrid MKNF semantics [43] is closely related [37] to sta-

ble models [17] and both semantics permit in general for several models. In
fact, MKNF formulas such as ϕ = ((not p ⊃ K q ∧ (not q ⊃ K p)) (and its
corresponding set of rules) have two models - one in which p is true and q is
false, and one in which these truth values are inverse. Choices like this one
then enforce to guess models resulting in the higher computational complexity.
One way of generalizing this semantic framework is known from Logic Program-
ming with the three-valued semantics, such as the well-founded semantics [53],
which relies on three truth values. Intuitively, a third truth value u, denoting
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undefined, is introduced as an alternative to the values t and f , permitting to
delay the evaluation to any of the two latter values until further information is
available. While the well-founded semantics avoids as many choices as possible,
a further generalization, partial stable models [46], allows three-valued models
with varying undefinedness, thus generalizing stable models and well-founded
semantics. When defining a three-valued MKNF semantics we want to follow
this idea. There is however one more problem to be taken into account: since we
are interested in applying the semantics also to hybrid MKNF knowledge bases,
which contain two-valued ontologies, we want to define the semantics in such a
way that an MKNF formula corresponding to a description logics fragment is
ensured to be two-valued. In particular, we want the semantics to coincide with
two-valued (first-order) semantics for a formula without modal operators, such
as a description logics knowledge base translatable into an MKNF formula.

We therefore define in the following a three-valued MKNF semantics which
extends the two-valued one but remains two-valued in case of MKNF formulas
without modal operators. We start by defining MKNF structures.

Definition 6. A three-valued (partial) MKNF structure (I,M,N ) consists of
a first-order interpretation I and two pairs M = 〈M,M1〉 and N = 〈N,N1〉 of
sets of first-order interpretations where M1 ⊆M and N1 ⊆ N . It is called total
if M = 〈M,M〉 and N = 〈N,N〉.

In the two-valued semantics, an MKNF structure (I,M,N) contains sets of
interpretations M and N for evaluating a modal atom Kϕ, respectively notϕ,
to t or f , depending on whether ϕ is contained in all elements of M , respectively
N , or not. This however leaves no space for an extension to a third truth value
u. So, we turn sets of interpretations into pairs of sets of interpretations. Then,
as we will see below, e.g. a modal atom Kϕ is true w.r.t. 〈M,M1〉 if ϕ is true in
all elements of M ; if ϕ is not true in all elements of M then it is undefined in case
ϕ is true in all elements of M1 or false otherwise. The additional restrictions,
saying that M1 ⊆ M and N1 ⊆ N , in fact ensure that no modal atom can be
both true and false at the same time, and it can easily be shown via induction
that the same holds for any MKNF formula ϕ. We guarantee this way that no
fourth truth value ’both’ is needed. Nevertheless, given an MKNF formula ϕ,
partial MKNF structures may evaluate Kϕ and notϕ to true at the same time,
just like in the two-valued case and we will show below how to prevent this from
happening when defining interpretation pairs.

We now present the evaluation of closed MKNF formulas in such three-valued
MKNF structures.

Definition 7. Let (I,M,N ) be a three-valued MKNF structure and {t,u, f}
the set of truth values with the order f < u < t, where the operator max (resp.
min) chooses the greatest (resp. least) element with respect to this ordering.
We define:

• (I,M,N )(P (t1, . . . , tn)) =
{

t iff P (t1, . . . , tn) ∈ I
f iff P (t1, . . . , tn) 6∈ I
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• (I,M,N )(¬ϕ) =

 t iff (I,M,N )(ϕ) = f
u iff (I,M,N )(ϕ) = u
f iff (I,M,N )(ϕ) = t

• (I,M,N )(ϕ1 ∧ ϕ2) = min{(I,M,N )(ϕ1), (I,M,N )(ϕ2)}

• (I,M,N )(ϕ1 ⊃ ϕ2) = t iff (I,M,N )(ϕ2) ≥ (I,M,N )(ϕ1) and f otherwise

• (I,M,N )(∃x : ϕ) = max{(I,M,N )(ϕ[α/x]) | α ∈ ∆}

• (I,M,N )(Kϕ) =

 t iff (J, 〈M,M1〉,N )(ϕ) = t for all J ∈M
f iff (J, 〈M,M1〉,N )(ϕ) = f for some J ∈M1

u otherwise

• (I,M,N )(notϕ) =

 t iff (J,M, 〈N,N1〉)(ϕ) = f for some J ∈ N1

f iff (J,M, 〈N,N1〉)(ϕ) = t for all J ∈ N
u otherwise

As intended, this evaluation is not a purely three-valued one, since first-order
atoms are evaluated like in the two-valued case. In fact, an MKNF formula with-
out modal operators, and thus also a pure description logics knowledge base,
is only two-valued and it can easily be seen that it is evaluated in exactly the
same way as in the scheme presented in Section 2. This is desired in particu-
lar when the knowledge base consists just of the DL part. So, the third truth
value only affects MKNF formulas containing modal atoms, which in case of
hybrid MKNF knowledge bases limits the occurrence to rules. These rules, cor-
responding to implications, are, however, no longer interpreted classically, in a
first-order sense: u ← u is true in the evaluation presented above while the
classical boolean correspondence u ∨ ¬u, respectively ¬(¬u ∧ u), is undefined.
The reason for this change is that, this way, rules can only be true or false, sim-
ilarly to what happens in Logic Programming, even though they might contain
undefined modal atoms. Intuitively, the advantage for hybrid MKNF knowledge
bases is that we can leave single modal atoms undefined, thus not necessarily
having to create several models, while the entire knowledge base is only true or
false.

We point out that the evaluation of not w.r.t. 〈N,N1〉 is symmetrical to the
evaluation of K w.r.t. 〈M,M1〉, only that, just like the two-valued evaluation
in Section 2, the conditions are switched. E.g. the condition for true modal
K-atoms yields false modal not-atoms w.r.t. N . This is identical to the two-
valued (monotonic) evaluation and is justified by the intended correspondence
between not and ¬K mentioned in Section 2.

3.2. Partial MKNF Models
In the following we will extend the two-valued MKNF interpretations, since

one set of first-order interpretations is not sufficient to represent truth, falsity,
and undefinedness of modal atoms the way we introduced evaluation beforehand.
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Definition 8. An interpretation pair (M,N) consists of two MKNF interpre-
tations M , N with ∅ ⊂ N ⊆M . An interpretation pair satisfies a closed MKNF
formula ϕ, written (M,N) |= ϕ, if and only if (I, 〈M,N〉, 〈M,N〉)(ϕ) = t for
each I ∈ M . If M = N then the interpretation pair (M,N) is called total. If
there exists an interpretation pair satisfying ϕ then ϕ is consistent.

The set M contains all interpretations which model only truth while N mod-
els everything which is true or undefined. Evidently, just as in the two-valued
case, anything not being modeled in N is false. The included subset relation be-
tween M and N ensures that interpretation pairs are defined in accordance with
three-valued MKNF structures so that each formula is evaluated to exactly one
truth value. Note the striking similarity compared to MKNF interpretations in
the two-valued case by using the interpretation pair (M,N) to evaluate both K
and not simultaneously.

Now we define the preference relation, i.e. the model notion, on interpre-
tation pairs similar in spirit to the two-valued case, i.e. minimizing truth and
undefinedness of formulas w.r.t. K .

Definition 9. Any interpretation pair (M,N) is a partial (three-valued) MKNF
model for a given closed MKNF formula ϕ if

(1) (M,N) satisfies ϕ and

(2) for each interpretation pair (M ′, N ′) with M ⊆ M ′ and N ⊆ N ′, where
at least one of the inclusions is proper and M ′ = N ′ if M = N , there is
I ′ ∈M ′ such that (I ′, 〈M ′, N ′〉, 〈M,N〉)(ϕ) 6= t.

Condition (1) checks whether (M,N) evaluates ϕ to t while the second con-
dition verifies that (M,N) contains only knowledge necessary to obtain this
evaluation to t. This is achieved in a way similar to the two-valued MKNF
semantics: it is checked for each interpretation pair (M ′, N ′) which intuitively
properly subsumes (M,N) that ϕ does not evaluate to t for all I ′ ∈M ′, where
(M ′, N ′) is used to evaluate K while (M,N) evaluates not . Intuitively, one
may consider an interpretation pair as a guess for the true evaluation of the con-
sidered formula and condition (2) checks, having fixed the evaluation of modal
not-atoms, whether the evaluation of modal K-atoms is actually minimal w.r.t.
to the order f < u < t of truth values. We will use an example to demonstrate
how this minimization of derived knowledge is achieved.

Example 4. Consider the following MKNF formula ϕ corresponding to two
rules.

(not p ⊃ K q) ∧ (not q ⊃ K p)

A interpretation pair (M,N) which satisfies condition (1) of Definition 9 has to
evaluate both conjuncts to true. The interpretation pair ({{p}, {p, q}}, {{p, q}})
which evaluates K p to t and K q to u satisfies the first condition but is not an
MKNF model since e.g. (M ′, N ′) = ({{p}, {p, q}}, {{p, q}}) violates condition
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(2). In fact, since not is always evaluated with respect to (M,N), the two rules
are true anyway and, for N = {{p, q}}, the only MKNF model is the one with
M = {∅, {p}, {q}, {p, q}}, i.e. the interpretation pair which evaluates K p and
K q to u. In other words, the initial interpretation pair was not minimal w.r.t.
the evaluation of modal K -atoms. Similar to the minimization of the evaluation
of K p from t to u, alterations from u to f are possible: maintain the original
M = {{p}, {p, q}} and set N = M . Now the evaluation of K q is minimized
from u to f and it is easy to verify that the resulting interpretation pair is in
fact an MKNF model.

It should be pointed out that a larger set M or N means less true or undefined
knowledge, i.e. minimization is achieved by increasing the sets in consideration.
Note that N ′ ⊆M ′ for interpretation pairs (M ′, N ′) ensures that we only check
reasonable candidates for augmenting (M,N)11.

We now adapt some notions needed in the remainder, such as consistency
of MKNF formulas, from the two-valued MKNF semantics to the three-valued
setting.

