
Computing Environment-Aware Agent
Behaviours with Logic Program Updates

José J. Alferes1, Antonio Brogi2, João A. Leite1, and Lúıs M. Pereira1

1 Centro de Inteligência Artificial, Universidade Nova de Lisboa, Portugal,
{jja | jleite | lmp}@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy,
brogi@di.unipi.it

Abstract. The ability of reacting to changes in the external environ-
ment is of crucial importance within the context of software agents. Such
feature must however be suitably reconciled with a more deliberative
rational behaviour. In this paper we show how different behaviours of
environment-aware agents can be naturally specified and computed in
terms of logic program updates. Logic program updates are specified, in
our setting, by the language of updates LUPS. We show how such lan-
guage can be used to model the more reactive behaviours, while keeping
the more deliberative features provided by its underlying Dynamic Logic
Programming paradigm. The obtained declarative semantics sets a firm
basis for the development, implementation, and analysis of environment-
aware agents.

1 Introduction

The paradigm shift from stand-alone isolated computing to environment-aware
computing clearly indicates that the ability of reacting to changes occurring in
the external environment is a crucial capability of software agents. Reactivity
must however be suitably reconciled with rationality. Indeed the ability of an
agent to reason on available information is as important as its ability to promptly
react to sudden changes occurring in the external environment.

The way in which an agent combines rationality and reactivity determines
the quality of the services offered by the agent. Consider for instance a software
agent whose task is to recommend investments based on the analysis of trends in
the stock market [7]. A scarcely reactive behaviour may generate well-evaluated
recommendations based on outdated information, while a scarcely rational be-
haviour may quickly generate recommendations based only on the most recently
acquired information.

While developing environment-aware agents, the environment in which the
agents will operate is at least partially unknown. Typically, even if the set of
possible observable behaviours of the environment is known, the precise dynamic
behaviour of the environment is not predictable at software development time.

A. Pettorossi (Ed.): LOPSTR 2001, LNCS 2372, pp. 216–232, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Computing Environment-Aware Agent Behaviours 217

On the other hand, the availability of a well-founded description of the possible
behaviours of environment-aware programs is crucial for performing tasks such
as verification and analysis before putting the program at work with the external
environment.

In this paper we provide a formal characterization of the behaviours of
environment-aware agents. Our approach can be summarized as follows:

– We consider an agent to be environment-aware if it is capable of reacting
to changes occurring in the external environment. As the environment may
dynamically change while the agent is performing its computations, such
changes may influence the agent behaviour.

– Agents have a partial representation of the external environment, repre-
sented by their perceptions of the environment. The type of such perceptions
of course depends on the sensing capabilities owned by the agent. We will
focus on the way in which the behaviour of an agent may be influenced by
its perceptions, rather than on the way in which the agent will get such
perceptions. For instance, we will abstract from the way in which a software
agent accesses some piece of information available in the external environ-
ment (e.g., by receiving a message, by downloading a file, or by getting data
from physical sensors). Formally, if we denote by percs(P) the set of possible
perceptions of an agent P , the set E of all possible environment configura-
tions can be defined as E ⊆ P(percs(P)), that is, as the set of all possible
sets of perceptions of the environment that P may (simultaneously) get.

– We choose logic programming as the specification language of environment-
aware agents. We show that the computation of a program P that reacts to
a sequence of environment configurations 〈E1, E2, . . . En〉 can be naturally
modelled by means of a Dynamic Logic Program (DLP)[1], that is, by a
sequence Q0 ⊕ Q1 ⊕ Q2 ⊕ . . . ⊕ Qn of (generalized) logic programs [1] whose
semantics defines the effects of first updating Q0 with Q1, then updating the
result with Q2, and so on.

– From a programming perspective, we show that the environment-aware be-
haviours of a program reacting to sequences of environment configurations
can be specified by a set of LUPS [3] rules that program the way in which
the knowledge of the program will be updated by a sequence of environment
configurations. More precisely, the behaviour of a program P that reacts to
the sequence of environment configurations 〈E1, E2, . . . En〉 is described by
the sequence of LUPS updates: P ⊗ E1 ⊗ E2 ⊗ . . . ⊗ En where each Ei is a
set of (temporary) updates representing an environment configuration.

