
An Ontology- and Resources-Based Approach to

Evolution and Reactivity in the Semantic Web
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Abstract. The Web of today can be seen as an active and heteroge-
neous infrastructure of autonomous systems, where reactivity, evolution
and propagation of information and changes play a central role. In the
same way as the main driving force for XML and the Semantic Web
idea was the heterogeneity of the underlying data, the heterogeneity of
concepts for expressing behavior calls for an appropriate handling on the
semantic level. We present an ontology-based approach for specifying be-
havior in the Semantic Web by Event-Condition-Action (ECA) rules that
models rules as well as their event, condition, and action components,
and languages as resources. The necessary information about semantics
and suitable processors is then associated with the language resources.
The approach makes use of the data integration facilities by URIs that
allow for a seamless integration of information and services physically
located at different places. Additionally, that point of view allows for
sharing and reuse of these resources throughout the Semantic Web.

1 Introduction

The current Web does not only consist of HTML pages, but of nodes, some of
which are still browsing-oriented, but in general also providing behavior (often
summarized as Web services). With this, the perspective shifts more to the
idea of the Web as a network of (autonomous) information systems. Current
portals usually integrate a fixed set of known sources, often using “hard-coded”
integration. A problem when overcoming this restriction is its heterogeneity, both
in the actual data formats, and also semantic heterogeneity. The goal of the
Semantic Web is to bridge this heterogeneity and provide unified view(s) on the
Web. In this scenario, XML (as a format for storing and exchanging data), RDF
(as an abstract data model for states), OWL (as an additional framework for
state theories), and XML-based communication (Web Services, SOAP, WSDL)
provide the natural underlying concepts.

In contrast to the current Web, the Semantic Web should be able not only
to support querying, but also to propagate knowledge and changes in a semantic
way. This evolution and behavior depends on the cooperation of nodes. In the
same way as the main driving force for XML and the Semantic Web idea was the
heterogeneity of the underlying data, the heterogeneity of concepts for express-
ing behavior requires an appropriate handling on the semantic level. Since the
contributing nodes are prospectively based on different concepts such as data



models and languages, it is important that frameworks for the Semantic Web
are modular, and that the concepts and the actual languages are independent.

Here, reactivity and its formalization as Event-Condition-Action (ECA) rules
provide a suitable model because they provide a modularization into clean con-
cepts with a well-defined information flow. An important advantage of them is
that the content (event, condition, and action specifications) is separated from
the generic semantics of the rules themselves. They are easy to understand, and
provide a well-understood formal semantics: when an event (atomic event or
composite event) occurs, evaluate a condition, and if the condition is satisfied
then execute an action (or a sequence of actions, a program, a transaction, or
even start a process). ECA rules provide a generic uniform framework for speci-
fying and implementing communication, local evolution, policies and strategies,
and –altogether– global evolution in the Semantic Web.

In the present paper, we develop an ontology-based approach for describing
(reactive) behavior in the Web and evolution of the Web that follows the ECA
paradigm. We propose a modular framework for composing languages for events,
queries, conditions, and actions, as well as application-specific languages and on-
tologies for atomic events and actions. Modularity allows for high flexibility wrt.
the heterogeneity of the potential sublanguages, while exploiting and supporting
their meta-level homogeneity on the way to the Semantic Web.

Structure of the Paper. The remainder of the paper is structured as fol-
lows: In Section 2, we analyze the notion of state in the Semantic Web and the
consequences for the design of the ECA framework for describing behavior in the
Semantic Web. The rule level of the ontology is then presented in Section 3, in-
cluding the coarse level of an XML Markup. Section 4 deals with the integration
of trigger-like ECA rules “below” the semantical level in the homogeneous local
environments of nodes. The Semantic Web level is then refined with a more de-
tailed analysis of the event, query, condition, and action concepts in Section 5;
leading to a refined XML Markup. The architecture of the realization of the
framework in the Semantic Web based on the “actual” resources (e.g., language
processors that are associated with the language resources) of the RDF ontology
is described in Section 6, followed by a short conclusion.