Definition 10. If there is a partial MKNF model for a given closed MKNF
formula ϕ then ϕ is called MKNF-consistent, otherwise it is called MKNF-
inconsistent. If (I, 〈M,N〉, 〈M,N〉)(ψ) = t for all partial MKNF models (M,N)
of ϕ then ϕ entails ψ, written ϕ |=3

MKNF ψ.

Though the notions of consistency and satisfiability are usually applied in the
same technical sense, we want to distinguish between MKNF-satisfiability in the
two-valued case and MKNF-consistency for three-valued models. Likewise, we
distinguish between the two-valued notion ’MKNF entails’ and the three-valued
one ’entails’.

In spite of keeping notions separate, two- and three-valued MKNF mod-
els are closely related: we will now show that any (two-valued) MKNF model
M corresponds exactly to a (total) three-valued one and vice-versa. For that
purpose, we first prove that evaluation in MKNF structures (I,M,N) and to-
tal three-valued structures (I, 〈M,M〉, 〈N,N〉) is identical due to the fact that
nothing can be undefined in such a three-valued structure.

Lemma 1. Given a closed MKNF formula ϕ, (I,M,N) |= ϕ if and only if
(I, 〈M,M〉, 〈N,N〉)(ϕ) = t.

Proof. The proof is done by induction on the formula ϕ.
Let ϕ be P (t1, . . . , tn). We have (I,M,N) |= P (t1, . . . , tn) iff P (t1, . . . , tn) ∈

I iff (I, 〈M,M〉, 〈N,N〉)(P (t1, . . . , tn)) = t.

11In comparison to [33] the definition has been slightly altered to simplify proofs and compu-
tation: in case of a total interpretation pair (M, M) it is sufficient to check that no other total
interpretation pair (M ′, M ′) actually yields a true evaluation for all I′ ∈ M ′. This simplifica-
tion is also justified by the intuition of enlarging N ′ separately: there is no undefinedness in
a total interpretation pair, and minimization of undefinedness is thus not necessary.
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Assume that the lemma holds for ϕ1. We show the induction steps for ¬
and K , all the other cases follow analogously.

Let ϕ be ¬ϕ1. We have that (I,M,N) |= ¬ϕ1 iff (I,M,N) 6|= ϕ1 iff, by
induction hypothesis, (I, 〈M,M〉, 〈N,N〉)(ϕ1) = f iff by definition of evaluation
in partial structures (I, 〈M,M〉, 〈N,N〉)(¬ϕ1) = t.

Let ϕ be Kϕ1. We have (I,M,N) |= Kϕ1 iff (I,M,N) |= ϕ1 holds for each
I ∈M iff (I, 〈M,M〉, 〈N,N〉)(ϕ1) = t for all I ∈M by induction hypothesis iff
(I, 〈M,M〉, 〈N,N〉)(Kϕ1) = t. �

This lemma can be used to show the following proposition which not only
states that every two-valued model M corresponds to a three-valued one (M,M)
like in [32] but also the other way around, i.e. every total model (M,M) corre-
sponds to a two-valued one in the sense of [43].

Proposition 1. Given a closed MKNF formula ϕ, M is an MKNF model of ϕ
if and only if (M,M) is a three-valued MKNF model of ϕ.

Proof. Let (M,M) be a three-valued MKNF model of ϕ, i.e. (M,M) sat-
isfies the two conditions of Definition 9. We show that M is a (two-valued)
MKNF model. It follows from the first of the two conditions of Definition 9
that (I, 〈M,M〉, 〈M,M〉)(ϕ) = t for all I ∈M and therefore, by Lemma 1, that
(I,M,M) |= ϕ for each I ∈ M . The second condition states for each interpre-
tation pair (M ′,M ′), with M ⊂M ′ that we have (I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t
for some I ′ ∈ M ′. We conclude from Lemma 1 that for any M ′ with M ′ ⊃ M
there is an I ′ ∈M ′ such that (I ′,M ′,M) 6|= ϕ.

Now, let M be a two-valued MKNF model of ϕ, we show that (M,M) is
a three-valued MKNF model. We know that (I,M,M) |= ϕ for each I ∈ M
since M is a two-valued MKNF model. Then (I, 〈M,M〉, 〈M,M〉)(ϕ) = t holds
for all I ∈ M by Lemma 1, so the first of the two conditions of Definition 9
is satisfied. Furthermore, since M is an MKNF model of ϕ, we know that for
all M ′ with M ′ ⊃ M we have (I ′,M ′,M) 6|= ϕ for some I ′ ∈ M ′. Again, from
Lemma 1, we know that for any interpretation pair (M ′,M ′) with M ′ ⊃M we
have (I ′, 〈M ′,M ′〉, 〈M,M〉)(ϕ) 6= t for some I ′ ∈ M ′. This is sufficient since,
according to Definition 9, for (M,M) we only consider need to consider total
interpretation pairs (M ′,M ′). �

We are able to compare interpretation pairs based on an order that resembles
the knowledge order from Logic Programming. Intuitively, given such an order
and two interpretation pairs (M1, N1) and (M2, N2), we have that (M1, N1) is
greater than (M2, N2) w.r.t. such an order if (M1, N1) allows to derive more
true and false knowledge than (M2, N2). Taking into account that a larger set
of interpretations permits the derivation of less true and more false knowledge,
we define:

Definition 11. Let (M1, N1) and (M2, N2) be interpretation pairs. We have
that (M1, N1) �k (M2, N2) iff M1 ⊆M2 and N1 ⊇ N2.
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Such an order is of particular interest for comparing models. In fact, in Logic
Programming the least model among all partial models for a given program is
the well-founded model. Similarly, here we want to introduce a notion referring
to the least partial MKNF model, i.e. the one among all partial models which
leaves as much as possible undefined.

Definition 12. Let ϕ be a closed MKNF formula and (M,N) be a partial
MKNF model of ϕ such that (M1, N1) �k (M,N) for all partial MKNF models
(M1, N1) of ϕ. Then (M,N) is a well-founded MKNF model.

Of course, if ϕ is inconsistent then there are no partial MKNF models and
thus no well-founded MKNF model. However, in case of consistency, we will
obtain that, if ϕ is a hybrid MKNF knowledge base, the unique well-founded
MKNF model exists. This model is especially important, in that, as we shall see,
a modal atom is true in it iff it is true in all partial MKNF models. This way,
performing skeptical reasoning in partial MKNF models amounts to determining
the well-founded MKNF model.

Theorem 1. Let K be a consistent nondisjunctive DL-safe hybrid MKNF KB.
Then the well-founded MKNF model exists.

The respective proofs for the uniqueness/existence of the well-founded MKNF
model and how to calculate it follow in section 4 (as a direct consequence of
Theorem 5). The following example gives at least an intuitive insight to the cor-
respondence of two-valued and three-valued MKNF models and the well-founded
MKNF model.

Example 5. Consider the knowledge base K corresponding to the MKNF for-
mula ϕ from Example 4.

K q ← not p

K p ← not q

The (two-valued) MKNF models are {{p}, {p, q}} and {{q}, {p, q}}, i.e. Kp and
notq are true in the first model, and Kq and notp are true in the second one. We
thus obtain two total three-valued MKNF models: ({{p}, {p, q}}, {{p}, {p, q}})
and ({{q}, {p, q}}, {{q}, {p, q}}). In addition, ({∅, {p}, {q}, {p, q}}, {{p, q}}) is
the only other MKNF model as we have already seen in Example 4. This MKNF
model satisfies the condition given in Definition 12 and is thus the well-founded
MKNF model of K as we will see in the following section.

In the remainder of this section we show two further properties which were
already proven to hold for the two-valued case in [40] but since our semantics
differs, we lift these important statements to the three-valued semantics.

The first property states that K can be introduced in front of an arbitrary
closed MKNF formula without changing the models satisfying that formula.
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Proposition 2. Let σ be a closed MKNF formula and let (M,N) be an inter-
pretation pair. Then, (M,N) is an MKNF model of σ if and only if (M,N) is
an MKNF model of K σ.

Proof. Suppose that (M,N) is an MKNF model of σ. We know for all I ∈
M that (I, 〈M,N〉, 〈M,N〉)(σ) = t, so (I, 〈M,N〉, 〈M,N〉)(K σ) = t holds
for all I ∈ M as well. Since for each (M ′, N ′) there is I ′ ∈ M ′ such that
(I ′, 〈M ′, N ′〉, 〈M,N〉)(σ) 6= t we also obtain the same for Kσ and (M,N) is an
MKNF model of Kσ. The converse direction follows analogously. �

The second property we lift says that grounding a hybrid MKNF knowledge
base does not affect the partial MKNF models. This shows that K and its
grounded version derive the same consequences.

Lemma 2. Let K be a DL-safe hybrid MKNF knowledge base and ψ a ground
MKNF formula. Then π(K) |=3

MKNF ψ if and only if π(KG) |=3
MKNF ψ.

Proof. The argument showing the contrapositive statement π(K) 6|=3
MKNF ψ

if and only if π(KG) 6|=3
MKNF ψ is absolutely identical to the one in [40]. So we

simply refer to the proof given there. �

4. The Well-founded MKNF Model

In this section we are going to define the procedure for computing the unique
model for hybrid MKNF knowledge bases, i.e. the well-founded MKNF model,
outlined in the end of the previous section. This procedure is obtained by
adapting the alternating fixpoint construction for the Well-Founded Semantics
[52] from Logic Programming to hybrid MKNF knowledge bases taking into
account possible conflicts resulting from the combination of classical negation
in ontologies and nonmonotonic negation in rules.

We start by adapting from [43] a means for representing interpretation pairs
in a more simple way. Then, based on that means, we define operators which al-
low us to compute a unique model for hybrid MKNF knowledge bases. We show
that this model is indeed the well-founded MKNF model, and we present sev-
eral important properties including its computational complexity, faithfulness
w.r.t. to the Well-Founded Semantics for Logic Programming, and discovery of
inconsistencies.

