
Multi-dimensional Dynamic Knowledge
Representation

João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{jleite,jja,lmp}@di.fct.unl.pt

Abstract. According to Dynamic Logic Programming (DLP), knowl-
edge may be given by a sequence of theories (encoded as logic programs)
representing different states of knowledge. These may represent time
(e.g. in updates), specificity (e.g. in taxonomies), strength of updating
instance (e.g. in the legislative domain), hierarchical position of knowl-
edge source (e.g. in organizations), etc. The mutual relationships extant
among states are used to determine the semantics of the combined the-
ory composed of all the individual theories. Although suitable to encode
a single dimension (e.g. time, hierarchies...), DLP cannot deal with more
than one simultaneously because it is defined only for a linear sequence
of states. To overcome this limitation, we introduce the notion of Multi-
dimensional Dynamic Logic Programming (MDLP), which generalizes
DLP to collections of states organized in arbitrary acyclic digraphs rep-
resenting precedence. In this setting, MDLP assigns semantics to sets
and subsets of such logic programs. By dint of this natural generalization,
MDLP affords extra expressiveness, in effect enlarging the latitude of
logic programming applications unifiable under a single framework. The
generality and flexibility provided by the acyclic digraphs ensures a wide
scope and variety of application possibilities.

1 Introduction and Motivation

In [1], the paradigm of Dynamic Logic Programming (DLP) was introduced, fol-
lowing the eschewing of performing updates on a model basis, as in [8,15,16,19],
but rather as a process of logic programming rule updates [13].

According to Dynamic Logic Programming (DLP), itself a generalization of
the notion of the update of a logic program P by another one U , knowledge is
given by a series of theories (encoded as generalized logic programs) representing
distinct supervenient states of the world. Different states, sequentially ordered,
can represent different time periods [1], different agents [9], different hierarchi-
cal instances [17], or even different domains of knowledge [12]. Consequently,
individual theories may comprise mutually contradictory as well as overlapping
information. The role of DLP is to employ the mutual relationships extant among
different states to precisely determine the declarative as well as the procedural
semantics for the combined theory comprised of all individual theories at each

T. Eiter, W. Faber, and M. Truszczyński (Eds.): LPNMR 2001, LNAI 2173, pp. 365–378, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



366 João Alexandre Leite et al.

state. Intuitively, one can add, at the end of the sequence, newer or more specific
rules (arising from new, renewly acquired, or more specific knowledge) leaving to
DLP the task of ensuring that these added rules are in force, and that previous
or less specific rules are still valid (by inertia) only so far as possible, i.e. that
they are kept for as long as they are not in conflict with newly added ones, these
always prevailing. The common feature among the applications of DLP is that
the states associated with the given set of theories encode only one of several
possible representational dimensions (e.g. time, hierarchies, domains,...).

For example, DLP can be used to model the relationship of a group of agents
related according to a linear hierarchy, and DLP can be used to model the
evolution of a single agent over time. But DLP, as it stands, cannot deal with
both settings at once, and model the evolution of one such group of agents over
time, inasmuch DLP is defined for linear sequences of states alone. Nor can it
model hierarchical relations amongst agents that have more than one superior
(and multiple inheritance). An instance of a multi-dimensional scenario is legal
reasoning, where legislative agency is divided conforming to a hierarchy of power,
governed by the principle Lex Superior (Lex Superior Derogat Legi Inferiori) by
which the rule issued by a higher hierarchical authority overrides the one issued
by a lower one, and the evolution of law in time is governed by the principle Lex
Posterior (Lex Posterior Derogat Legi Priori) by which the rule enacted at a
later point in time overrides the earlier one. DLP can be used to model each of
these principles separately, by using the sequence of states to represent either the
hierarchy or time, but is unable to cope with both at once when they interact.

In effect, knowledge updating is not to be simply envisaged as taking place in
the time dimension alone. Several updating dimensions may combine simultane-
ously, with or without the temporal one, such as specificity (as in taxonomies),
strength of the updating instance (as in the legislative domain), hierarchical po-
sition of the knowledge source (as in organizations), credibility of the source (as
in uncertain, mined, or learnt knowledge), or opinion precedence (as in a society
of agents). For this combination to be possible, DLP needs to be extended to
allow for a more general structuring of states.