2 Rules in the Semantic Web: Requirements Analysis

2.1 States and Nodes in the Semantic Web

As described above, the Semantic Web can be seen as a network of autonomous
(and autonomously evolving) nodes. Each node holds a local state consisting of
extensional data (facts), metadata (schema, ontology information), optionally a
knowledge base (intensional data), and, again optional, a behavior base. In our
case, the latter is given by the ECA rules under discussion that specify which
actions are to be taken upon which events and conditions.

The state of a node in the Semantic Web is represented in XML, RDF(S),
and/or OWL. Usually, XML serves for the physical level, mapped to an RDF/OWL



ontology for integration throughout the Web. Here, a framework where the be-
havior base (i.e., the ECA rules) is also part of the Semantic Web and represented
in a declarative way (and can be queried, reasoned about, and updated), will in
our view prove useful.

2.2 Behavior of Nodes

Cooperative and reactive behavior is then based on events (e.g., an update at a
data source where possibly others depend on). The depending resources detect
events (either they are delivered explicitly to them, or they poll them via the
communication means of the Semantic Web). Then, conditions are checked (ei-
ther simple data conditions, or e.g. tests if the event is relevant, trustable etc.),
which can include queries to one or several nodes. Finally, an action is taken
(e.g., updating own information accordingly).
The behavior has to take into account the distributed state of knowledge:

1. behavior can be local to a node, i.e., all events are explicitly detectible at the
node, the condition is a query against local data, and the actions are also
local ones;

2. conditions can include queries that may involve other nodes (either explicitly
addressed, or by evaluating a Semantic Web query);

3. actions can also effect other nodes; again either by sending an explicit message
to a certain node, or as an intensional update against “the Web”. Such
updates are expressed and sent as messages, and appropriate nodes will react
upon their receipt by updating their local database;

4. there are also relevant events that are only detectible at other nodes, or
intensional events “on the Web”; also, event combinations (from possibly
different sources) have to be taken into account.

With these extensions, together with the “Semantic” property of the rules, the
ECA concept needs to be more flexible and adapted to the global environment.
Since the Semantic Web is a world-wide living organism, nodes “speaking dif-
ferent languages” should be able to interoperate. So, different “local” languages,
be it the query languages, the action languages or the event languages/event al-
gebras have to be integrated in a common framework. In contrast to “classical”
ECA rules, our approach makes a more succinct separation between event, con-
dition, and action component, which are possibly (i) given in separate languages,
and (ii) possibly evaluated/executed in different places. Since not every node will
provide ECA capabilities, there will also be nodes that provide “ECA services”
(extending the concepts of publish-subscribe and continuous query services), be-
ing able to execute ECA rules (submitted by any Semantic Web participants)
that use arbitrary sublanguages (see Section 6).

The requirement (4) also calls for application-dependent handling and detec-
tion of atomic events. In general, each application ontology must also specify how
derived events can be detected based on actual events (e.g., “account X goes be-
low zero” based on “a debit to account X”, or “flight LH123 on 10.8.2005 is fully
booked” from “person P is booked for seat 5C of flight LH123 on 10.8.2005”).



3 Ontology of Rules and Languages

In usual Active Databases in the 1990s, an ECA language consisted of an event
language, a condition language, and an action language. In the Semantic Web,
there is a heterogeneous world of such languages which has to be covered. The
target of the development and definition of languages for (ECA) rules, events,
conditions and actions in the Semantic Web should be a semantic approach, i.e.,
based on an (extendible) ontology for these notions that allows for interoperabil-
ity and also turns the instances of these concepts into objects of the Semantic
Web itself. Thus, in the Semantic Web, we do not have a unique ECA language
that consists of three such languages, but there is the semantic concept of an
ECA rule as shown as an UML diagram in Figure 2. The event, query/test, and
action components are described in appropriate languages, and ECA rules can
use and combine such languages flexibly. The model is accompanied by an XML
ECA rule (markup) language, called ECA-ML.

Components of Active Rules in the Semantic Web. A basic form of
active rules are the well-known database triggers, e.g., in SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END.