– The formal semantics of LUPS (with the modification of [22]) is defined in
terms of a program transformation, by first transforming a sequence of LUPS
updates into a DLP, and this DLP into a generalized logic program:

P ⊗ E1 ⊗ · · · ⊗ En −→Υ Q0 ⊕ · · · ⊕ Qn −→τ G −→ SM

where Υ is the mapping from LUPS to DLP, τ is the mapping from DLP to
generalized logic programs, and where SM denotes the set of stable models
[12] of a generalized logic program.

218 J.J. Alferes et al.

It is important to observe that the LUPS language features the possibility
of programming different types of updates. We will show how this very feature
can be actually exploited to specify different environment-aware behaviours of
programs such as those explored in [7]. We will also show how the declarative
semantics of LUPS programs provides a formal characterization of environment-
aware behaviours, which can be exploited for resource-bounded analyses of the
possible behaviours of a program w.r.t. a set E of possible environment configu-
rations.

Since LUPS has been shown to embed both Logic Programs under the Stable
Models Semantics [12] and Revision Programs [24], and has been successfully
used to model dynamic environments where the governing rules change with
time, by showing that LUPS is also capable of encoding environment-aware
behaviours such as those explored in [7] we believe to take a step further in
the direction of showing that LUPS is indeed an appropriate language to design
executable specifications of real agents, i.e. agents that exhibit both reactive and
rational (deliberative) behaviours.

The remainder of this paper is structured as follows: in Section 2 we recap
the framework of Dynamic Logic Programming and the language of updates
LUPS (the formal definitions can be found in Appendix); in Section 3 we show
how several environment-aware agent behaviours can be formally encoded in
LUPS, and we provide a simple illustrative example; in Section 4 we draw some
considerations on reasoning about such behaviours; in Section 5 we elaborate on
related work, to conclude in Section 6.

2 LUPS: A Language for Dynamic Updates

In this section we briefly present Dynamic Logic Programming (DLP) [1], and
the update command language LUPS [3]. The complete formal definitions can
be found in [1,3], and the most relevant ones in Appendix. Both papers, together
with the implementations of DLP and LUPS, and the Lift Controller example
below, are available from:

http://centria.di.fct.unl.pt/˜jja/updates/

The idea of Dynamic Logic Programming is simple and quite fundamental.
Suppose that we are given a sequence of generalized logic program (i.e., pro-
grams possibly with default negation in rule heads) modules P1 ⊕· · ·⊕Pn. Each
program Ps (1 ≤ s ≤ n) contains knowledge that is given as valid at state s.
Different states may represent different time instants or different sets of knowl-
edge priority or perhaps even different viewpoints. Consequently, the individual
program modules may contain mutually contradictory as well as overlapping in-
formation. The role of DLP is to use the mutual relationships existing between
different sequentialized states to precisely determine, at any given state s, the
declarative as well as the procedural semantics of the combined program, com-
posed of all modules. The declarative semantics at some state is determined by
the stable models of the program that consists of all those rules that are “valid”

Computing Environment-Aware Agent Behaviours 219

in that state. Intuitively a rule is “valid” in a state if either it belongs to the
state or belongs to some previous state in the sequence and is not rejected (i.e.,
it is inherited by a form of non-monotonic inertia). A rule r from a prior state
is rejected if there is another conflicting rule (i.e., a rule with a true body whose
head is the complement of the head of r) in a subsequent state. A transforma-
tional semantics into generalized program, that directly provides a means for
DLP implementation, has also been defined.

LUPS [3] is a logic programming command language for specifying logic pro-
gram updates. It can be viewed as a language that declaratively specifies how to
construct a Dynamic Logic Program. A sentence U in LUPS is a set of simulta-
neous update commands that, given a pre-existing sequence of logic programs,
whose semantics corresponds to our knowledge at a given state, produces a new
DLP with one more program, corresponding to the knowledge that results from
the previous sequence after performing all the simultaneous update commands.

A program in LUPS is a sequence of such sentences, and its semantics is
defined by means of a dynamic logic program generated by the sequence of com-
mands. In [3], a translation of a LUPS program into a generalized logic program
is also presented, where stable models exactly correspond to the semantics of
the original LUPS program.