In this paper we introduce the notion of Multi-dimensional Dynamic Logic
Programming (MDLP) which generalizes DLP to cater for collections of states
represented by arbitrary directed acyclic graphs. In this setting, MDLP assigns
semantics to sets and subsets of logic programs, depending on how they stand in
relation to one another, this relation being defined by the acyclic digraph (DAG)
that configures the states. By dint of such a natural generalization, MDLP
affords extra expressiveness, thereby enlarging the latitude of logic programming
applications unifiable under a single framework. The generality and flexibility
provided by DAGs ensures a wide scope and variety of possibilities.

The remainder of this paper is structured as follows: in Section 2 we introduce
some background definitions; in Section 3 we introduce MDLP and proffer a
declarative semantics; in Section 4 some illustrative examples are presented;
in Section 5 an equivalent semantics based on a syntactical transformation is
provided, proven sound and complete wrt. the declarative semantics; in Section



Multi-dimensional Dynamic Knowledge Representation 367

6 we set forth some basic properties; in Section 7 we conclude and open the
doors of future developments.

2 Background

Generalized Logic Programs and Their Stable Models To represent neg-
ative information in logic programs and in their updates, since we need to allow
default negation not A not only in premises of their clauses but also in their
heads, we use generalized logic programs as defined in [1]1.

By a generalized logic program P in a language L we mean a finite or infinite
set of propositional clauses of the form L0 ← L1, . . . , Ln where each Li is a
literal (i.e. an atom A or the default negation of an atom not A). If r is a clause
(or rule), by H(r) we mean L, and by B(r) we mean L1, . . . , Ln. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). By a (2-
valued) interpretation M of L we mean any set of literals from L that satisfies
the condition that for any A, precisely one of the literals A or not A belongs
to M . Given an interpretation M we define M+ = {A : A is an atom, A ∈ M}
and M− = {not A : A is an atom, not A ∈ M}. Following established tradition,
wherever convenient we omit the default (negative) atoms when describing in-
terpretations and models. We say that a (2-valued) interpretation M of L is a
stable model of a generalized logic program P if ρ(M) = least (ρ(P ) ∪ ρ(M−)),
where ρ(.) univocally renames every default literal not A in a program or model
into new atoms, say not A. The class of generalized logic programs can be viewed
as a special case of yet broader classes of programs, introduced earlier in [7] and
in [14], and, for the special case of normal programs, their semantics coincides
with the stable models one [6].

Graphs A directed graph, or digraph, D = (V, E) is a pair of two finite or
infinite sets V = VD of vertices and E = ED of pairs of vertices or (directed)
edges. A directed edge sequence from v0 to vn in a digraph is a sequence of
edges e1, e2, ..., en ∈ ED such that ei = (vi−1, vi) for i = 1, ..., n. A directed path
is a directed edge sequence in which all the edges are distinct. A directed acyclic
graph, or acyclic digraph (DAG), is a digraph D such that there are no directed
edge sequences from v to v, for all vertices v of D. A source is a vertex with
in-valency 0 (number of edges for which it is a final vertex) and a sink is a vertex
with out-valency 0 (number of edges for which it is an initial vertex). We say
that v < w if there is a directed path from v to w and that v ≤ w if v < w or
v = w. The transitive closure of a graph D is a graph D+ = (V, E+) such that
for all v, w ∈ V there is an edge (v, w) in E+ if and only if v < w in D. The
relevancy DAG of a DAG D wrt a vertex v of D is Dv = (Vv, Ev) where Vv =
{vi : vi ∈ V and vi ≤ v} and Ev = {(vi, vj) : (vi, vj) ∈ E and vi, vj ∈ Vv }. The
relevancy DAG of a DAG D wrt a set of vertices S of D is DS = (VS , ES)
1 In [2] the reader can find the motivation for the usage of generalized logic programs,

instead of using simple denials by freely moving the head not s into the body.