In SQL, condition can only use very restricted information about the immediate
database update. In case that an action should only be executed under certain
conditions which involve a (local) database query, this is done in a procedural
way in the pl/sql-fragment. This has the drawback of not being declarative;
reasoning about the actual effects would require to analyze the program code
of the pl/sql-fragment. Additionally, in the distributed environment of the Web,
the query is probabyl (i) not local, and (ii) heterogeneous in the language –
queries against different nodes may be expressed in different languages. For our
framework, we prefer a declarative approach with a clean, declarative design as
a “Normal Form”: Detecting just the dynamic part of a situation (event), then
check if something has to be done by probably obtaining additional information
by a query and then evaluating a boolean test, and, if “yes”, then actually do
something – as shown in Figure 1.
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Fig. 1. Components and Phases of Evaluating an ECA Rule

With this further separation of tasks, we obtain the following structure:

– every rule uses an event language, one or more query languages, a test lan-
guage, and an action language for the respective components,

– each of these languages and their constructs are described by metadata and
an ontology, e.g., associating them with a processor,



– there is a well-defined interface for communication between the E, Q&T, and
A component by variables (e.g., bound to XML or RDF fragments).

Sublanguages and Interoperability. For applying such rules in the Seman-
tic Web, a uniform handling of the event, query, test, and action sublanguages is
required. For this, rules and their components must be objects of the Semantic
Web, i.e., described in XML or RDF/OWL in a generic rule ontology describing
the UML model shown in Figure 2.

The modular structure requires a communication of parameters between the
rule components. We propose to use rule-wide logical variables for a communica-
tion flow according to Figure 1: Variables can be bound in the event component
and in the subsequent query component; previously bound variables can also
be used here. Variables occurring several times are interpreted as join variables,
requiring all occurrences to be bound to the same value. The test and action
components use these variables.
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Fig. 2. ECA Rule Components and Corresponding Languages

Based on this ontology, we propose the following markup (ECA-ML):

<eca:rule rule-specific attributes>

rule-specific contents, e.g., declaration of logical variables
<eca:event identification of the language >

event specification, probably binding variables; see Section 5.2
</eca:event>

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others; see Section 5.3
</eca:query>

<eca:test identification of the language >

condition specification, using variables; see Section 5.3



</eca:test>

<eca:action identification of the language >

action specification, using variables, probably binding local ones; see Section 5.3
</eca:action>

</eca:rule>

The actual languages (and appropriate services etc.) are identified by namespaces
and their declarations in the <eca:...> elements (see Example 2 later).

A similar markup for ECA rules (without separating the query and test
components) has been used in [BCP01] with fixed languages (a basic language
for atomic events on XML data, XQuery as query+test language and SOAP
in the action component). This fixed approach falls short wrt. the language
heterogeneity, and especially the use and integration of languages for composite
events. The XChange approach [BP05] also uses fixed languages for specifying
the event, condition, and action component. In contrast, the approach proposed
here allows for using arbitrary languages. Thus, these other proposals are just
two possible configurations. Our approach even allows to mix components of
both these proposals.

Languages, Rules, and Rule Components as Resources. For the Seman-
tic Web, both the languages, and the instances (i.e., rules, rule components, and
also e.g. subevents) are resources. This allows to reuse rules and to recombine
subparts (e.g., events) in several rules.

For the architecture, we propose to use a completely modular concept: the
framework for the ECA rules must allow to plug in or connect to detection
engines for events (atomic events such as simple data updates or incoming mes-
sages, application-level events and composite events such as “if first A happens
and then B”), processors for queries, and processors for actions (including up-
dates, intensional updates, and transactions): For each rule, the event, query,
test, and action components contain references to the corresponding languages
as resources, given as a URI, similar to XML’s namespaces. These resources in
turn are associated with further resources related to the language, e.g., a DTD
or XML Schema, an ontology description (e.g., in OWL), and a language pro-
cessor (e.g., as a Web Service). We come back to this issue in Section 6 where
we show that in the end, the processing of each contributing sub-ontology can
be associated with separate engines or nodes in the Web, i.e. (anticipating the
analysis of the subsequent sections):

– ECA rule processors

– underlying database engines with local, trigger-like rules,

– detection mechanisms for (application-independent) event algebras,

– for each application ontology, detection mechanisms of application-level events,

– query processors,

– services for Web transactions, and

– application-level actions (explicit or intensional actions).