4.1. Partitions of Modal Atoms
As argued in [43], since the MKNF models of arbitrary hybrid MKNF knowl-

edge bases with a countably infinite domain are infinite, working with MKNF
models is cumbersome. The same holds for interpretation pairs in three-valued
semantics presented in Section 3, so some finite representation is required. The
solution, applied in [43] and originally from [10], is to represent MKNF models
by a finite first-order formula whose set of (first-order) models corresponds to
the (two-valued) MKNF model. Intuitively, such a first-order formula is ob-
tained in [43] by first dividing the modal atoms occurring in the ground hybrid
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MKNF knowledge base into true and false modal atoms, and then constructing
the first-order formula from the true modal atoms and the ontology. We extend
this construction and its related notions from [43] to three truth values, i.e. a
partition into three disjoint sets.

Definition 13. Let KG = (O,PG) be a ground hybrid MKNF knowledge base.
The set of K-atoms of KG, written KA(KG), is the smallest set that contains (i)
all ground K-atoms occurring in PG, and (ii) a modal atom Kξ for each ground
modal atom notξ occurring in PG. A partial partition (T, F ) of KA(KG) consists
of three sets, namely T , F , and U = KA(KG) \ (T ∪ F ) where T, F ⊆ KA(KG)
and T ∩ F = ∅.

The set KA(KG) contains all modal atoms occurring in KG only that modal
not-atoms are substituted by corresponding modal K-atoms. That set can be
partitioned into two sets T and F which are disjoint, but their union does not
neccessarily equal to KA(KG) permitting a third set U . Intuitively, T contains
true modal atoms, F the false modal atoms, and U all the remaining which are
considered to be undefined.

In [43], a set of first-order formulas is defined from such a set of true modal
atoms and the ontology with the aim of using this set of formulas to represent
the knowledge base KG. Then, the set of first-order interpretations satifying
that set of formulas corresponds to one MKNF model of KG.

Here, this construction will not suffice and we show below how we adapt
this idea to a three-valued setting. The definition of such a set of first-order
formulas can be recalled from [43].

Definition 14. Let KG = (O,PG) be a ground hybrid MKNF knowledge base.
For a subset S of KA(KG), the objective knowledge of S w.r.t. KG is the set of
first-order formulas OBO,S = {π(O)} ∪ {ξ | K ξ ∈ S}.

This notion will be used to establish a link between partial MKNF models
and partial partitions. For that purpose we need to adopt one more notion from
[43].

Definition 15. Let S be a set of ground modal K-atoms. A partial partition
(T, F ) of S is induced by an interpretation pair (M,N) if

(1) K ξ ∈ T implies (I, 〈M,N〉, 〈M,N〉)(K ξ) = t,

(2) K ξ ∈ F implies (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , and

(3) K ξ 6∈ T and K ξ 6∈ F implies (I, 〈M,N〉, 〈M,N〉)(K ξ) = u.

Based on this relation, we can show that the objective knowledge derived
from the partition, which is induced by a three-valued MKNF model, yields
again that model.

Proposition 3. For KG = (O,PG) a ground hybrid MKNF knowledge base, let
(M,N) be a partial MKNF model of KG, and (T, F ) a partition of KA(KG) in-
duced by (M,N). Then (M,N) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }).
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Proof. For KG = (O,PG) a ground hybrid MKNF knowledge base, let (M,N)
be a partial MKNF model of KG, (T, F ) a partition of KA(KG) induced by
(M,N), and (M ′, N ′) = ({I | I |= OBO,T }, {I | I |= OBO,KA(KG)\F }). We show
that (M,N) = (M ′, N ′).

First, we show that M ⊆M ′. Let I be an interpretation in M . We show that
I ∈M ′ = {I | I |= OBO,T }, i.e. we show that I |= {π(O)}∪{ξ | Kξ ∈ T}. First,
(M,N) is a partial MKNF model of KG, so we know that (M,N) |= K π(O).
Thus, we have I |= π(O). Consider in turn each K ξ ∈ T . Since (M,N) induces
a partition (T, F ) we have (I, 〈M,N〉, 〈M,N〉)(Kξ) = t and thus I |= ξ. Hence,
I |= OBO,T . This shows that I ∈M ′ and therefore M ⊆M ′.

Next, we show that N ⊆ N ′. Let I be an interpretation in N . We show that
I ∈ N ′ = {I | I |= OBO,KA(KG)\F }, i.e. we show that I |= {π(O)} ∪ {ξ | K ξ ∈
KA(KG) \ F}. We already know for each I ∈M that I |= π(O). Since N ⊆M
we also have that I |= π(O) for each I ∈ N . Consider each K ξ 6∈ F . This
means that condition (2) of Definition 15 is not possible, conditions (1) and (3),
however, are. In case of (1), we already know that I |= ξ for each I ∈ M , and
since N ⊆ M we also have I |= ξ for each I ∈ N . In case of (3), we know that
(I, 〈M,N〉, 〈M,N〉)(K ξ) = t for each I ∈ N . Thus, we also obtain that I |= ξ
holds for each I ∈ N . Then I |= OBO,KA(KG)\F which also shows N ⊆ N ′.

We show now that each of the two sets are in fact identical, i.e. M = M ′

and N = N ′. Note first that T ⊆ KA(KG) \ F . Thus, for any I ∈ N ′, we
have that I ∈ {I | I |= OBO,T } and therefore N ′ ⊆ M ′, i.e. (M ′, N ′) is an
interpretation pair. So assume that (M ′, N ′) is any interpretation pair with
M ⊆ M ′ and N ⊆ N ′, where at least one of the inclusions is proper. We show
that (I ′, 〈M ′, N ′〉, 〈M,N〉)(π(KG)) = t for all I ′ ∈ M ′ and thus derive a con-
tradiction to (M,N) being a partial MKNF model of KG. The former can be
shown if we can prove that (I ′, 〈M ′, N ′〉, 〈M,N〉)(K π(O) ∧ π(PG)) = t for all
I ′ ∈M ′. By definition of M ′ we know that (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kπ(O)) = t
for all I ′ ∈ M ′. We only have to show the same for π(PG). We show in
a case distinction that the modal atoms appearing in π(PG) are evaluated
to identical truth values in (M,N) and (M ′, N ′). This suffices to show that
(I ′, 〈M ′, N ′〉, 〈M,N〉)(π(PG)) = t for all I ′ ∈ M ′ since (M,N) is a partial
MKNF model.

• Consider each K ξ ∈ T . We obtain (I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = t for all
I ′ ∈M ′ by definition of M ′ just as we have (I, 〈M,N〉, 〈M,N〉)(K ξ) = t
for all I ∈M by Definition 15.

• Consider each K ξ ∈ F . We obtain (I, 〈M,N〉, 〈M,N〉)(K ξ) = f , i.e.
(I, 〈M,N〉, 〈M,N〉)(K ξ) = f for some I ∈ N . Because of that and since
N ⊆ N ′ we also have (I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) = f for some I ′ ∈ N ′.

• Consider each K ξ with K ξ 6∈ F and K ξ 6∈ T . By Definition 15,
we obtain (I, 〈M,N〉, 〈M,N〉)(K ξ) = u. By definition of N ′ we have
(I ′, 〈M ′, N ′〉, 〈M,N〉)(K ξ) 6= f . From (I, 〈M,N〉, 〈M,N〉)(K ξ) = u and
M ⊆M ′ we conclude that only (I ′, 〈M ′, N ′〉, 〈M,N〉)(Kξ) = u is possible.
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• Consider any modal not-atom appearing in π(PG). Since the evaluation
of these is done in both cases w.r.t. (M,N), we straightforwardly obtain
the identical evaluation.

�

Later, this result will be used to show that the specific partition we compute in
the following yields in fact a partial MKNF model (see Theorem 4).

The following example illustrates the previously introduced notions.

Example 6. Consider K consisting only of the rule (8) from Example 3 and an
ontology containing just one assertion:

CD(BNAW) (15)

The ground KB KG contains one rule which results from (8) by substituting x
with BNAW. We thus obtain

KA(KG) = {KRecommend(BNAW ),KCD(BNAW ),K owns(BNAW ),
K lowEval(BNAW ),K interesting(BNAW )}.

One can easily check that there is only one partial MKNF model (M,N) of KG,
namely the one in which each I ∈M,N satisfies CD(BNAW) ∈ I. This partial
MKNF model induces a partition in which CD(BNAW) appears in T and all
other modal K-atoms in N . The related set of first-order formulas just contains
CD(BNAW). This is reasonable since the grounded version of (8) does not allow
us to derive anything from it, so we can ignore it when considering models of
KG.

4.2. Computation of the Alternating Fixpoint
As we have seen in Section 3, there are usually several partial MKNF mod-

els. We have special interest in one particular of them, namely the outlined
well-founded MKNF model which is least w.r.t. derivable knowledge, and more
specifically in how to compute that model. In order to obtain it from its cor-
responding partial partition, we resort to several existing relations and corre-
spondences with semantics from Logic Programming. First, stable models ([17])
for normal logic programs correspond one-to-one to two-valued MKNF models
of hybrid MKNF knowledge bases containing just rules (see [37]). Like (two-
valued) MKNF models, stable models are in general not iteratively computed
but have to be guessed and a specific operator allows us to verify whether the
guess actually corresponds to a stable model. The Well-Founded Semantics
([53]) for normal logic programs on the contrary can be computed by an iter-
ation, though being slightly weaker w.r.t. to derivable information than the
stable model semantics. In particular, the data complexity of this computation
is P while the data complexity of guessing stable models is coNP, making the
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Well-Founded Semantics thus less expressive but easier to compute. Interest-
ingly, there is nevertheless a relation between the two approaches shown in [52]:
the operator which checks whether stable models are indeed stable can be used
to compute the Well-Founded Semantics by the so-called alternating fixpoint
computation. Intuitively, an operator, which results from applying twice the
stable models operator, is used to compute the least and the greatest fixpoint
which correspond, respectively, to the true and non-false knowledge. The term
alternating stems from the fact that the computation considering the single
stable model operator is not monotonically increasing or decreasing but an al-
ternating sequence of underestimating and overestimating intermediate results
which get closer to the final result in every iteration.

Since stable models and (two-valued) MKNF models, as already said, are
closely related we are going to take advantage of the scheme provided in [52] and
adapt it to hybrid MKNF knowledge bases. We define operators which provide
a stable condition for nondisjunctive hybrid MKNF knowledge bases and use
them to obtain a fixpoint, i.e. the partition corresponding to the well-founded
MKNF model.