368 João Alexandre Leite et al.

where VS =
⋃

v∈S Vv and ES =
⋃

v∈S Ev, where Dv = (Vv, Ev) is the relevancy
DAG of D wrt v.

3 Multi-dimensional Dynamic Logic Programming

As noted in the introduction, allowing the individual theories of a dynamic pro-
gram update to relate via a linear sequence of states only, delimits DLP to
represent and reason about a single aspect of a system (e.g. time, hierarchy,...).
In this section we generalize DLP to allow for states represented by the vertices
of a DAG, and their precedence relations by the corresponding edges, thus en-
abling concurrent representation, depending on the choice of a particular DAG,
of several dimensions of an updatable system. In particular, the DAG can stand
not only for a system of n independent dimensions, but also for inter-dimensional
precedence. In this setting, MDLP assigns semantics to sets and subsets of logic
programs, depending on how they so relate to one another.

We start by defining the framework consisting of the generalized logic pro-
grams indexed by a DAG. Throughout this paper, we will restrict ourselves to
DAGs such that, for every vertex v of the DAG, any path ending in v is finite.

Definition 1 (Multi-dimensional Dynamic Logic Program). Let L be a
propositional language. A Multi-dimensional Dynamic Logic Program (MDLP),
P, is a pair (PD, D) where D = (V, E) is a DAG and PD = {Pv : v ∈ V } is
a set of generalized logic programs in the language L, indexed by the vertices
v ∈ V of D. We call states such vertices of D. For simplicity, we often leave L
implicit.

3.1 Declarative Semantics

To characterize the models of P at any given state we will keep to the basic
intuition of logic program updates, whereby an interpretation is a stable model
of the update of a program P by a program U iff it is a stable model of a program
consisting of the rules of U together with a subset of the rules of P , comprised
by all those that are not rejected due to their being overridden by program U
i.e. that do not carry over by inertia. With the introduction of a DAG to index
programs, a program may have more than a single ancestor. This has to be dealt
with, the desired intuition being that a program Pv ∈ PD can be used to reject
rules of any program Pu ∈ PD if there is a directed path from u to v. Moreover,
if some atom is not defined in the update nor in any of its ancestor, its negation
is assumed by default. Formally, the stable models of the MDLP are:

Definition 2 (Stable Models at state s). Let P = (PD, D) be a MDLP,
where PD = {Pv : v ∈ V } and D = (V, E). An interpretation Ms is a stable
model of P at state s ∈ V , iff



Multi-dimensional Dynamic Knowledge Representation 369

Ms = least ([Ps − Reject(s, Ms)] ∪ Default (Ps, Ms)) where A is an atom and:

Ps =
⋃

i≤sPi

Reject(s, Ms) = {r ∈ Pi | ∃r′ ∈ Pj , i < j ≤ s, H(r) = not H(r′) ∧ Ms ! B(r′)}
Default (Ps, Ms) = {not A | !r ∈ Ps : (H(r) = A) ∧ Ms ! B(r)}

Intuitively, the set Reject(s, Ms) contains those rules belonging to a program
indexed by a state i that are overridden by the head of another rule with true
body in state j along a path to state s. Ps contains all rules of all programs that
are indexed by a state along all paths to state s, i.e. all rules that are potentially
relevant to determine the semantics at state s. The set Default (Ps, Ms) contains
default negations not A of all unsupported atoms A, i.e., those atoms A for which
there is no rule in Ps whose body is true in Ms.

Example 1. Consider the diamond shaped MDLP P = (PD, D) such that PD =
{Pt, Pu, Pv, Pw} and D = ({t, u, v, w}, {(t, u), (t, v), (u, w), (v, w)}) where

Pt = {d ←} Pu = {a ← not e} Pv = {not a ← d}
Pw = {not a ← b; b ← not c; c ← not b}

The only stable model at state w is Mw = {not a, b,not c, d,not e}. In fact, we
have that Reject(w, Mw) = {a ← not e} and Default (Pw, Mw) = {not c,not e}
and, finally,

[Pw − Reject(s, Mw)] ∪ Default (Pw, Mw) =
= {d ←;not a ← d;not a ← b; b ← not c; c ← not b} ∪ {not c,not e}

whose least model is Mw. Mw is the only stable model at state w.