ECA Rules in the Semantic Web are required on several abstraction levels (pro-
gramming language/data structure level, logical level, and semantic level), and
with different scope (local or global). In most of the rules on the higher levels
(global, referring to the application ontology), the event, query, test, and action
components are subject to heterogeneity. But, there are also mostly simple local
rules e.g., for maintaining local consistency, mappings to the underlying data
model, and reactions, that work in a homogeneous, local environment, where
the “classical” ECA paradigm is sufficient. We first integrate these trigger-like
rules into the framework and come back to the heterogeneous Semantic Web
case in Section 5.

4 Trigger-Like Rules

The base level is provided by rules on the programming language and data struc-
ture level that react directly on changes of the underlying data. Usually they are
implemented inside the database as triggers, e.g., in SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END.

In the Semantic Web, the data model level is assumed to be in XML or RDF
format. While the SQL triggers in relational databases are only able to react on
changes of a tuple or an attribute of a tuple, the XML and RDF models call for
more expressive event specifications according to the (tree or graph) structure.

Events on XML Data. Work on triggers for XQuery has e.g. been described
in [BBCC02] with Active XQuery (using the same syntax and switches as SQL,
with XQuery in the action component) and in [BPW02,PPW03], emulating the
trigger definition and execution model of the SQL3 standard that specifies a
syntax and execution model for ECA rules in relational databases. In [ABB+05],
we developed the following proposal for atomic events on XML data:

– ON {DELETE|INSERT|UPDATE} OF xsl-pattern: if a node matching the xsl-pattern
is deleted/inserted/updated,

– ON MODIFICATION OF xsl-pattern: if anything in the subtree rooted in a node
matching the xsl-pattern is modified,

– ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node match-
ing the xsl-pattern,

– ON {DELETE|INSERT|UPDATE} [SIBLING] [IMMEDIATELY] {BEFORE|AFTER}
xsl-pattern: if a node (optionally: only sibling nodes) is modified (immedi-
ately) before or after a node matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW

AS ... (like in SQL), both referencing the node to which the event happened,
additionally INSERTED AS, DELETED AS referencing the inserted or deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be
specified for each trigger:

– FOR EACH STATEMENT (as in SQL),



– FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at
most once (cumulative, if the node is actually concerned by several matching
events) per transaction,

– FOR EACH MODIFICATION: each individual modification (possibly for some
nodes in the xsl-pattern more than one) triggers the rule.

The implementation of such triggers in XML repositories can e.g. be based on
the DOM Level 2/3 Events or on the triggers of relational storage of XML data.

Events on RDF Data. RDF triples describe properties of a resource. In con-
trast to XML, there is no subtree structure (which makes it impossible to express
“deep” modifications in a simple event), but there is metadata. A proposal for
RDF events can be found in RDFTL [PPW03,PPW04]. The following proposal
has been developed in [ABB+05]:

– ON {INSERT|UPDATE|DELETE} OF property [OF class].

If a property is added to/updated/deleted from a resource (optionally: of the
specified class), then the event is raised. Additionally,

– ON {CREATE|UPDATE|DELETE} OF class is raised if a resource of a given class
is created, updated or deleted.

On the RDF/RDFS level, also metadata changes are events:

– ON NEW CLASS is raised if a new class is introduced,

– ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally:
to a specified class) is introduced.

Besides the OLD and NEW values mentioned for XML, these events should con-
sider as arguments (to bind variables) Subject, Property, Object, Class, Resource,
referring to the modified items (as URIs), respectively.
Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.