LUPS update commands specify assertions or retractions to the current pro-
gram. In LUPS a simple assertion is represented by the command:

assert L ← L1, . . . , Lk when Lk+1, . . . , Lm (1)

meaning that if Lk+1, . . . , Lm is true in the current program, then the rule
L ← L1, . . . , Lk is added to the new program (and persists by inertia, until possi-
bly retracted or overridden by some future update command, by the addition of a
rule with complementary head and true body). To represent rules and facts that
do not persist by inertia, i.e. that are one-state only persistent, LUPS includes
the modified form of assertion:

assert event L ← L1, . . . , Lk when Lk+1, . . . , Lm (2)

The retraction of rules is performed with the two update commands:

retract L ← L1, . . . , Lk when Lk+1, . . . , Lm (3)
retract event L ← L1, . . . , Lk when Lk+1, . . . , Lm (4)

meaning that, subject to precondition Lk+1, . . . , Lm (verified at the current pro-
gram) rule L ← L1, . . . , Lk is either retracted from its successor state onwards,
or just temporarily retracted in the successor state (if governed by event).

Normally assertions represent newly incoming information. Although its ef-
fects may persist by inertia (until contravened or retracted), the assert command
itself does not persist. However, some update commands may desirably persist
in the successive consecutive updates. This is the case of, e.g., laws which sub-
ject to preconditions are always valid, rules describing the effects of an action,
or, as we shall see, rules describing behaviours of environment-aware programs.

220 J.J. Alferes et al.

For example, in the description of the effects of actions, the specification of the
effects must be added to all sets of updates, to guarantee that, whenever the
action takes place, its effects are enforced. To specify such persistent update
commands, LUPS introduces the commands:

always L ← L1, . . . , Lk when Lk+1, . . . , Lm (5)
always event L ← L1, . . . , Lk when Lk+1, . . . , Lm (6)

cancel L ← L1, . . . , Lk when Lk+1, . . . , Lm (7)

The first two commands state that, in addition to any new set of arriving update
commands, the persistent update command keeps executing along with them too.
The first case without, and the second case with, the event keyword. The third
statement cancels the execution of this persistent update, once the conditions
for cancellation are met.

3 Programming Environment-Aware Behaviours

We will now show how different environment-aware behaviours can be pro-
grammed in LUPS. We will start by considering the environment-aware be-
haviours that have been analysed in [7]. Therein different environment-aware
behaviours are formally defined and compared to one another. Agents are spec-
ified by definite logic programs, and perceptions are (positive) atoms. Namely
an environment configuration is simply a set of (positive) atoms. Environment-
aware behaviours are defined by extending the standard bottom-up semantics
of definite logic programs, defined in terms of the immediate consequence op-
erator T (P) [10]. The idea is to model the environment-aware behaviour of a
definite program P by means of an operator ϕ(P)(I, E) which given a Herbrand
interpretation I (representing the partial conclusions of the program so far) and
a Herbrand interpretation E (representing one set of environment perceptions)
returns the new set of conclusions that the program P is able to draw. Different
possible definitions of ϕ(P) are analysed and compared to one another in [7]:

τi(P)(I, E) = I ∪ T (P)(I ∪ E) (uncontrolled) inflationary
τωi(P)(I, E) = τω

i (P)(I, E) controlled inflationary
τn(P)(I, E) = T (P)(I ∪ E) (uncontrolled) non-inflationary

τωn(P)(I, E) = τω
n (P)(I, E) controlled non-inflationary

where τω
X , for X ∈ {i, n}, is defined by:

τ0
X(P)(I, E) = I

τk+1
X (P)(I, E) = τX(P)

(

τk
X(P)(I, E), E

)

τω
X(P)(I, E) =

⋃

k<ω

τk
X(P)(I, E)

Computing Environment-Aware Agent Behaviours 221

The behaviour expressed by τi(P) is called inflationary as the τi(P) operator is
inflationary on its first argument I. Intuitively speaking, every previously reached
conclusion is credulously maintained by τi(P). The operator τωi(P) expresses a
controlled behaviour as the program P reacts to the changes occurred in the
external environment only after terminating the internal computation triggered
by the previous perceptions. The operators τn(P) and τωn(P) model the corre-
sponding behaviours for the non-inflationary case. These different definitions of
ϕ(P) model environment-aware behaviours which differ from one another in the
way they combine rationality and reactivity aspects. More precisely, as shown in
[7], they differ from one another in their degree of credulousness (or skepticism)
w.r.t. the validity of the information perceived from the environment and in the
conclusions derived thereafter.