The next proposition establishes that to determine the models of a MDLP
at state s, we need only consider the part of the MDLP corresponding to the
relevancy graph wrt state s.

Proposition 1. Let P = (PD, D) be a MDLP, where PD = {Pv : v ∈ V } and
D = (V, E). Let s be a state in V . Let P ′ = (PDs , Ds) be a MDLP where Ds =
(Vs, Es) is the relevancy DAG of D wrt s, and PDs = {Pv : v ∈ Vs}. M is a
stable model of P at state s iff M is a stable model of P ′ at state s.

We might have a situation where we desire to determine the semantics jointly
at more than one state. If all these states belong to the relevancy graph of one
of them, we simply determine the models at that state (Prop. 1). But this might
not be the case. Formally, the semantics of a MDLP at an arbitrary set of its
states is determined by the definition:

Definition 3 (Stable Models at a set of states S). Let P = (PD, D) be a
MDLP, where PD = {Pv : v ∈ V } and D = (V, E). Let S be a set of states such



370 João Alexandre Leite et al.

that S ⊆ V . An interpretation MS is a stable model of P at the set of states S
iff MS = least ([PS − Reject(S, MS)] ∪ Default (PS , MS)) where:

PS =
⋃

s∈S

(

⋃

i≤sPi

)

Reject(S, MS) =
{

r ∈ Pi | ∃s ∈ S, ∃r′ ∈ Pj , i < j ≤ s,
H(r) = not H(r′) ∧ MS ! B(r′)

}

Default (PS , MS) = {not A | !r ∈ PS : (H(r) = A) ∧ MS ! B(r)}

This is equivalent to the addition of a new vertex α to the DAG, and con-
necting to α, by addition of edges, all states we wish to consider. Furthermore,
the program indexed by α is empty. We then determine the stable models of this
new MDLP at state α. In Section 6, we provide semantics preserving simplifica-
tions of these definitions, according to which only a subset of these newly added
edges is needed. Note the addition of state α does not affect the stable models
at other states. Indeed, α and the newly introduced edges do not belong to the
relevancy DAG wrt. any other state. A particular case of the above definition is
when S = V , corresponding to the semantics of the whole MDLP .

4 Illustrative Examples

By its very motivation and design, MDLP is well suited for combining knowl-
edge arising from various sources, specially when some of these sources have
priority over the others. More precisely, when rules from some sources are used
to reject rules of other, less prior, sources. In particular, MDLP is well suited
for combining knowledge originating within hierarchically organized sources, as
the following schematic example illustrates, which combines knowledge coming
from diverse sectors of such an organization.

Example 2. Consider a company with a president, a board of directors and (at
least) two departments: the quality management and financial ones.

To improve the quality of the products produced by the company, the quality
management department has decided not to buy any product whose reliability
is less than guaranteed. In other words, it has adopted the rule2:

not buy(X) ← not reliable(X)

On the other hand, to save money, the financial department has decided to
buy products of a type in need if they are cheap, viz.

buy(X) ← type(X, T ), needed(T ), cheap(X)

The board of directors, in order to keep production going, has decided that
whenever there is still a need for a type of product, exactly one product of that
type must be bought. This can be coded by the following logic programming
rules, stating that if X is a product of a needed type, and if the need for that
2 Rules with variables stand for the set of all their ground instances.



Multi-dimensional Dynamic Knowledge Representation 371

≠

≠

Fig. 1.

type of product has not been already satisfied by buying some other product of
that type, then X must be bought; if the need is satisfied by buying some other
product of that type, then X should not be bought:

buy(X) ← type(X, T ), needed(T ),not satByOther(T, X)
not buy(X) ← type(X, T ), needed(T ), satByOther(T, X)

satByOther(T, X) ← type(Y, T ), buy(Y ), X )= Y

Finally, the president decided for the company never to buy products that
have a cheap alternative. I.e. if two products are of the same type, and only one
of them is cheap, the company should not buy the other:

not buy(X) ← type(X, T ), type(Y, T ), X )= Y, cheap(Y ),not cheap(X)

Suppose further that there are two products, a and b, the first being cheap
and the latter reliable, both of type t and both of needed type t.