Integrating Triggers into the ECA Ontology: Opaque Rules. In the
above trigger-like cases, the languages for specifying the event, condition and
action components are the database-level events, and the local query and update
languages. For that, from the implementation point of view, the trigger rule as
a whole does not require an explicit markup but can be expressed in its native
syntax. In our ontology, we embed this as opaque rules, see Figure 3 and the
following XML markup:

<eca:rule>

<eca:opaque xmlns:foo=“uri of the trigger language”>

<foo:trigger>

ON database-update WHEN condition BEGIN action END
</foo:trigger>

</eca:opaque>

</eca:rule>

Since such opaque rules are ontologically “atomic” objects, their event, condition,
and action components cannot be accessed by Semantic Web concepts. Thus,
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Fig. 3. ECA Rule Components and corresponding Languages II

there is no reuse, and no support for rule analysis. The database-level events on
XML or RDF data can also be seen as atomic events in the sense of non-opaque
ECA rules; thus, it is also possible to lift the triggers to the ontology level and
represent them as full-fledged ECA rules.

5 Ontologies for the Rule Components

In the subsequent sections, we develop more detailed ontologies for the event,
query, test, and action components, with special emphasis on the event compo-
nent (the others are similar).

5.1 Ontology of Events

The ontological structure of the event component consists of three subclasses
(see explanations below and Figure 4):

– atomic events, that again split into several subtypes:

• data level events as those discussed in Section 4,

• events of a given application domain, e.g., in banking, travel organizing,
administration; such atomic events are described in terms of the ontologies
of the application domain,

• generic parameterized events that instantiate generic event patterns, e.g.,
“receive a message about . . . ”.



– composite events, e.g.: “A or B”, “A and B”, or “A and then B”.

Atomic Application Level Events. Atomic application-level events are the
visible happenings in the application domain. Note that in contrast to the above
data-level trigger events on XML or RDF data, there is an important difference
between actions and events : an event is a visible, possibly indirect or derived,
consequence of an action. E.g., the action is to “debit 200E from Alice’s bank
account”, and visible events are “a debit of 200E from Alice’s bank account”,
“a change of Alice’s bank account” (that are immediately detectable from the
update operation), or “the balance of Alice’s bank account becomes below zero”,
which has to be derived from an update. Note that application ontologies have
to describe the relationship between actions and resulting events. Orthogonal
to being derived or not, application-level atomic events can be associated with
a certain node (e.g., “if Springer publishes a textbook on the Semantic Web”)
or can describe happenings on the Web-wide level (e.g., “if a textbook on the
Semantic Web is published”). In the latter case, event detection is even more
complicated since it must also be searched and derived where and how the event
can be detected. This is not the task of the rule execution, but of application-
level reasoning, based on the application ontology. With this, application-level
rules (i.e. reacting on application-level global events) like business rules can be
described.

Generic Parameterized Events. Generic Parameterized Events are patterns
of atomic events that are ontologically independent from the actual application.
The most prominent ones are concerned with communication, i.e., receiving and
sending messages, or transactional events. Note that also sending of a message
can be a relevant event to trigger other rules, e.g., for policies (waiting for an
answer for 10 minutes, then sending it again), or “listening” and deriving other
events. In general, such events are associated with a certain node.

Generic Parameterized Event

receivemessage

at node: URI

contents: Any (XML or RDF description of something)

sender(s): URI(s) or specification of a set of URIs/sender(s)

time: time

The specification of such an event can e.g. be used in a rule like “in case that
I receive a message from my bank with my account statement that contains a
debit of more than 1000E then ...”, where the occurrence of a generic event is
restricted further wrt. its content. The receipt of the message is an event that
can be detected by the communication service of a node, whereas the additional
test must be checked on the application level.

Composite Events: Event Algebras. Event algebras, well-known from the
Active Database area, serve for specifying composite events by defining terms



formed by nested application of operators over atomic events. Each operator
has a semantics that specifies what the composite event means. Detection of a
composite event means that its “final” atomic subevent is detected, e.g., as in
[CKAK94]: (1) (E1∇E2)(t) :⇔ E1(t) ∨ E2(t) ,

(2) (E14E2)(t) :⇔ E1(t) ∧ E2(t) ,

(3) (E1; E2)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E2(t).