In this paper, we show how persistent LUPS updates can be used to natu-
rally program different forms of environment-aware behaviours. In this setting,
environment evolution is described by updates asserting new events that state
that perceptions (non-persistently) become true or false:

assert event Ei

where Ei is a literal. Roughly speaking, the four environment-aware behaviours
considered in [7] can be programmed by the following LUPS updates:

(τi) always L when LP , LE

(τωi) always L ← LP when LE

(τn) always event L when LP , LE

(τωn) always event L ← LP when LE

where LE denotes a conjunction of environment perceptions, and LP denotes a
(possibly empty) conjunctions of program-defined literals.

The rule for (τi) states that, whenever the events LE occur, if the literals
in LP were already true then L is added as a fact and remains true by inertia
until overridden, thus modelling an inflationary behaviour. By having the event
keyword, in rule (τn) L is added only in the following state, and then removed.
Consequently, the behaviour modelled by this rule is non-inflationary as the
truth of L does not remain by inertia. In (τωi) rather than testing for the truth
of LP in the previous state and adding L, the logic program rule L ← LP is
asserted. This allows the conclusion L, and any other conclusion depending on
L via other rules with the same behaviour, to be reached in the same single
state after the occurrence of LE . This way all the conclusions are obtained
before any other change in the external environment is analysed, as desired in
the controlled behaviour. The behaviour modelled by (τωn) is similar, but the
rule is only added in the following state and then removed, so as to model a
non-inflationary behaviour. Also note that all these behaviours are modelled
via persistent update commands. Indeed, e.g. in (τi), we want L to be added

222 J.J. Alferes et al.

whenever the pre-conditions are met, and not only tested once, as it would
happen if an assert command would be introduced instead.

In this paper, rather than providing a deeper analysis of each of the be-
haviours specified by the rules above, including the proof on the equivalence to
the behaviours specified in [7], we will present a single detailed example where
all these behaviours occur. The example also illustrates a (limited) use of default
negation, in that a single stable model exists for each state.

3.1 Example: A Lift Controller

Consider an agent that is in charge of controlling a lift. The available perceptions
are sets made up from the predicates push(N) and floor. Intuitively, floor
means that the agent receives a signal from the lift indicating that a new floor
has been reached. push(N) signifies that a lift button to go to floor N was just
pushed, whether the one inside the lift or the one at the floor.

Upon receipt of a push(N) signal, the lift records that a request for going to
floor N is pending. This can easily be modelled by an inflationary (uncontrolled)
rule. It is inflationary because the request remains registered in subsequent states
(until served). It is uncontrolled because, in our example, the request is not han-
dled immediately. In the LUPS language (where all rules with variables simply
stand for their ground instances, and operations (sums and subtractions) restrict
those instances):

always request(F) when push(F) (8)

Based on the pending requests at each moment, the agent must prefer where
it is going:

always going(F) ← preferredReq(F) (9)
always preferredReq(F) ← request(F), not unpreferred(F) (10)
always unpreferred(F) ← request(F2), better(F2, F) (11)

Note that these rules reflect a controlled inflationary behaviour. This is so
because the decision of where to go must be made immediately, i.e., before other
perceptions take place. The predicate better can be programmed with rules with
a controlled inflationary behaviour, according to some preference criterion. For
example, if one wants to say that the preferred request is the one for going to
the closest floor, one may write:

always better(F1, F2) ← at(F), | F1 − F | < | F2 − F | (12)

The internal predicate at stores, at each moment, the number of the floor
where the lift is. Thus, if a floor signal is received, depending on where the lift
is going, the at(F) must be incremented/decremented.

always event at(F + 1) when floor, at(F), going(G), G > F (13)
always event at(F − 1) when floor, at(F), going(G), G < F (14)

Computing Environment-Aware Agent Behaviours 223

For compactness, and because it would not bring out new features, we do not
give here the full specification of the program, where lift movements are limited
within a top and a ground floor. This can however be done by suitably con-
straining the rules defining at by means of a topF loor(T) and a groundF loor(G)
predicates.