According to the company’s organizational chart, the rules of the president
can overrule those of all other sectors, and those established by the board can
overrule those decided by the departments. No department has precedence over
any other. This situation can easily be modeled by the MDLP of Figure 1.

To know what would be the decision of each of the sectors about which
products to buy, not taking under consideration the deliberation of its superiors,
all needs to be done is to determine the stable models at the state corresponding
to that sector. For example, the reader can check that at state QMD there is
a single stable model in which both not buy(a) and not buy(b) are true. At the



372 João Alexandre Leite et al.

state BD there are two stable models: one in which buy(a) and not buy(b) are
true; another where not buy(a) and buy(b) are true instead.

More interesting would be to know what is the decision of the company as
a whole, when taking into account the rules of all sectors and their hierarchical
organization. This is reflected by the stable models of the whole MDLP, i.e. the
stable models at the set of all states of the MDLP. The reader can check that,
in this instance, there is a single stable model in which buy(a) and not buy(b)
are true. It coincides with the single stable model at state president because all
other states belong to its relevancy graph. !

The next example describes how MDLP can deal with collision principles,
e.g. found in legal reasoning, such as Lex Superior (Lex Superior Derogat Legi
Inferiori) according to which the rule issued by a higher hierarchical authority
overrides the one issued by a lower one, and Lex Posterior (Lex Posterior Derogat
Legi Priori) according to which the rule enacted at a later point in time over-
rides the earlier one, i.e how the combination of a temporal and an hierarchical
dimensions can be combined into a single MDLP.

Example 3. In February 97, the President of Brazil (PB) passed a law determin-
ing that, in order to guarantee the safety aboard public transportation airplanes,
all weapons were forbidden. Furthermore, all exceptional situations that, due to
public interest, require an armed law enforcement or military agent are to be
the subject of specific regulation by the Military and Justice Ministries. We will
refer to this as rule 1. At the time of this event, there was in force an internal
norm of the Department of Civil Aviation (DCA) stating that “Armed Forces
Officials and Police Officers can board with their weapons if their destination is
a national airport”. We will refer to this as rule 2. Restricting ourselves to the
essential parts of these regulations, they can be encoded by the generalized logic
program clauses:

rule1 : not carry weapon ← not exception
rule2 : carry weapon ← armed officer

Let us consider a lattice with two distinct dimensions, corresponding to the two
principles governing this situation: Lex Superior (d1) and Lex Posterior (d2). Be-
sides the two agencies involved in this situation (PB and DCA), we will consider
two time points representing the time when the two regulations were enacted.
We have then a graph whose vertices are {(PB, 1), (PB, 2), (DCA, 1), (DCA, 2)}
(in the form (agency,time)) as portrayed in Fig.2. We have that PDCA,1 contains
rule 2, PPB,2 contains rule 1 and the other two programs are empty. Let us
further assume that there is an armed officer represented by a fact in PDCA,1.
Applying Def.2, for MPB,2 = {not carry weapon, not exception, armed officer}
at state (PB, 2) we have that:

Reject((PB, 2), MPB,2) = {carry weapon ← armed officer}
Default (PPB,2, MPB,2) = {not exception}



Multi-dimensional Dynamic Knowledge Representation 373

Fig. 2.

it is trivial to see that

MPB,2 = least ([PPB,2 − Reject((PB, 2), MPB,2)] ∪ Default (PPB,2, MPB,2))

which means that in spite of rule 2, since the exceptions have not been regulated
yet, rule 1 prevails for all situations, and no one can carry a weapon aboard an
airplane. This would correspond to the only stable model at state (PB, 2). !