This adaptation is not straightforward as we have to deal with two problems
arising from the combination of classical negation in the ontology part and
nonmonotonic negation in the rules. One problem are possible inconsistencies
appearing between rules and the ontology, e.g. an atom which can be derived
to be false from the ontology but derived to be true from the rules. The other
problem is called coherence problem ([45]): a first-order false formula ϕ (as a
consequence of the DL part) has to impose that notϕ is false as well. We present
two examples within our example scenario to show the relevance of these issues
and start with inconsistency.

Example 7. Consider the hybrid MKNF knowledge base presented in Example
1 and 3 for recommending CDs. Now suppose, that the user wants to ensure
that only CDs are recommended which are not expensive. Note that this is dif-
ferent from recommending CDs which have a discount. The ontology axiom (16)
states that any expensive CD must never be recommended. In general, compar-
ing prices requires some predicates from the maths domain, and e.g. concrete
domains for the DL EL++ ([2]) or the built-in predicates for implementations
related to logic programs permit that. Here however, for simplicity, we assume
that this is handled internally and simply add a fact (17) saying that ByTheSea
is expensive.

Expensive v ¬Recommend (16)
K Expensive(ByTheSea) ← (17)

Now, we can conclude that ByTheSea is recommended (from (8)) and not rec-
ommended at the same time, i.e. the knowledge base is inconsistent. In cases
like this we want to be able to discover the inconsistency from the computation
of the model and we will show below how this can be achieved.

We can also adapt our example scenario to present coherence.
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Example 8. Consider again only the hybrid MKNF knowledge base presented
in Example 1 and 3 for recommending CDs. Suppose, the user wants to stall
recommendations until the evaluation is available. This can be achieved by e.g.
adding the rule (18).

K LowEval(x) ← not Recommend(x) (18)
¬LowEval(ByTheSea) (19)

Now, only if we explicitly add information confirming that a CD has no low
evaluation then we can derive its recommendation. If e.g. (19) is available then
we want to derive that ByTheSea is recommended and such a derivation is not
possible in a naive adaptation of the alternating fixpoint construction known
from Logic Programming. Note that the functionality desired in this example
can be achieved in a more sophisticated way. However, similar examples can be
found and since we want the approach to be robust in practice, coherence has
to be addressed properly.

For both problems we require that classically negated derviations from the
ontology interact with derivations from rules. However, classical negation is not
expressible in MKNF rules and nonmonotonic negation is not expressible in the
ontology, so we can not link the two directly. Thus, instead of representing the
connection directly, we introduce new positive DL atoms which represent the
falsity of an already existing DL atom, and another program transformation
making these new modal atoms available for reasoning in the respective rules.

Definition 16. Let K be a hybrid MKNF knowledge base. We obtain K+ from
K by adding an axiom ¬P v NP for every DL atom P (t1, . . . , tn) which occurs
as head in at least one rule in K where NP is a new predicate not already
occurring in K. Moreover, we obtain K∗ from K+ by adding notNP (t1, . . . , tn)
to the body of each rule with P (t1, . . . , tn) in the head.

The idea is to have NP available as a predicate representing that ¬P (with
its corresponding arguments) holds: K+ makes this connection explicit and K∗
introduces a restriction on each rule with such a DL atom in the head saying
intuitively that the rule can only be used to conclude the head if the (classical)
negation of the head does not hold already. Note that K+ and K∗ are still
hybrid MKNF knowledge bases, so these transformations do not formally affect
the applicability of any definition regarding K. We thus only refer to K+ and
K∗ explicitly when it is necessary.

It is important to point out that the addition of the statements of the form
¬P v NP to any arbitrary DL does not alter the decidability of the DL in
consideration, no matter whether P is a concept or a role. The reason is that
the predicates NP do not appear elsewhere in the ontology so that no derivation
of the ontology is affected. The only purpose of these predicates is to be usable
in the rules. However, it is also important to note that the ontology resulting
from such an addition is usually not any longer expressible in the DL of its
origin since such statements for roles, i.e. binary predicates, are not expressible
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in most DL. But this is not necessarily a problem as indicated in [31] for the DL
EL+. We only have to be careful in practice how to include these statements
properly into the algorithmization.

We continue now by defining an operator TKG
which allows us to draw

conclusions from positive hybrid MKNF knowledge bases.

Definition 17. For KG = (O,PG) a positive ground hybrid MKNF knowledge
base, RKG

, DKG
, and TKG

are defined mapping 2KA(K∗G) to 2KA(K∗G) as follows:

RKG
(S) = {KH | PG contains a rule of the form (1) such that KAi ∈ S

for each 1 ≤ i ≤ n}
DKG

(S) = {K ξ | K ξ ∈ KA(K∗G) and OBO,S |= ξ}

TKG
(S) = RKG

(S) ∪DKG
(S)

The operator RKG
derives immediate consequences from the rules in KG while

DKG
yields consequences from the ontology combined with the already known

information in S12. It is important to point out that these operators apply to
both K+

G and K∗G and permit further modifications to the knowledge base in
consideration, but in all cases the operators are defined for 2KA(K∗G) to ensure
that certain technical properties hold for the construction we define below.

The operator TKG
can be shown to be monotonic:

Proposition 4. Let KG = (O,PG) be a positive ground hybrid MKNF knowl-
edge base and S, S′ ⊆ KA(K∗G) with S ⊆ S′. Then TKG

(S) ⊆ TKG
(S′).

Proof. Suppose that K H ∈ TKG
(S). By Definition 17, K H ∈ RKG

(S) ∪
DKG

(S) holds, so we do a case distinction. If KH ∈ RKG
(S) then PG contains

a rule of the form (1) such that KAi ∈ S for each 1 ≤ i ≤ n. Since S ⊆ S′,
we also have that K Ai ∈ S′ for each 1 ≤ i ≤ n and K H ∈ TKG

(S′). If
K H ∈ DKG

(S) then K H ∈ KA(K∗G) and OBO,S |= H. By monotonicity of
first-order logic and since S ⊆ S′, we also have OBO,S′ |= H. We conclude that
KH ∈ TKG

(S′). �

Since TKG
is monotonic it has a unique least fixpoint (by the Knaster-Tarski

Theorem [51]) which we denote TKG
↑ ω in reference to the limit ordinal of

natural numbers ω. It is important to note that the Knaster-Tarski Theorem
in general only says that this fixpoint is reached for some ordinal which might
easily be greater than ω. However, in this approach, since we do not allow
function symbols nor infinite sets of rules, the iteration over a finite knowledge
base (with finitely many ground rules) and thus finitely many modal atoms
in KA(K∗G) terminates definitely before ω so that the ordinal ω in this paper

12Note that in previous versions this operator was split into two parts. Implicitly, we only
derive DL atoms from such an augmented ontology plus possibly some non-DL atoms in case
equalities appear in the ontology.
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merely serves as a representative for the unknown but finite number of iterations
necessary. We obtain the least fixpoint as follows:

TKG
↑ 0 = ∅

TKG
↑ (n+ 1) = TKG

(TKG
↑ n)

TKG
↑ ω =

⋃
i≥0

TKG
↑ i

Now, a transformation is defined for turning hybrid MKNF knowledge bases
into positive ones, thus generalizing the application of the operator TKG

.

Definition 18. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and let S ⊆ KA(K∗G). The MKNF transform KG/S = (O,PG/S) is defined as
follows. PG/S contains all rules

KH ← KA1, . . . ,KAn

for which there exists a rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

in PG with KBj 6∈ S for all 1 ≤ j ≤ m.

This definition resembles the transformation known from stable models [17]
of logic programs, i.e. we remove all rules which contain negated atoms contra-
dicting the given set S, and we remove all remaining negated atoms from the
other rules. This notion can be used in the spirit of [17] to define two operators
for hybrid MKNF knowledge bases.

Definition 19. Let KG = (O,PG) be a ground hybrid MKNF knowledge base
and S ⊆ KA(K∗). We define:

ΓKG
(S) = TK+

G/S
↑ ω Γ′KG

(S) = TK∗G/S ↑ ω

One might wonder why e.g. the operator Γ′KG
not suffices for our purposes

but the following example presents the reason on an intuitive level.

Example 9. Consider again the hybrid MKNF knowledge base K from Exam-
ple 7. We consider its ground version KG and add in case of K+

G the axiom (20).
Moreover, for K∗G, we modify the rule (8) instantiated with ByTheSea (Bts) as
shown in (21).

¬Recommend v NRecommend (20)
K Recommend(Bts) ← K CD(Bts),not owns(Bts),not LowEval(Bts),

K interesting(Bts),not NRecommend(Bts). (21)

Now, Γ′KG
enables us to derive from (20), (16), and (17) that NRecommend(Bts)

holds. As a consequence, it is ensured that K Recommend(Bts) never holds.
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However, Γ′KG
is inconsistent and there is no possibility to discover that. Thus,

we defined two operators ΓKG
and Γ′KG

that interact and permit the detection
of inconsistencies. Intuitively, Γ′KG

can be used to enforce for any modal atom
K ξ that ¬ξ implies not ξ. Then, ΓKG

checks whether any derivation obtained
from that correspondence is not only based on that but also justified by other
means. In this sense, the absence of any other means indicate an inconsistency.

Before we present how this interaction of the two operators is defined, we
show that both operators ΓKG

and Γ′KG
are antitonic.