Since the floor in which the lift is at changes whenever new floor signals come
in, these rules are modelled with a non-inflationary behaviour. To guarantee that
the floor in which the lift is at does not change unless a floor signal is received,
the following non-inflationary rule is needed:

always event at(F) when not floor, at(F) (15)

When the lift reaches the floor to which it was going, it must open the door
(with a non-inflationary behaviour, to avoid tragedies). After opening the door,
it must remove the pending request for going to that floor:

always event opendoor(F) when going(F), at(F) (16)
always not request(F) when going(F), at(F) (17)

To illustrate the behaviour of this program, consider now that initially the lift
is at the 5th floor, and that the agent receives a sequence of perceptions, starting
with {push(10), push(2)}, and followed by {floor}, {push(3)}, {floor}. This is
modelled by the LUPS program

(P ∪ E0) ⊗ E1 ⊗ E2 ⊗ E3 ⊗ E4

where P is the set of commands (8)-(17), E0 comprises the single command
assert event at(5) (for the initial situation), and each other Ei contains an
assert-event command for each of the elements in the corresponding perception,
i.e.:

E0 = {assert event at(5)}
E1 = {assert event push(10); assert event push(2)}
E2 = {assert event floor}
E3 = {assert event push(3)}
E4 = {assert event floor}

According to LUPS semantics, at E1 both push(10) and push(2) are true. So
at the moment of E2 both requests (for 2 and 10) become true, and immediately
(i.e., before receiving any further perception) going(2) is determined (by rules
(9)-(12)). Note the importance of these rules having a controlled behaviour for
guaranteeing that going(2) is determined before another external perception is
accepted. At the moment of E3, at(4) becomes true by rule (14), since floor was
true at E2, and, given that the rules for the at predicate are all non-inflationary,
the previous at(5) is no longer true. Both request facts remain true, as they
where introduced by the inflationary rule (8). Since push(3) is true at E3, another

224 J.J. Alferes et al.

request (for 3) is next also true. Accordingly, by rules (9)-(12), going(3) becomes
then true (while going(2) is no longer true). Moreover, by rule (14), at(3) is next
true. It is easy to check that given the floor signal at E4, in the subsequent state
request(3) becomes false (by rule (17)), and opendoor(3) becomes true and in
any next state becomes false again (since rule (16) is non-inflationary). Note
that the falsity of request(3) causes going(2) to be true again, so that the lift
will continue its run.

Finally, note that the behaviour of the lift controller agent can be extended
so as to take into account emergency situations. For instance, the update rule:

always event opendoor(F) ← at(F) when firealarm (18)

tells the agent to open the door when there is a fire alarm (perception) inde-
pendently of whether the current floor was the planned destination. Note that
this rule reflects a controlled non-inflationary behaviour and refines the agent
behaviour defined by rule (16) only in the case of an emergency.

4 Reasoning about Environment-Aware Behaviours

The declarative semantics of LUPS provides a formal characterization of environ-
ment-aware behaviours, which can be exploited for resource-bounded analyses
of the possible behaviours of a program w.r.t. a set E of possible environment
configurations. For instance the states that a program P may reach after reacting
to a sequence of n environment configurations are formally characterized by:

Φ(P, E , n) =
⋃

Eik
∈E

Sem(P ⊗ Ei1 ⊗ Ei2 ⊗ . . . ⊗ Ein)

Namely, Φ(P, E , n) is a set of stable models that denotes all the possible states
that P can reach after reacting n times to the external environment.

We define the notion of beliefs of an environment-aware program as the largest
set of (positive and negative) conclusions that the program will be certainly able
to draw after n steps of computation, for whatever sequence of environment
configurations:

B(P, E , n) =





⋂

M∈Φ(P,E,n)

M+



 ∪





⋂

M∈Φ(P,E,n)

M−





where M+ and M− denote, respectively, the positive part and the negative
part of a (possibly partial) interpretation M . Formally: M+ = M ∩ HB and
M− = {not A | A ∈ M}.