The applicability of MDLP in a multi-agent context is not limited to the as-
signment of a single semantics to the overall system, i.e., the multi-agent system
does not have to be described by a single DAG. Instead, we could determine
each agent’s view of the world by associating a DAG with each agent, repre-
senting its own view of its relationships to other agents and of these amongst
themselves. The stable models over a set of states from DAGs of different agents
can provide us with interagent views.

Example 4. Consider a society of agents representing a hierarchically structured
research group. We have the Senior Researcher (Asr), two Researchers (Ar1

and Ar2) and two students (As1 and As2) supervised by the two Researchers.
The hierarchy is deployed in Fig.3 a), which also represents the view of the
Senior Researcher. Typically, students think they are always right and do not like
hierarchies, so their view of the community is quite different. Fig.3 b) manifests
one possible view by As1. In this scenario, we could use MDLP to determine
and eventually compare Asr’s view, given by the stable models at state sr in
Fig.3 a), with As1’s view, given by the stable models at state s1 in Fig.3 b). If
we assign the following simple logic programs to the five agents:

Psr = {a ← b} Ps1 = {not a ← c} Ps2 = {} Pr1 = {b} Pr2 = {c}

Fig. 3.



374 João Alexandre Leite et al.

we have that state sr in Fig.3 a) has Msr = {a, b, c} as the only stable model,
and state s1 in Fig.3 b) has Ms1 = {not a, b, c} as its only stable model. That
is, according to student As1’s view of the world a is false, while according to the
senior researcher Asr ’s view of the world a is true. !

This example suggests MDLP to be a useful practical framework to study
changes in behaviour of such multi-agent systems and how they hinge on the
relationships amongst the agents, i.e. on the current DAG that represents them.
MDLP offers a staple basic tool for the formal study of the social behaviour in
multi-agent communities [10].

5 Transformational Semantics for MDLP

Definition 2 above establishes the semantics of MDLP by characterizing its
stable models at each state. Next we present an alternative definition, based on
a purely syntactical transformation that, given a MDLP, produces a generalized
logic program whose stable models are in a one-to-one equivalence relation with
the stable models of the MDLP previously characterized. The computation of the
stable models at some state s reduces to the computation of the transformation
followed by the computation of the stable models of the transformed program.
This directly provides for an implementation of MDLP (publicly available at
centria.di.fct.unl.pt/~jja/updates) and a means to study its complexity.

Without loss of generality, we extend the DAG D with an initial state (s0)
and a set of directed edges (s0, s′) connecting the initial state to all the sources
of D. Similarly, if we wish to query a set of states, all needs doing is extending the
MDLP with a new state α, as mentioned before, prior to the transformation.
By L we denote the language obtained from language L such that L = L ∪
{

A−, As, A−
s , APs , A−

Ps
, reject(As), reject(A−

s ) : A ∈ L, s ∈ V ∪ {s0}
}

.

Definition 4 (Multi-dimensional Dynamic Program Update). Let P be
a MDLP, where P = (PD, D), PD = {Pv : v ∈ V } and D = (V, E). Given a fixed
state s ∈ V , the multi-dimensional dynamic program update over P at state s
is the generalized logic program "sP, which consists of the clauses below in the
extended language L, where Ds = (Vs, Es) is relevancy DAG of D wrt s:

(RP) Rewritten program clauses:

APv ← B1, . . . , Bm, C−
1 , . . . , C−

n A−
Pv

← B1, . . . , Bm, C−
1 , . . . , C−

n

for any clause:

A ← B1, . . . , Bm, not C1, . . . , not Cn

respectively, for any clause:

not A ← B1, . . . , Bm, not C1, . . . , not Cn

in the program Pv, where v ∈ Vs.



Multi-dimensional Dynamic Knowledge Representation 375

(IR) Inheritance rules:

Av ← Au,not reject(Au) A−
v ← A−

u ,not reject(A−
u )

for all atoms A ∈ L and all (u, v) ∈ Es. The inheritance rules say that an atom
A is true (resp. false) at state v ∈ Vs if it is true (resp. false) at any ancestor
state u and it is not rejected.