Lemma 3. Let KG be a ground hybrid MKNF knowledge base and S ⊆ S′ ⊆
KA(K∗G). Then ΓKG

(S′) ⊆ ΓKG
(S) and Γ′KG

(S′) ⊆ Γ′KG
(S)

Proof. We show the argument for ΓKG
, the proof for Γ′KG

is identical.
By Definition 19, we have to show that TK+

G/S
′ ↑ ω ⊆ TK+

G/S
↑ ω. We

prove by induction on n that TK+
G/S

′ ↑ n ⊆ TK+
G/S
↑ n holds. The base case

for n = 0 is trivial since ∅ ⊆ ∅. Assume that TK+
G/S

′ ↑ n ⊆ TK+
G/S
↑ n holds

and consider K H ∈ TK+
G/S

′ ↑ (n + 1). Then K H ∈ TK+
G/S

′(TK+
G/S

′ ↑ n)
and there are two cases to consider. First, K+

G/S
′ contains a rule of the form

KH ← KA1∧ . . .∧KAn such that KAi ∈ TK+
G/S

′ ↑ n for each 1 ≤ i ≤ n. Since
S ⊆ S′ we also have KH ⊂ KA1 ∧ . . . ∧KAn in K+

G/S and by the induction
hypothesis KAi ∈ TK+

G/S
↑ n for each 1 ≤ i ≤ n. Hence, KH ∈ TK+

G/S
↑ (n+1).

Alternatively, KH is a consequence obtained from DK+
G/S

′(TK+
G/S

′ ↑ n). By the
induction hypothesis, TK+

G/S
′ ↑ n ⊆ TK+

G/S
↑ n holds and we conclude from the

monotonicity of first-order logic that KH ∈ DK+
G/S

(TK+
G/S
↑ n). �

Since both operators are antitonic, we can define an alternating iteration for
the two operators in the manner presented in [24] for the alternating fixpoint of
normal logic programs.

Definition 20. Let KG be a ground hybrid MKNF knowledge base. We define
two sequences Pi and Ni as follows.

P0 = ∅ N0 = KA(K∗G)
Pn+1 = ΓKG

(Nn) Nn+1 = Γ′KG
(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

The sequence of Pi is intended to compute modal atoms which are true, while
the sequence Ni computes modal atoms which are not false.

We can show that the sequence of Pi, resp. Ni, is increasing, resp. decreas-
ing.

Lemma 4. Let KG be a ground hybrid MKNF knowledge base. Then Pα ⊆ Pβ

and Nβ ⊆ Nα for all ordinals α, β with α ≤ β ≤ ω.
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Proof. Whenever α = β then the statement holds automatically. We can
thus limit α to be a successor ordinal and show via induction over α that the
statement holds. If β is a successor ordinal then it is sufficient to show the
property for β = α + 1, all the other successor cases follow from that one by
transitivity of ⊆.

If α = 0 then P0 = ∅ and P0 ⊆ Pβ holds for arbitrary β. Equivalently,
N0 = KA(K∗G), thus Nβ ⊆ N0 also holds for any β.

Suppose the property holds for all α ≤ n, we have to show that Pn+1 ⊆ Pn+2

and Nn+2 ⊆ Nn+1. We have Pn+1 = Γ(Nn) and Pn+2 = Γ(Nn+1). Since
Nn+1 ⊆ Nn by the induction hypothesis, we obtain by antitonicity of Γ that
Pn+1 ⊆ Pn+2. Likewise, we know that Nn+1 = Γ′(Pn) and Nn+2 = Γ′(Pn+1).
Since Pn ⊆ Pn+1 by the induction hypothesis, we obtain by antitonicity of Γ′

that Nn+2 ⊆ Nn+1.
The only case left is the one where β = ω. But this case holds easily by

definition: Pα ⊆
⋃

Pi and
⋂

Ni ⊆ Nα holds for arbitrary α < β. �

Like in case of TK, and for the very same reasons, these iterations are finite
and have a least fixpoint in case of Pi and a greatest fixpoint in case of Ni, and
both are obtained before ω. In fact, we can show that these two fixpoints exist.

Proposition 5. Let KG be a ground hybrid MKNF knowledge base. Then Pω

is the least fixpoint of the sequence of Pi and Nω is the greatest fixpoint of the
sequence of Pi.

Proof. We show the argument for Pω, the argument for Nω follows analo-
gously.

We define an operator Φ(S) = ΓKG
(Γ′KG

(S)) on sets S ⊆ KA(K∗G) which
is iterated as usual. It is easy to see that Φ ↑ i = P2i and, thus, that Φ is
monotonic. By the Knaster-Tarski Theorem we conclude that Pω is equal to
the least fixpoint of the sequence of Pi. �

This proposition also allows us to show that we can compute the least fix-
point directly from the greatest one and vice versa.

Proposition 6. Let KG be a ground hybrid MKNF knowledge base. Then Pω =
ΓKG

(Nω) and Nω = Γ′KG
(Pω).

Proof. We show the case of Nω = Γ′(Pω), the other one follows identically.
By Proposition 5, we know that Pω is the least fixpoint of the sequence of Pi .
Since the ground knowledge base is finite, there is an n such that Pn = Pω for
which we know that Pn = Pm for any m with m ≥ n. Subsequently, we have
Nn+1 = Nm for any m with m ≥ n + 1, i.e. Nn+1 = Γ′KG

(Pω) is a fixpoint of
the sequence of Ni and thus also of Γ′KG

. Assume that Nn+1 is not the greatest
fixpoint. Then there is Nl, l < n + 1, with Nl = Nl+2 and Nl ⊃ Nn+1. Then
Pl+1 also equals to a fixpoint in the sequence of Pi with Pl+1 being necessarily
smaller than Pn. This contradicts the initial assumption that Pn is the least
fixpoint, and finishes the proof. �
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Thus, we can either compute the two sequences Pi and Ni in parallel until we
reach n such that Pn = Pn+1 and Nn = Nn+1 or we compute just one of the
two fixpoints in the manner sketched in the proof of Proposition 5 alternating
between ΓKG

and Γ′KG
; the other one follows by one application of either ΓKG

or Γ′KG
.

The two fixpoints can be used to define the well-founded partition which
is, as we will show below, the partition which induces the well-founded MKNF
model.

Definition 21. LetKG = (O,PG) be a consistent ground hybrid MKNF knowl-
edge base. We define PKG

= Pω ∩ KA(KG), and NKG
= Nω ∩ KA(KG). Then

(TW , FW ) = (PKG
∪ {Kπ(O)},KA(KG) \NKG

) is the well-founded partition of
KG.

Both PK and NK, are restricted to the modal atoms occurring in K. Thus, the
auxiliary modal atoms introduced in K∗G are not present in the well-founded
partition. But they are not necessary there anyway since their only objective
is to prevent inconsistencies and ensure coherence in the iteration. Note that
we restrict the definition to consistent hybrid MKNF knowledge bases. This is
reasonable since in many cases the pair (TW , FW ) obtained for an inconsistent
knowledge base would not satisfy the conditions of a partition as given in Def-
inition 13. The only thing missing is a means for detecting inconsistencies but
before we come to that, we continue the two examples related to our example
scenario.

Example 10. Consider the ground hybrid MKNF knowledge base KG pre-
sented in Example 9 for recommending CDs. For simplicity we ground all the
rules only with Bts ignoring thus any other CDs and limit ourselves to the
following set of modal atoms using appropriate abbreviations:

KA(K∗G) = {K Exp(Bts),K Rec(Bts),K NRec(Bts),K CD(Bts),
K LowEv(Bts),K owns(Bts),K int(Bts)}

We also simplify (9) to the fact (22) and add explicitly that Bts is a CD.

K interesting(ByTheSea) ← . (22)
CD(ByTheSea) (23)

In the following, we only consider (16) - (17) and (20) - (23). Note that
not NRec(Bts) in (21) is not apearing in K+

G and that we omit showing the
transformations for K∗G w.r.t. Exp(Bts) since they will not have any impact on
this example.

Now we compute the two fixpoints and we start with P0 = ∅ and N0 =
KA(K∗G). We continue with P1 = ΓKG

(N0) and N1 = Γ′KG
(P0). We obtain:

P1 = {K CD(Bts),K int(Bts),K Exp(Bts),K NRec(Bts)}
N1 = KA(K∗G)
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We have K Rec(Bts) ∈ N1 but not K Rec(Bts) ∈ P1 since the transform w.r.t.
KA(K∗G) removes the rule (20) for the computation of P1. Note that once
KRec(Bts) is derived in the computation of N1 and added to the set S of derived
knowledge of the operator TK∗G/∅ then DK∗G/∅ permits to derive everything since
OBO,S is inconsistent.

We continue with P2 = ΓKG
(N1) and N2 = Γ′KG

(P1). We obtain:

P2 = {K CD(Bts),K int(Bts),K Exp(Bts),K NRec(Bts)}
N2 = {K CD(Bts),K int(Bts),K Exp(Bts),K NRec(Bts)}

Since KNRec(Bts) ∈ P1 holds, the rule (21) is no longer appearing in the trans-
form used for computing N2, and the explosive behavior of DK∗G/∅ disappears
as well. As a consequence, in the next iteration we obtain K Rec(Bts) ∈ P3.

P3 = {K CD(Bts),K int(Bts),K Exp(Bts),K NRec(Bts),K Rec(Bts)}
N3 = {K CD(Bts),K int(Bts),K Exp(Bts),K NRec(Bts)}

These are already the fixpoints and now KRec(Bts) ∈ P3 but KRec(Bts) 6∈ N3.
This is caused by the different knowledge bases ΓKG

and Γ′KG
are working on,

and the fact that K Rec(Bts) is intuitively true and false at the same time
is already a clear indication for the inconsistency of the considered knowledge
base.

While we still need to show how to discover inconsistencies formally, coher-
ence can already be ensured.

Example 11. Consider again only the hybrid MKNF knowledge base presented
in Example 8. We ground (18) and add the relevant modal atom/axiom w.r.t.
K∗G in (24) and (25).

K LowEval(Bts) ← not Recommend(Bts),not NLowEval(Bts) (24)
¬LowEval v NLowEval (25)

We only consider (19) - (25) and limit ourselves to the following modal atoms:

KA(K∗G) = {K Rec(Bts),K LowEv(Bts),K NLowEv(Bts),K CD(Bts),
K owns(Bts),K int(Bts)}

Here we compute the fixpoints as sketched in the proof of Proposition 6. We
start with P0 = ∅ and compute N1 and P2:

N1 = KA(K∗G)
P2 = {K CD(Bts),K int(Bts),K NLowEv(Bts)}

Both K LowEv(Bts) and K Rec(Bts) are yet undefined. We continue with P2

and N2 and obtain:

N3 = {K CD(Bts),K int(Bts),K NLowEv(Bts),K Rec(Bts)}
P4 = {K CD(Bts),K int(Bts),K NLowEv(Bts),K Rec(Bts)}
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Now K LowEv(Bts) does not occur in N3 since K NLowEv(Bts) removes (24)
from the respective transform. As a consequence we derive K Rec(Bts) in P4.
We can compute the greatest fixpoint Nω = Γ′KG

(Pω) and obtain that it is
equal to N3. Note that if axiom (19) is omitted then both K LowEv(Bts)
and K Rec(Bts) remain undefined. Thus, its presence shows how the formula
¬LowEv(Bts) imposes that notLowEv(Bts) holds, ensuring in this example the
derivability of K Rec(Bts).