Event algebras contain not only the aforementioned straightforward basic con-
nectives, but also additional operators. A bunch of event algebras have been
defined that provide also e.g. “negated events” in the style that “when E1 hap-
pened, and then E3 but not E2 in between, then do something”, “periodic” and
“cumulative” events, e.g., in the SNOOP event algebra [CKAK94] of the “Sen-
tinel” active database system. Some preliminary work on composite events in
the Web is presented in [BKK04], but that only considers composition of events
of modification of XML data.

Example 1 (Cumulative Event, [CKAK94]). A “cumulative aperiodic event”

A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t)

occurs with E3 and then requires the execution of a given set of actions cor-
responding to the occurrences of E2 in the meantime. Thus, it is not a simple
event, but more an active rule, stating a temporal implication of the form “if E1

occurs, then for each occurrence of an instance of E2, collect its parameters, and
when E3 occurs, report all collected parameters (in order to do something)”.

A cumulative periodic event can be used for “after the end of a month, send
an account statement with all entries of this month”:

E(Acct) :=
A∗(first of month(m), (debit(Acct,Am)∇deposit(Acct,Am)), first of month(m+1))

where the event occurs with first of next month and carries a list of the debit
and deposit actions.

5.2 Ontology of the Event Component.

With this ontology, the event component may consist of a combination of one
ore more event algebras, using atomic events of one or more applications, and
possibly atomic data-level events from several data models, and some generic
parameterized events (see Figure 4).

An important matter here is that all components of an event specification can
be associated with the appropriate components of the language using identifiers.
This identification is provided for the XML Markup level by namespaces and
their URIs, and for the RDF level directly by URIs (see also Section 6).

XML Markup for the Event Component. The eca:event elements contain
elements according to an event algebra language (identified by its namespace),
and embedded into this, eca:atomic-event elements are the “leaves” of the event
language level. Inside of eca:atomic-event elements, the namespaces of the appli-
cations are used for the actual atomic event patterns. Whenever an atomic event



EventComponent

AtomicEvent CompositeEventSpec

DataLevel
AtomicEvent

Application
AtomicEvent

GenParamEvent

Data Model

identifier

Application

identifier

EventOperator

arity =k

Rule Model

Definable Ontologies

EventAlgebra

identifier

Languages Model

EventLanguage

�

�

� �

�

↓from ↓from

k

1..*

1

1..*

0..*

1..*1..*
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matches such a pattern, it (i.e., its XML or RDF representation) is bound to
the temporary variable $event. eca:bind-variable elements inside eca:atomic-event
elements allow for binding rule variables by using $event.

Example 2. Consider the event of Example 1. Atomic events are (i) temporal
events that are assumed to be provided/signalled by some service, e.g. as
<temporal:first-of-month month=“5” year=“2005”/>, and (ii) events of the bank-
ing application, provided as e.g.,

<banking:deposit account=“1234”> <amount>200</amount> </banking:deposit> .

<eca:rule>

<eca:variable name=“account” select=“arguments[1]”/>

<eca:variable name=“list”/>

<eca:variable name=“month”/>

<eca:event xmlns:snoop=“uri of the snoop event algebra”

xmlns:banking=“uri of the banking ontology”

xmlns:temporal=“uri of some web service” >

<snoop:cumulative-event cumulative-result=“list”/>

<snoop:cumulative-start> <eca:atomic-event>

<temporal:first-of-month>

<eca:bind-variable name=“month” select=“$event/@month”/>

</temporal:first-of-month>

</eca:atomic-event> </snoop:cumulative-start>

<snoop:cumulative-collect> <snoop:disjunctive>



<eca:atomic-event> <banking:debit account=“$account”/>

<eca:bind-variable name=“list” select=“$event”/>

</eca:atomic-event>

<eca:atomic-event> <banking:deposit account=“$account”/>

<eca:bind-variable name=“list” select=“$event”/>

</eca:atomic-event>

</snoop:disjunctive> </snoop:cumulative-collect>

<snoop:cumulative-end> <eca:atomic-event>

<temporal:first-of-month month=“$month+1”/>

</eca:atomic-event> </snoop:cumulative-end>

</snoop:cumulative-event>

</eca:event>

:
</eca:rule>

Note that the cumulative event defines the variable list to be cumulative, i.e.,
for each <eca:bind-variable name=“list” select=“$event”/>, the event (as XML
element) is appended.