(RR) Rejection Rules:

reject(A−
u ) ← APv reject(Au) ← A−

Pv

for all atoms A ∈ L and all u, v ∈ Vs where u < v. The rejection rules say that
if an atom A is true (resp. false) in the program Pv, then it rejects inheritance
of any false (resp. true) atoms of any ancestor.

(UR) Update rules:

Av ← APv A−
v ← A−

Pv

for all atoms A ∈ L and all v ∈ Vs. Update rules state that atom A must be true
(resp. false) at state v ∈ Vs if it is made true (resp. false) in the program Pv.

(DR) Default Rules:
A−

s0

for all atoms A ∈ L. Default rules describe the initial state s0 by making all
atoms false at that state.

(CSs) Current State Rules:

A ← As A− ← A−
s not A ← A−

s

for all atoms A ∈ L. Current state rules specify the state s at which the program
is being evaluated and determine the values of the atoms A, A− and not A.

This transformation depends on the prior determination of the relevancy
graph wrt. the given state. This choice was based on criteria of clarity and read-
ability. Nevertheless this need not be so: one can instead specify declaratively, by
means of a logic program, the notion of relevancy graph. As already mentioned,
the stable models of the program obtained by the aforesaid transformation co-
incide with those characterized in Def.2, as expressed by the theorem:

Theorem 1. Given a MDLP P = (PD, D), the generalized stable models of
"sP, restricted to L, coincide with the generalized stable models of P at state s
according to Def.2.

For lack of space, we do not present the proofs of the Theorems. In [11], the
reader can find an extended version of this paper containing them.



376 João Alexandre Leite et al.

6 Properties of MDLP

In this section we study some basic properties of MDLP .
The next theorem states that adding or removing edges from a DAG of a

MDLP preserves the semantics if the transitive closure of the two DAGs is the
same DAG. In particular, it allows the use of a transitive reduction of the original
graph to determine the stable models.

Theorem 2 (DAG Simplification). Let P = (PD, D) be a MDLP, where
PD = {Pv : v ∈ V } and D = (V, E). Let P1 = (PD, D1) be a MDLP, where D1 =
(V, E1) and D+ = D+

1 . For any state s ∈ V , M is a stable model of P at state
s iff M is a stable model of P1 at state s.

One consequence of this theorem is that in order to determine the stable
models at a set of states we only need to connect to the new node α the sinks
of the relevancy DAG wrt. that set of states.

The following proposition relates the stable models of normal logic programs
with those of MDLPs whose set of programs just contains normal logic programs.

Proposition 2. Let P = (PD, D) be a MDLP, where PD = {Pv : v ∈ V } and
D = (V, E). Let S ⊆ V be a set of states and DS = (VS , ES) the relevancy DAG
of D wrt. S. If all Pv : v ∈ VS are normal logic programs, then M is a stable
model of P at states S iff M is a stable model of the (normal) logic program
⋃

v∈VS
Pv

The next theorem shows that MDLP generalizes its predecessor DLP [1].

Theorem 3 (Generalization of DLP). Let PD = {Ps : s ∈ S} be a DLP, i.e.
a finite or infinite sequence of generalized logic programs, indexed by set of nat-
ural numbers S = {1, 2, 3, . . . , n, ...}. Let P = (PD, D) be the MDLP, where
D = (S, E) is the acyclic digraph such that E = {(1, 2) , (2, 3) , ..., (n − 1, n) , ...}.
Then, an interpretation M is a stable model of the dynamic program update
(DLP) at state s,

⊕

sPD, if and only if M is a stable model of P at state s.

Since DLP generalizes Interpretation Updates, originally introduced as “Re-
vision Programs” by Marek and Truszczyński [15], then so does MDLP . In [1],
DLP was defined by means of a transformational semantics only. Theorems 1
and 3 establish Def. 2 as an alternative, declarative, characterization of DLP.