4.3. The Well-Founded MKNF Model and Related Properties
The well-founded partition (TW , FW ) consists of modal atoms which are

intended to be true (TW ), false (FW ) or undefined (those modal atoms neither
occurring in TW nor in FW ). But this is not merely an intention. In fact, the
two sequences of Pi and Ni allow us to show that any modal atom which is
added to an element of the sequence of Pi (resp. removed from an element of
the sequence of Ni) must be true in all partial MKNF models (resp. false).

Lemma 5. Let KG be a ground hybrid MKNF knowledge base. Then KH ∈ Pi

implies that KH is true (and notH is false) in all partial MKNF models (M,N)
of K+

G and KH 6∈ Ni implies that KH is false (and notH is true) in all partial
MKNF models (M,N) of K∗G.

Proof. We show the argument for KH by an induction on i. This also shows
the argument for notH since, for all partial MKNF models (M,N) of some K,
we have that (I, 〈M,N〉, 〈M,N〉)(KH) = ¬(I, 〈M,N〉, 〈M,N〉)(notH).

We start with the base case i = 0 which trivially holds since P0 is empty
and N0 equals KA(K∗G).

(i) Suppose that the lemma holds for all i ≤ n. We consider i = n + 1 for
two cases, namely KH ∈ Pn+1 and KH 6∈ Nn+1.

So let KH ∈ Pn+1. If KH already occurs in Pn then KH is true in all
partial MKNF models (M,N) of K+

G by the induction hypothesis (i). Otherwise,
KH ∈ Γ(Nn), i.e. KH ∈ TK+

G/Nn
↑ ω but KH 6∈ Pn. Since KH is introduced

by TK+
G/Nn

↑ ω we know that KH ∈ TK+
G/Nn

↑ j for some j and we show by
induction on j that KH is true in all MKNF models (M,N) of K+

G.
The base case holds trivially since TK+

G/Nn
↑ 0 is empty.

(ii) Suppose that the claim holds for KH ∈ TK+
G/Nn

↑ j, j ≤ m, and consider
KH ∈ TK+

G/Nn
↑ m+ 1.

If KH already occurs in TK+
G/Nn

↑ m then the claim holds automatically by
the induction hypothesis (ii). Otherwise, there are two cases to consider. Either
there is a positive rule KH ← KA1, . . .KAn in K+

G/Nn with KAi ∈ TK+
G/Nn

↑
m or KH is the consequence of DK+

G/Nn
(TK+

G/Nn
↑ m). In the first case, by the

induction hypothesis (ii), all KAi are true in all partial MKNF models (M,N)
of K+

G. Additionally, there is a rule KH ← KA1, . . .KAn,notB1, . . . ,notBm
in K+

G and since its solely positive version occurs in K+
G/Nn, no KBj occurs in

Nn, and thus, by the induction hypothesis (i), all KBj are false in all partial
MKNF models (M,N) of K∗G. We show that all K Bj are false in all partial
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MKNF models (M,N) of K+
G. Assume the contrary, i.e. that there is a partial

MKNF model (M ′, N ′) of K+
G such that at least one such KBj is not false in it.

The only difference between K+
G and K∗G are the auxiliary predicates appearing

in the bodies of some rules in K∗G, i.e. the only reason for KBj not to be false in
a partial MKNF model of K+

G is the absence of notNBj in all rules with head
K Bj . But if KNBj holds for all partial MKNF models of K∗G then KNBj
also holds for all partial MKNF models of K+

G and so ¬Bj must hold for all
partial MKNF models of K+

G (as this is the only way of deriving KNBj). Thus,
Bj 6∈ I for each I ∈ M ′ and, since N ′ ⊆ M ′, also Bj 6∈ I for each I ∈ N ′.
We derive that K Bj is false in (M ′, N ′), i.e. a contradiction from which we
conclude that all K Bj are false in all partial MKNF models (M,N) of K+

G.
Consequently, KH has to be true in all partial MKNF models (M,N) of K+

G.
In the second case, OBO,T

K+
G

/Nn
↑m |= H holds. Since O and all modal atoms

occurring in TK+
G/Nn

↑ m are true in all partial MKNF models of K+
G (by the

induction hypothesis (i)), we can immediately conclude that KH also has to be
true in all partial MKNF models (M,N) of K+

G.
Alternatively, let KH 6∈ Nn+1. If already KH 6∈ Nn then KH is false in

all partial MKNF models of K∗G by the induction hypothesis (i). Otherwise we
have KH ∈ Nn but KH 6∈ Nn+1, i.e. KH ∈ Γ′(Pn−1) but KH 6∈ Γ′(Pn) and
thus KH ∈ TK∗G/Pn−1 ↑ ω but KH 6∈ TK∗G/Pn

↑ ω. The removal of KH is thus
caused by the usage of Pn for creating the transform since Pn−1 ⊆ Pn means
that K∗G/Pn contains fewer rules than K∗G/Pn−1. Such a removed rule with
KH in the head has at least one notBj in the body such that KBj occurs in
Pn. By the induction hypothesis (i), KBj is true in all partial MKNF models
(M,N) of K+

G. Assume that there is a partial MKNF model (M ′, N ′) of K∗G
such that at least one KBj is not true in (M ′, N ′). Again, the only difference
between K+

G and K∗G are the auxiliary predicates appearing in the bodies of
some rules in K∗G, i.e. the only reason for KBj not to be true in (M ′, N ′) is the
presence of notNBj in all rules with head KBj and that KNBj is not false
in (M ′, N ′). From that we derive that NBj ∈ I holds for all I ∈ N ′.

But if KNBj holds for all partial MKNF models of K∗G then KNBj also
holds for all partial MKNF models of K+

G and so ¬Bj must hold for all partial
MKNF models of K+

G (as this is the only way of deriving KNBj). Thus, Bj 6∈ I
for each I ∈ M ′ and, since N ′ ⊆ M ′, also Bj 6∈ I for each I ∈ N ′. We derive
that KBj is false in (M ′, N ′), i.e. a contradiction from which we conclude that
all KBj are false in all partial MKNF models (M,N) of K+

G.
This holds for any rule with head KH and all other removed rules which

might indirectly affect the derivability of KH and we conclude that KH must
be false in all partial MKNF models (M,N) of K∗G by minimality construction
of the MKNF semantics. �

Then, the following corollary is straightforward.

Corollary 1. Let KG be a ground hybrid MKNF knowledge base and (T, F ) the
pair (Pω,KA(K∗G) \Nω). Then KH ∈ T implies that KH is true (and notH
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is false) in all MKNF models (M,N) of K and KH ∈ F implies that KH is
false (and notH is true) in all MKNF models (M,N) of K.

Proof. The corollary follows immediately from Lemma 5 and Proposition 5.
�

Note that, for consistent KB KG, the pair (T, F ) in the above corollary corre-
sponds to the well-founded partition (ignoring the auxiliary predicates occur-
ing in K∗G). Thus, whenever KG has a partial MKNF model, i.e. is MKNF-
consistent, then the well-founded partition provides a set of modal atoms which
are necessarily true, respectively false, in that model. We can now use this
statement in a specific way to check for consistency itself.

Proposition 7. Let KG be a ground hybrid MKNF knowledge base, Pω the
fixpoint of the sequence Pi, and Nω be the fixpoint of the sequence Ni. If
Γ′(Pω) ⊂ Γ(Pω) or Γ′(Nω) ⊂ Γ(Nω) then KG is MKNF inconsistent.

Proof. We show the proof for Nω, the other case follows analogously. From
Proposition 6 we know that Γ(Nω) = Pω. Furthermore, by Corollary 1, we
have that all modal atoms K H ∈ Pω are true in all partial MKNF models
(M,N) of KG. If Γ′(Nω) ⊂ Γ(Nω) then there is at least one KH such that
K H ∈ Γ(Nω) \ Γ′(Nω). The only difference between these two operators is
that in case of Γ′ all rules with a DL-atom KP in the head contain additionally
notNP in the body. Thus the only reason for KH not to occur in Γ′(Nω) is
that H is such a DL-atom (or is indirectly derived from another such DL-atom,
but without loss of generality we can ignore that case) and that ¬H actually
is a consequence obtained from O via DKG

so that K NH removes the rule
with head KH in case of Γ′ from the respective transform. We conclude that
KH has to be true and false at the same time and, thus, that the KB KG is
inconsistent. �

Unfortunately neither of the two tests alone is sufficient to discover incon-
sistencies:

Example 12. The following knowledge base is inconsistent as KP (a) is unde-
fined and false at the same time but only the test using Nω discovers that.

R v ¬P
KR(A) ←
KP (A) ← notP (A)

For KA(K∗G) = {K R(A),K P (A),K NP (A)} we obtain Pω = KA(K∗G) and
Nω = {KR(A),KNP (A)} and thus Γ′(Pω) = Γ(Pω) = {KR(A),KNP (A)}
and Γ′(Nω) = {KR(A),KNP (A)} ⊂ Γ(Nω) = KA(K∗G).
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On the other hand the following knowledge base is also inconsistent but only
the test with Pω allows us to discover this.

R v ¬P
KR(A) ←
KP (A) ← notu

Ku ← notu

For KA(K∗G) = {KR(A),KP (A),KNP (A),Ku} we obtain Pω = {KR(A),
K NP (A)} and Nω = {K R(A),K NP (A),K u} and thus Γ′(Pω) = Nω ⊂
Γ(Pω) = KA(K∗G) and Γ′(Nω) = Γ(Nω) = Pω.