Notice that in general B(P, E , n) is a partial interpretation.
We now introduce the notion of invariant for environment-aware programs.

The invariant of a conventional program defines the properties that hold at each
stage of the program computation. Analogously, the invariant of an environment-
aware program defines the largest set of conclusions that the program will be able

Computing Environment-Aware Agent Behaviours 225

to draw at any time in any environment. A resource-bounded characterization
of the invariant of an environment-aware program after n steps of computation
can be formalized as follows, where in general I(P, E , n) is again partial:

I(P, E , n) =





⋂

M∈B(P,E,i),i∈[1,n]

M+



 ∪





⋂

M∈B(P,E,i),i∈[1,n]

M−





5 Related Work

The use of computational logic for modelling single and multi-agent systems
has been widely investigated (e.g., see [26] for a quite recent roadmap). The
agent-based architecture described in [21] aims at reconciling rationality and
reactivity. Agents are logic programs which continuously perform an “observe-
think-act” cycle, and their behaviour is defined via a proof procedure which
exploits iff-definitions and integrity constraints. One difference between such
approach and ours is that in [21] the semantics is a proof-theoretic operational
one, while our approach provides a declarative, model-theoretic characterization
of environment-aware agents. The semantical differences between exploiting iff-
definitions and logic programs under the stable models semantics have been
extensively studied and are naturally inherited when comparing both systems.
But most important, the theory update performed by the observation part of
the cycle in [21] amounts to a simple monotonic addition of facts and integrity
constraints which, unlike in our proposal, does not allow for the full fledged rule
updates supported by LUPS.

Different action languages [13,15] have been proposed to describe and reason
on the effects of actions (c.f. [14] for a survey). Intuitively, while action lan-
guages and LUPS are both concerned with modelling changes, action languages
focus on the notions of causality and fluents, while LUPS focusses its features on
declarative updates for general knowledge bases . As shown in [2], it is possible,
in some cases, to establish a correspondence between actions languages such as
the languages A of [13] and C of [15], and update languages such as LUPS. Since
update languages were specifically designed to allow assertions and retraction of
rules to allow for a knowledge base to evolve, action languages by only allow-
ing the effects of actions to be fluents restrict themselves to purely extensional
updates. From this purely syntactical point of view LUPS is more expressive.
Action languages such as C, on the other hand, was designed to express the
notion of causality which is semantically different from the underlying notion of
inertia found in the DLP semantics. It is thus natural to observe differences in
the semantics between action languages and update languages (see [2,3] for a
more detailed discussion of the relation between the two approaches)

AgentSpeak(L) [25] is a logical language for programming Belief-Desire-In-
tention (BDI) agents, originally designed by abstracting the main features of the
PRS and dMARS systems [19]. Our approach shares with AgentSpeak(L) the
objective of using a simple logical specification language to model the execution
of an agent, rather than employing modal operators. On the other hand, while

226 J.J. Alferes et al.

AgentSpeak(L) programs are described by means of a proof-theoretic operational
semantics, our approach provides a declarative, model-theoretic characterization
of environment-aware agents. The relation of our approach with the agent lan-
guage 3APL [17] (which has been shown to embed AgentSpeak(L)) is similar
inasmuch as 3APL is provided only with an operational characterization.

MetateM (and Concurrent MetateM) [4,11] is a programming language based
on the notion of direct execution of temporal formulae, primarily used to specify
reactive behaviours of agents. It shares similarities with the LUPS language
inasmuch as both use rules to represent a relation between the past and the
future, i.e. each rule in MetateM and in LUPS consists of conditions about the
past (present) and a conclusion about the future. While the use of temporal logics
in MetateM allows for the specification of rather elaborate temporal conditions,
something for which LUPS was not designed, the underlying DLP semantics of
LUPS allows the specification of agents capable of being deployed in dynamic
environments where the governing laws change over time. While, for example, the
temporal connectives ! and © of MetateM can be used to model the inflationary
and non-inflationary behaviours, respectively, obtained when only considering
definite logic programs, if we move to the more general class of logic programs
with non-monotonic default negation both in the premisses and conclusions of
clauses, LUPS and DLP directly provide an update semantics needed to resolve
the contradictions naturally arising from conflicting rules acquired at different
time instants, something apparently not possible in MetateM. This partially
amounts to the difference between updating theories represented in classical
logic and those represented by non-monotonic logic programs (cf. [1,9]).