5.3 Query, Test, and Action Ontologies

The ontologies for the query, test, and action components follow a similar design.

Queries. Queries can be queries against individual nodes, or against “the
Web”. Here, existing languages like XPath, XQuery, or RDQL that are com-
monly supported can be used. Such languages that are based on a kind of basic
expressions and algebraic operators use a classical tree markup. Since query lan-
guages are in general supported in the Web nodes themselves, there is in general
no need for specific services; often, the query component is opaque.

Tests. Tests in general use boolean operators and quantifiers which are already
covered in Markup Languages like, e.g., FOL-RuleML [BDG+] for formulas in
first-order logic. Instead of first-order atoms, also “atoms” of other data models
can be used, employing identifiers in the same way as for the event component.
Since all relevant information is gathered in the event and query components,
the test is evaluated locally.

Actions. The action component is similar to the event component: we distin-
guish atomic actions on the database level (updates expressed in DOM, XUp-
date, XQuery+Updates, or in an RDF update language), generic actions (send-
ing messages with some content), and execution of composite actions, even as
transactions on the Web. Actions here also include intensional updates on the se-
mantic level (that must be translated into actual updates at certain nodes). The
actual processing of transactions and intensional updates is independent from
this framework. Similar to the definition of composite events, composite actions
and transactions can be defined e.g. in the style of CCS [Mil83], augmented with
transactional commands.



6 Rules, Components, Languages and Processors as

Resources

Rules on the semantic level, i.e., RDF or OWL, lift ECA functionality wrt.
two (independent) aspects: first, the events, queries, and actions refer to the
RDF/ontology level. An even higher level regards rules themselves as objects
of the Semantic Web: rules are specified in RDF/OWL using the above rule
ontology and event, query, test, and action subontologies.

Reuse: Rules and Rule Components as Resources. The above ontology
directly leads to a resource-based approach: every rule, rule component, event,
subevent etc. becomes a resource. Every rule is then interpreted as a network of
RDF resources of the contributing ontologies (ECA, event algebras, applications
etc.). By this, e.g. collections of (sub)events as well as complete (application-
specific) rule bases can be designed, published by associating them with a URI,
and reused. Figure 5 shows the rule and the event component given in Example 2,
combining two application-independent language ontologies:

– the ECA ontology (gray, doublelined), and the SNOOP ontology of the event
algebra (incorporating the semantics of the SNOOP operators; gray),

and two application-dependent ontologies:

– the banking application-level ontology: there, the semantics of the atomic
events defined in this ontology must be available (diagonally crosshatched).

– the temporal ontology: there, information about temporal events is available
(crosshatched).

6.1 Information behind the External Resources

The external resources (SNOOP, banking, and temporal domain) must be as-
sociated with further resources of the respective ontologies that are used when
actually processing rules:

– Sublanguage ontologies (here, SNOOP): URI or a service for processing the
language, e.g., a Web Service where the composite event specification can be
registered, and that, when informed about relevant events, runs the detection
and informs the client about success (transferring the result parameters).
(Similar for languages for composite actions.)

– Temporal domain: URI of a service that provides the relevant atomic events.

– Application ontologies (here, banking domain): in most cases, the “client”
knows which “server” (e.g., the bank where the account is located) provides
the relevant atomic events. For other ontologies such as stocks or travel, the
resource that is “responsible” for the ontology could also provide notification
services for atomic events. In either case, derived events (that can locally
use another event algebra) have to be defined there (since their definition
conceptually also belongs to the ontology, this is not surprising). In the same
way, a service for execution of atomic actions and the definition of composite
actions (using any action language) can be provided.
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Fig. 5. Example Rule and Event Component as Resources

A Modified Rule using a Derived Event. The banking ontology could
define a derived booking event as the disjunction of debit and deposit. The rule
could then directly use this derived event. In the ontology diagram, the only
difference would be that the booking node is //banking/events#booking and ap-
pears diagonally crosshatched (and its semantical information must be kept at
the banking resource – but in this case it can also be used in specifications that
do not know the SNOOP language).