7 Conclusions and Future Work

We have introduced MDLP as a generalization of DLP in allowing for collec-
tions of states organized by arbitrary acyclic digraphs, and not just sequences of
states. And therefore assigning semantics to sets and subsets of logic programs,
on the basis of how they stand in relation amongst themselves, as defined by
one acyclic digraph. Such a natural generalization imparts added expressive-
ness to updating, thereby amplifying the coverage of its application domains, as



Multi-dimensional Dynamic Knowledge Representation 377

we’ve tried to illustrate via some examples. The flexibility afforded by a DAG
accrues to the scope and variety of possibilities. The new characteristics of mul-
tiplicity and composition of MDLP may be used to lend a “societal” viewpoint
to Logic Programming. Application areas such as legal reasoning, software de-
velopment, organizational decision making, multi-strategy learning, abductive
planning, model-based diagnosis, agent architectures, and others, have already
being successfully pursued by utilizing MDLP .

Other frameworks exist for updates [20,18], and for combining logic programs
via a partial order, developed for purposes other than updating. Namely, Dis-
junctive Ordered Logic (DOL) [4], itself an extension of Ordered Logic, and
DLV < [3], a language that extends LP with inheritance. Lack of space prevents
us from elaborating on the comparison with these frameworks, so we defer to [5],
where some considerations are made to that effect.

Some of the more immediate themes of ongoing work regarding the further
development of MDLP comprise: allowing for the DAG itself to evolve by up-
dating it with new nodes and edges; enhancing the LUPS language to adumbrate
update commands over DAGs; studying the conditions for and the uses of drop-
ping the acyclicity condition; establishing a paraconsistent MDLP semantics
and defining contradiction removal over DAGs.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic updates of non-monotonic knowledge bases. Journal of Logic Program-
ming, 45(1-3):43–70, 2000. Abstract titled Dynamic Logic Programming appeared
in Procs. of KR-98. 365, 367, 376

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence. To appear. 367

3. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In Procs. of ICLP-99. MIT Press, 1999. 377

4. F. Buccafurri, N. Leone, , and P. Rullo. Semantics and expressiveness of disjunctive
ordered logic. Annals of Math. and Artificial Intelligence, 25(3-4):311–337, 1999.
377

5. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates of
logic programs. In Procs. of JELIA-00, LNAI-1919. Springer, 2000. 377

6. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Procs.
of ICLP-88. MIT Press, 1988. 367

7. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35:39–78, 1998. 367

8. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In Procs. of KR-91. Morgan Kaufmann, 1991. 365

9. E. Lamma, F. Riguzzi, and L. M. Pereira. Strategies in combined learning via logic
programs. Machine Learning, 38(1/2):63–87, 2000. 365

10. J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Procs. of ATAL’01, 2001. 374

11. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional logic programming.
Technical report, Dept. Informatica, Universidade Nova de Lisboa, 2001. 375



378 João Alexandre Leite et al.

12. J. A. Leite, F. C. Pereira, A. Cardoso, and L. M. Pereira. Metaphorical mapping
consistency via dynamic logic programming. In Procs. of AISB’00. AISB, 2000.
365

13. J. A. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
Procs of. LPKR-97, volume 1471 of LNAI. Springer, 1997. 365

14. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In Procs. of KR-92. Morgan-Kaufmann, 1992. 367

15. V. W. Marek and M. Truszczyński. Revision specifications by means of programs.
In Procs. of JELIA-94, volume 838 of LNAI. Springer, 1994. 365, 376

16. Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules.
Journal of Logic Programming, 30(2):125–143, 1997. 365

17. P. Quaresma and I. P. Rodrigues. A collaborative legal information retrieval system
using dynamic logic programming. In Procs. of ICAIL-99. ACM Press, 1999. 365

18. C. Sakama and K. Inoue. Updating extended logic programs through abduction.
In Procs. of LPNMR-99. Springer, 1999. 377

19. Marianne Winslett. Reasoning about action using a possible models approach. In
Procs. of NCAI-88. AAAI Press, 1988. 365

20. Y. Zhang and N. Foo. Updating logic programs. In Procs. of ECAI’98. Morgan
Kaufmann, 1998. 377