This example is particularly interesting as it shows that neither looking
for K H such that K H and K NH appear simultaneously in Pω or Nω nor
comparing Pω and Nω is sufficient: both contain KNP (A) and Nω contains
additionally K u, i.e. K P (A) is false and P (A) first-order false, however, the
rule with KP (A) in the head has an undefined body and is thus not satisfied.

The conditions given in Proposition 7 alone do not suffice either to detect all
inconsistencies in KG, since an inconsistent ontology O is not detected by this
method. In fact, in case we want to check for consistency of KG we have to
check consistency of O alone and then apply the proposition above. Only if
both results are positive then the knowledge base KG is MKNF-consistent.

Theorem 2. Let KG = (O,PG) be a ground hybrid MKNF knowledge base,
Pω the fixpoint of the sequence Pi, and Nω be the fixpoint of the sequence Ni.
KG is MKNF-inconsistent iff Γ′(Pω) ⊂ Γ(Pω) or Γ′(Nω) ⊂ Γ(Nω) or O is
inconsistent.

Proof. One direction of the proof is a direct consequence of Proposition 7 and
the definition of evaluation of MKNF formulas: if O is inconsistent then there is
no first-order model of O. Assume that (M,N) is a partial MKNF model of KG.
Then, (M,N) satisfies KG and thus also O, i.e. (I, 〈M,N〉, 〈M,N〉)(π(O)) = t
for each I ∈M . Since M must not be empty, we derive a contradiction.

For the other direction, we have to show that any possibly occurring MKNF-
inconsistency is detected. So suppose that KG is MKNF-inconsistent. If O is
inconsistent then we are done immediately. Otherwise, the rules in PG alone
cannot be MKNF-inconsistent since they only consist of modal atoms without
any appearence of classical negation. Likewise, rules without DL-atoms or rules
without DL-atoms in at least some head cannot be inconsistent since the deriva-
tion from the ontology O never conflicts with any rule. Consider thus such an
arbitrary DL-atom KH with a rule KH ← KA1, . . . ,KAn,notB1, . . . ,notBm
in PG. If H is true as a consequence of O then the operator DKG

ensures that
KH is true as well and no inconsistency occurs.

So let H be first-order false and KH ∈ Pω, i.e. KH is true in all partial
MKNF models. But then Γ′(Nω) ⊂ Γ(Nω) and the inconsistency is detected.

Alternatively, KH could be undefined but then KH ∈ Nω and this is not
possible since H is first-order false and Γ′ suppresses K H. So the only case
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missing is the one where KH is false in all MKNF models as enforced by the
operator Γ′ but the body of at least one rule with head KH is undefined. Then
Γ′(Pω) ⊂ Γ(Pω) and the inconsistency is detected. �

As already said, normal rules alone cannot be inconsistent, only if we allow
integrity constraints which are rules whose head is K f (cf. [43]). But then
inconsistencies are easily detected since K f must occur in KA(K∗G) \Nω.

Example 13. Reconsider KG from Example 10. We have Pω = P3 and Nω =
N3. We check for inconsistency (assuming that the consistency check for O
alone succeeded) and obtain Γ′KG

(Pω) ⊂ ΓKG
(Pω) and Γ′KG

(Nω) ⊂ ΓKG
(Nω).

We conclude that KG is inconsistent and does not have a well-founded partition.
Now reconsider KG from Example 11. We have Pω = P4 and Nω = N3.

We check for consistency and obtain Γ′KG
(Pω) = ΓKG

(Pω) and Γ′KG
(Nω) =

ΓKG
(Nω). Hence we obtain the well-founded partition (TW , FW ) =

({K CD(Bts),K int(Bts),K Rec(Bts)}, {K owns(Bts),K LowEv(Bts)}).

If KG is consistent then the well-founded partition exists and it yields an
interpretation pair which satisfies KG.

Theorem 3. Let KG be a consistent ground hybrid MKNF KB and (TW , FW ) =
(PKG

∪ {K π(O)},KA(KG) \ NKG
) the well-founded partition of KG. Then

(IP , IN ) |= π(KG) where IP = {I | I |= OBO,PKG
} and IN = {I | I |=

OBO,NKG
}.

Proof. First of all, (IP , IN ) is defined properly to be an interpretation pair, i.e.
since any I ∈ IN also satisfies OBO,PKG

we obtain IN ⊆ IP . By Definition 3 we
know that π(KG) = Kπ(O)∧π(PG). Since π(O) occurs in OBO,PKG

and all I ∈
IP model OBO,PKG

, we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(K π(O)) = t for all I ∈ IP .
Thus, we only have to consider the evaluation of (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)).

We start by evaluating the modal atoms occurring in π(PG). Let K H ∈
π(PG). Suppose at first that KH ∈ TW then (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = t.
Alternatively, suppose KH ∈ FW . Assume that OBO,NKG

|= H. In this case,
KH ∈ NKG

by means of DKG
and we conclude that OBO,NKG

6|= H. Therefore,
we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = f . Finally, let KH neither occur in TW
nor in FW but in NKG

. We know that OBO,NKG
|= H and assume OBO,PKG

|=
H. In this case, KH ∈ PKG

by means of DKG
and we conclude that OBO,PKG

6|=
H. Therefore, we have (I, 〈IP , IN 〉, 〈IP , IN 〉)(KH) = u. The cases for notH ∈
π(P) follow analogously, i.e. if KH ∈ TW then (I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) =
f , if KH ∈ TW then (I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = t, and otherwise we have
(I, 〈IP , IN 〉, 〈IP , IN 〉)(notH) = u.

Now, we consider π(PG) which consists of of a set of implications each corre-
sponding to one rule in PG. For showing that (I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t,
we only have to guarantee that the three cases which map an implication ⊃ to
false do not occur, i.e. the cases where, in the corresponding original rule,
the body is true but the head is not, respectively the body is undefined and
the head is false. Assume that any of the three cases holds. If the body of
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such a rule is true then by the alternating fixpoint construction we have that
the head is true as well contradicting these two cases. If the rule body is un-
defined then (by NKG

and the alternating fixpoint) we obtain that the head
has to be undefined or true, again in contradiction to our assumption. Thus,
(I, 〈IP , IN 〉, 〈IP , IN 〉)(π(PG)) = t holds. �

This result can be combined with Proposition 3 to obtain that the well-founded
partition results in a three-valued MKNF model.

Theorem 4. Let KG be a consistent ground hybrid MKNF KB and (TW , FW ) =
(PKG

∪ {K π(O)},KA(KG) \ NKG
) the well-founded partition of KG. Then

(IP , IN ) where IP = {I | I |= OBO,PKG
} and IN = {I | I |= OBNO,KG

} is
a partial MKNF model of KG.

Proof. We know from Theorem 3 that (IP , IN ) models π(KG). By Proposition
3, this interpretation pair exactly corresponds to the one which equals to an
MKNF model inducing that partition. Thus (IP , IN ) is a partial MKNF model
of KG. �

In fact, it is not just any partial MKNF model but the well-founded MKNF
model, i.e. the least one w.r.t. derivable knowledge. For that purpose, we show
that the partition (T, F ) induced by a partial MKNF model provides a fixpoint
T for the sequence of Pi and a fixpoint T for the sequence of Pi.

Lemma 6. Let KG be a consistent ground hybrid MKNF KB and (T, F ) the
partition induced by a partial MKNF model (M,N) of KG. Then T is a fixpoint
of the sequence of Pi and F a fixpoint of the sequence of Ni.

Proof. We show the argument for T and the sequence of Pi, the other case
follows analogously.

The set T contains all modal K-atoms from KA(KG) which are true in the
partial MKNF model (M,N). We know that the sequence of Pi is monotonically
increasing and that the operator Φ with Φ(S) = ΓKG

(Γ′KG
(S)) is monotonic,

i.e. T ⊆ Φ(T ) holds.
We only have to show that Φ(T ) ⊆ T holds as well. So we have to show that

ΓKG
(Γ′KG

(T )) ⊆ T , i.e. that TK+
G/Γ

′
KG

(T ) ↑ ω ⊆ T where Γ′KG
(T ) = TK∗G/T ↑ ω.

We show by induction on α that TK+
G/Γ

′
KG

(T ) ↑ α ⊆ T holds for all α and
therefore also for ω.

Let α be 0. Then TK+
G/Γ

′
KG

(T ) ↑ α = ∅ and the claim holds immediately.
Suppose it holds for α = n, we show the claim for α = n + 1. Consider
K H ∈ TK+

G/Γ
′
KG

(T ) ↑ (n + 1), i.e. K H ∈ TK+
G/Γ

′
KG

(T )(TK+
G/Γ

′
KG

(T ) ↑ n). At

first, suppose that KH ∈ RK+
G/Γ

′
KG

(T )(TK+
G/Γ

′
KG

(T ) ↑ n). Then either KH ∈
TK+

G/Γ
′
KG

(T ) ↑ n and the claim holds by induction hypothesis or K+
G/Γ

′
KG

(T )

contains a rule of the form (1) such that KAi ∈ TK+
G/Γ

′
KG

(T ) ↑ n. In this case,

all KAi occur in T and are all modelled in (M,N). Thus (M,N) also models
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K H and K H is induced in T , i.e. K H ∈ T . Alternatively, suppose that
KH ∈ DK+

G/Γ
′
KG

(T )(TK+
G/Γ

′
KG

(T ) ↑ n). In this case it is easy to see by induction
hypothesis and by monotonicity of DK+

G
that KH ∈ T as well. �

From that we immediately obtain that the well-founded MKNF model is the
least MKNF model w.r.t. derivable knowledge.

Theorem 5. Let K be a consistent nondisjunctive DL-safe hybrid MKNF KB
and let (M,N) be the partial MKNF model for K. For any partial MKNF model
(M1, N1) of K we have (M1, N1) �k (M,N), i.e. (M,N) is the well-founded
MKNF model.