6.2 Architecture and Processing: Cooperation between Resources

Rules can be evaluated locally at the nodes where they are stored, or they can
be registered at a rule evaluation service. The rule evaluation engine manages
the actual handling of rules based on the language URI references. As described
above, every subconcept (i.e., events, queries, tests, and actions) carries the in-
formation of the actual language it uses in its xmlns:namespace URI attribute
(note that this even allows for nested use of operations of different event alge-



bras). Assume the case where the language processors are available at these URIs
as a Web Services. For event detection (and analogously, execution of composite
actions), at least two resources (or services) must cooperate: Event detection
splits into the event algebra part (that is detected algorithmically by a resource
representing a language ontology, e.g., SNOOP) and the atomic events of the
application ontology. Thus, the algebra processor must be notified about the
atomic events. This can be done in several ways:

Straightforward: The “straightforward” way is that the client C organizes
the communication between the event generator(s) and the event algebra pro-
cessor (see Figure 6): C registers rules to be “supervised” at a rule execution
service R. For handling the event component, R reads the language URI of the
event component, and registers the event component at the appropriate event
detection service S (note that a rule service that evaluates rules with events in
different languages can employ several event detection mechanisms).

During runtime, the client C forwards all received events to R, that in turn
forwards them to all event detection engines where it has registered event specifi-
cations for C, amongst them, S. S is “application-unaware” and just implements
the semantics of the event combinators for the incoming, non-interpreted events.
In case that a (composite) event is eventually detected by S, it is signalled to-
gether with its result parameters to R. R takes the variables, and evaluates the
query&test (analogously, based on the respective languages), and finally executes
the action (or submits the execution order to a suitable service).

(Note that this strategy can be extended towards “selecting” and broker-
ing events according to their namespace in a similar way to the architectures
described below.)

Application-centered: The client submits its composite event specification
to a service that is aware of all relevant events in the application domain. This
service then employs an appropriate event detection service by registering the
event specification, and informing it about the atomic events (e.g., “@bank:
please trace the following composite event in language L on my account” (and
employ a suitable event detection service for L)).

Language-centered: When a rule or an event specification is submitted for
registration, this has to be accompanied by information on which resource(s)
provide the atomic events (e.g., “@snoop: my bank is at uri, please supervise
my account and tell me if a composite event ev occurs), or the detection service
even has to find appropriate event sources (by the namespaces of the atomic
events). The detection service then contacts them directly. This proceeding is
e.g. appropriate for booking travels where the client is in general not aware of all
relevant events (e.g., “@snoop: you know better than me who is well-informed
about events relevant for traveling, please detect the event evtravel for me”), as
illustrated in Figure 7: A client registers a rule (in the travel domain) at R (Step
1.1). R again submits the event component to the appropriate event detection
service S ((1.2), here: snoop). Snoop looks at the namespaces of the atomic
events and sees that the travel ontology is relevant. The snoop service contacts a
travel event broker (1.3) who keeps it informed (2.2) about atomic events (e.g.,
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Fig. 6. Straightforward Communication x
(UML-style sequence diagram, temporal axis downwards)

happening at Lufthansa (2.1a) and SNCF (2.1b)). Only after detection of the
registered composite event, S submits the result to R (3) that then evaluates
the Q&C component, and probably executes some actions (4.1, 4.2).

7 Conclusion

We have presented a modular ontology-based framework for ECA rules. The
ontology does not only describe the domain, but by including the processing
resources on the Web also provides the infrastructure for actual implementa-
tion of the framework. Different alternatives allow for service-oriented strate-
gies. More detailed aspects are currently investigated, and an implementation
has been started, stepwise extending from XML-level ECA rules and services
to the above framework. The modularization of the approach allows for dealing
with many research issues separately.
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