Proof. We have shown in Proposition 3 that any three-valued MKNF model
induces a partition which yields the MKNF model again (via the objective
knowledge). Since any partition (T, F ) by Lemma 6 consists of two fixpoints,
one of ΦK (T ) and one of ΨK (F ), and we know that the well-founded partition
(TW , FW ) is obtained from the least fixpoint of ΦK and the greatest fixpoint of
ΨK, we conclude that TW ⊆ T and FW ⊆ F . Furthermore, we know that M =
{I | I |= obK,TW

} and N = {I | I |= obK,KA(K)\FW
}, and M1 = {I | I |= obK,T}

and N1 = {I | I |= obK,KA(K)\F}. It is straightforward to see that M ⊇M1 and
N1 ⊇ N which by Definition 11 finishes the proof. �

This central theorem not only shows that the well-founded model is in fact
well-defined, since it is exactly the MKNF model which is least w.r.t. �k,
but also that the well-founded MKNF model is a sound approximation of any
total three-valued MKNF model and therefore of any two-valued MKNF model.
Thus, the well-founded partition can also be used in the algorithms presented
in [41] for computing a subset of that knowledge which holds in all partitions
corresponding to a two-valued MKNF model.

One of the open questions in [41] was that MKNF models are not compat-
ible with the well-founded model for logic programs. Our approach, regarding
knowledge bases just consisting of rules, does coincide with the well-founded
model for the corresponding (normal) logic program (though it obviously does
not correspond to the stable model semantics).

Corollary 2. Let K be a nondisjunctive program of MKNF rules, Π a normal
logic program obtained from P by transforming each MKNF rule

KH ← KA1, . . . ,KAn,notB1, . . . ,notBm

into a clause
H ← A1, . . . , An,notB1, . . . ,notBm

of Π, let (P,N) be the well-founded MKNF model, and let WΠ be the well-
founded model of Π. Then KH ∈ P if and only if H ∈ WΠ and KH ∈ N if
and only if notH ∈WΠ.
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Finally the following theorem is obtained straightforwardly from the data
complexity results for positive nondisjunctive MKNF knowledge bases in [41]
where data complexity is measured in terms of A-Box assertions and rule facts.

Theorem 6. Let K be a nondisjunctive DL-safe hybrid MKNF KB. Assuming
that entailment of ground DL-atoms in DL is decidable with data complexity C
the data complexity of computing the well-founded partition is in PC.

For comparison, the data complexity for reasoning with MKNF models in
nondisjunctive programs is shown to be EPC where E = NP if C ⊆ NP, and
E = C otherwise. Thus, computing the well-founded partition ends up in a
strictly smaller complexity class than deriving the MKNF models. In fact, in
case the description logic fragment is tractable13, we end up with a formalism
whose model is computed with a data complexity of P. This is remarkable,
because, to the best of our knowledge, this is the first time that a general
tractable local closed-world extension for DL’s has been identified.

5. Related Work

Several proposals exist for combining rules and ontologies (see e.g. [23] for
a brief survey). Basically they can be split into two groups, namely those being
semantically based on first-order logics solely (such as description logics alone)
and the hybrid approaches such as hybrid MKNF which provide a semantics
usually combining elements from first-order logics with nonmonotonicity.

The first groups’ most general approach is SWRL [27] which is the un-
restricted combination of OWL-DL with function-free Horn rules, i.e. rules
without negation. The approach is very expressive but undecidable, yet nev-
ertheless generalizes many approaches in this group. Applying e.g. DL-safety
to SWRL rules yields DL-safe rules [42], a decidable subset of SWRL. Notable
among the approaches which are also generalized by SWRL are AL-log [9] a
combination of DL-safe positive rules and ALC and [36] for the system CARIN.
In both cases the ontology only serves as input to the rules and not vice-versa.
Besides that, Description Logic Programs (DLP) [21] are a fragment of OWL
that can be transformed into logic programs of positive rules. In the same spirit
as DLP, Horn-SHIQ [29] is a fragment of OWL which can be translated into
Datalog, i.e. positive rules, and is just like DLP of tractable data complexity.
Besides that, recently DLP has been generalized in [34] by Description Logic
Rules, i.e. rules which allow description logics expressions within themselves,
which allow to add more sophisticated constructs only available to more ex-
pressive description logics to enrich the DL on which the description logic rules
are based without raising the complexity. In similar spirit is the language ELP
[35], which is a polynomial language covering important parts of OWL 2, but
which also allows us to model with axioms which cannot be expressed in OWL

13See e.g. the OWL2 profiles at http://www.w3.org/TR/owl2-profiles/.
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2. All these approaches have the advantage of fitting semantically into the orig-
inal (first-order) OWL semantics which also means that existing reasoners for
ontologies alone are available for use. On the other hand, none of them is al-
lowing for expressing nonmonotonic negation which exactly prevents modeling
problems like those given in the introduction.

The second group of hybrid approaches which have partially nonmonotonic
semantics are more or less similar in spirit to the hybrid MKNF semantics. The
approach of [12] combines ontologies and rules in a modular way, i.e. keeps both
parts and their semantics separate and is thus a less strong integration. The two
reasoning engines nevertheless interact bidirectionally (with some limitations in
the direction of the ontology to rules) via interfaces, and the dlvhex system [13]
provides an implementation for that and generalizes the approach by allowing
multiple sources for external knowledge with differing semantics. This work
has also been extended in various ways (including probability, uncertainty, and
priorities, for references see the related work section of [12]) and it includes a
related well-founded semantics [14] with quite similar computational complexity
as the well-founded MKNF semantics, but again in a less tight integration with
some limitations on the transfer of information from ontologies to rules. The
only other well-founded semantics approach is the one called hybrid programs
[11] but it only allows us to transfer information from the ontology to the rules
and not the other way around and is thus strictly less expressive than the well-
founded MKNF semantics. The advantage of such a restriction is, however,
that, opposite to [14] and the well-founded MKNF semantics, the semantics
remains compatible with the standard semantics: consider two DL-atoms B1

and B2 and an ontology which expresses that at least one of them is true but
none is a logical consequence of the ontology. Then, given rules p ← B1 and
p← B2, p is obtained by [11] but not in our work nor in the one by Eiter et. al.
[12]. There are however several further approaches based on stable models such
as [7] which use an embedding into autoepistemic logic to combine ontologies
and rules tightly and which is quite similar in spirit to hybrid MKNF [41]. In
fact, the embedding with epistemic rule bodies and epistemic rule heads seems
to be the one most closely related, not only syntactically but also with respect
to the semantic consequences. However, a precise relation to hybrid MKNF
is far from being obvious since an autoepistemic interpretation in [7] is a pair
of a first-order interpretation and a set of beliefs and both are not necessarily
related. DL+log [49] provides a combination of rules and ontologies which
separates predicates into rule and ontology predicates and evaluates the former
w.r.t. answer set semantics and the latter w.r.t. a first-order semantics applying
weak DL-safety, i.e. each variable in the head of a rule appears in an arbitrary
positive atom in its body. Like [41], [8] generalizes [49] and several earlier related
work such as [48] by Rosati within the framework of equilibrium logics. Quite
similar to [49] is also [38] only that this approach does not distinguish between
ontology and rules predicates. In fact, the work originated from [12] and thus
from the perspective of rules but allows a much tighter integration than [12].
Yet another approach, open answer set programming [50], extends rules with
open domains and add some syntactic limitations for ensuring decidability and,
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recently in [15], based on that an algorithm has been provided for f-hybrid
knowledge bases, i.e. a combination of ontologies and rules without enforcing
DL-safety but limiting predicates to tree-shapedness. A loose layering of Prolog
on top of DLs, employing four-valued logic, is presented in [39].

An alternative way of introducing nonmonotonicity to ontologies is to en-
rich DLs with further syntactic constructs representing nonmonotonic features.
Among these approaches the most closely related to our work is Description
Logics of MKNF [10] which allow two modal operators in ontology axioms. An
algorithm was provided in [10] for ALC with MKNF and has recently been im-
proved in [30]. In [5, 18] circumscription was used for achieving nonmonotonic
features and among several combinations introducing defaults to ontologies we
mention [4].

6. Conclusions and Future Work

Summarizing, we have defined a well-founded semantics of (tightly inte-
grated) hybrid KBs that is sound w.r.t. the semantics defined in [41] for MKNF
KBs but has strictly lower complexity. In particular, we obtain tractability
whenever the underlying description logic is tractable. To the best of our knowl-
edge it is the first such approach for the combination of such rules and ontolo-
gies without any limitations on the transfer of information between the two.
It coincides with the first-order semantics of the considered Description Log-
ics fragment in case there are no rules, and with the well-founded semantics
of normal programs in case the DL-part is empty. Moreover, we define a con-
struction for computing the well-founded model that is also capable of detecting
inconsistencies in a straightforward way.

Several lines of future research can be considered, some of which are al-
ready under investigation by us. First of all, we are working towards a general
query-driven procedure capable of answering conjunctive queries under the well-
founded semantics of hybrid MKNF knowledge base. In fact we have already
some results in this issue: in [1] a procedure is defined, using tabled resolution,
that is sound and complete w.r.t. the well-founded semantics defined here, and
is terminating for several classes of knowledge bases. This procedure, which
is parametric on an oracle capable of answering queries in the underlying de-
scription logic, is able to answer DL-safe conjunctive queries (i.e. conjunctive
predicates with variables, where queries have to be ground when processed in the
ontology) returning all correct answer substitutions for variables in the query.
An implementation of this procedure, which is based on XSB Prolog14 for the
tabling resolution, is underway.

Another line of current research, is the specialisation of the semantics de-
fined here, and corresponding procedures and implementations, for particular
tractable description logics (rather then considering, in general, any decidable
DL, as is done in this paper). This specific study, and implementation, for a

14http://xsb.sourceforge.net/
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tractable description logic fragment aims at EL++ [2], and at its extension ELP
[35]. We intend to provide a transformation of such specific hybrid knowledge
bases into rules which then can be applied as an input to a logic programming
system capable of computing the well-model of a set of rules.

Yet another topic that we are pursuing, is the definition of a paraconsistent
version of the semantics defined here. It is worth noting that when incon-
sistencies come from the combination of the rules with the DL-part (i.e. for
inconsistent KBs with a consistent DL-part), the construction still yields some
results (e.g. in Example ?? we could still recommend album A3). This sug-
gests that the method could be further exploited in the direction of defining a
paraconsistent semantics for hybrid KBs.
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