Related to the problem of environment-aware agents are also (real-time) reac-
tive systems [16], that constantly interact with a given physical environment (e.g.
automatic control and monitoring systems). In these real-time systems safety is
often a critical issue, and so the existence of programming languages that al-
low programs to be easily designed and validated is crucial. With this purpose,
Synchronous Declarative Languages have been designed (e.g. LUSTRE [8] and
SIGNAL [5]). Such languages provide idealized primitives allowing users to think
of their programs as reacting instantaneously to external events, and variables
are functions of multiform time each having an associated clock defining the se-
quence of instants where the variable takes its values. Our approach shares with
these the declarative nature and the ability to deal with changing environments.
However, their very underlying assumption that a program is always able to
react to an event before any other event occurs, goes against the situations we
want to model. As stated in the introduction, we are interested in modelling sit-
uations where rationality and reactivity are combined, where one cannot assume
that the results are obtained before other events occur. On the contrary, with
our approach (e.g., in a (uncontrolled) inflationary behaviour) external events
may occur before all the conclusions reachable from previous events have been
determined. Being based on LUPS, our approach also allows for modelling envi-
ronments where the governing laws change over time, and where it is possible to
reason with incomplete information (via nonmonotonic default negation). Both

Computing Environment-Aware Agent Behaviours 227

these aspects are out of the scope of the synchronous declarative languages. On
the other hand, the ability of these languages to deal with various clocks, and the
synchronization primitives, cannot be handled by our approach. The usefulness
of these features to the problems we want to model, as well as the possibility of
incorporating them in our approach, are subjects of current work.

Our representation of the possible environment-aware behaviours somehow
resembles the possible world semantics of modal logics [18]. More precisely, the
beliefs and the invariant of an environment-aware program (introduced in Sect.
4) are resource-bounded approximations of the set of formulae that are possibly
true (i.e., true in a possible world) and necessarily true (i.e., true in every pos-
sible word). While the scope of our logic programming based characterization is
narrower than a full-fledged modal logic, the former is simpler than the latter
and it accounts for an effective prototyping of environment-aware agents.

It is important to observe that the use of LUPS to model environment-aware
behaviours extends the approach of [7] in several ways: (1) different behaviours
can be associated with different rules, while in [7] all the rules in a program must
have the same behaviour; (2) LUPS allows for negative literals both in clause
bodies and in clause heads of programs, while in [7] only definite programs
are considered; (3) environment perceptions can be both positive and negative
literals (rather than just positive literals).

6 Concluding Remarks

We have shown how different environment-aware behaviours of agents can be
naturally expressed in LUPS. The LUPS specification provides a formal declar-
ative characterization of such behaviours, that can be exploited for performing
resource-bounded analyses and verifications as illustrated in Sect. 4. Moreover,
the available LUPS implementation can be exploited for experimenting and pro-
totyping different specifications of environment-aware agents.

In Section 3 we have shown how the four main environment-aware behaviours
analysed in [7] can be expressed in LUPS.

Future work will be devoted to investigate further the greater expressive
power featured by LUPS updates. For instance, we can model environment evo-
lution by general LUPS updates and hence represent the environment itself as
a dynamically evolving program (rather just as a sequence of perceptions). An-
other interesting direction for future work is to extend the stable semantics of
LUPS programs in order to support an incremental, state-based characteriza-
tion of environment-aware behaviours of programs in the style of [7]. A fur-
ther interesting extension is to introduce quantitative aspects in the analysis of
environment-aware behaviours, by associating probability distributions to the
possible environment configurations along the lines of [6].

Acknowledgements. This work was partially supported by the bilateral Ital-
ian-Portuguese project “Rational and Reactive Agents”, funded jointly by ICCTI

228 J.J. Alferes et al.

and CNR, and by POCTI project FLUX. João Alexandre Leite is partially sup-
ported by PRAXIS XXI scholarship no. BD/13514/97. Thanks are due to the
anonymous referees for their remarks which helped us in improving the paper.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, September/October 2000.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, and P. Quaresma. Planning as abductive
updating. In D. Kitchin, editor, Proceedings of the AISB’00 Symposium on AI
Planning and Intelligent Agents, pages 1–8. AISB, 2000.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 2002. To appear. A
shorter version appeared in M. Gelfond, N. Leone and G. Pfeifer (eds), LPNMR’99,
LNAI 1730, Springer-Verlag.

4. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM: A
framework for programming in temporal logic. In REX Workshop on Stepwise Re-
finement of Distributed Systems: Models, Formalisms, Correctness (LNCS Volume
430), pages 94–129. Springer-Verlag: Heidelberg, Germany, June 1989.

5. A. Benveniste, P Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the signal language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

6. A. Brogi. Probabilistic behaviours of reactive agents. Electronic Notes in Theoret-
ical Computer Science, 48, 2001.

7. A. Brogi, S. Contiero, and F. Turini. On the interplay between reactivity and com-
putation. In F. Sadri and K. Satoh, editors, Proceedings of the CL-2000 Workshop
on Computational Logic in Multi-Agent Systems (CLIMA’00), pages 66–73, 2000.

8. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan-
guage for programming synchronous systems. In Conference Record of the Four-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
178–188. ACM SIGACT-SIGPLAN, ACM Press, January 21–23, 1987.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2002. To
appear.

10. M. Van Emden and R. Kowalski. The semantics of predicate logic as a program-
ming language. Journal of ACM, 4(23):733–742, 1976.

11. M. Fisher. A survey of concurrent METATEM: The language and its applications.
In D. Gabbay and H. J. Ohlbach, editors, Proceedings of the First International
Conference on Temporal Logic (ICTL’94), volume 827 of LNAI, pages 480–505.
Springer, 1994.

12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

13. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

14. M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles in
Computer and Information Science, 3(16), 1998.

Computing Environment-Aware Agent Behaviours 229

15. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

16. David Harel and A. Pnueli. On the development of reactive systems. In K. R.
Apt, editor, Logics and Models of Concurrent Systems, volume 13 of NATO, ASI
Series, pages 447–498. Springer-Verlag, New York, 1985.

17. Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. A formal embedding of AgentSpeak(L) in 3APL. In G. Antoniou and
J. Slaney, editors, Advanced Topics in Artificial Intelligence (LNAI 1502), pages
155–166. Springer-Verlag: Heidelberg, Germany, 1998.

18. G. Hughes and M. J. Cresswell. A new introduction to modal logic. RoutLedge,
1996.

19. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time rea-
soning and system control. IEEE Expert, 7(6), 1992.

20. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35:39–78, 1998.

21. R. Kowalski and F. Sadri. Towards a unified agent architecture that combines
rationality with reactivity. In D. Pedreschi and C Zaniolo, editors, Proceedings of
LID-96, volume 1154 of LNAI, pages 137–149, 1996.

22. J. A. Leite. A modified semantics for LUPS. In P. Brazdil and A. Jorge, editors,
Progress in Artificial Intelligence, Proceedings of the 10th Portuguese International
Conference on Artificial Intelligence (EPIA01), volume 2258 of LNAI, pages 261–
275. Springer, 2001.

23. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

24. V. Marek and M. Truszcczyński. Revision programming. Theoretical Computer
Science, 190(2):241–277, 1998.

25. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. van der Velde and J. W. Perram, editors, Agents Breaking Away (LNAI
1038), pages 42–55. Springer-Verlag: Heidelberg, Germany, 1996.

26. F. Sadri and F. Toni. Computational logic and multiagent systems: a roadmap.
Technical report, Department of Computing, Imperial College of Science, Technol-
ogy and Medicine, 1999.

A Background

In this Appendix we provide some background on Generalized Logic Programs,
Dynamic Logic Programming and LUPS.

A.1 Generalized Logic Programs

Here we recapitulate the syntax and stable semantics of generalized logic pro-
grams1 [1].
1 The class of GLPs (i.e. logic programs that allow default negation in the premisses

and heads of rules) can be viewed as a special case of yet broader classes of programs,
introduced earlier in [20] and in [23], and, for the special case of normal programs,
their semantics coincides with the stable models semantics [12].

230 J.J. Alferes et al.

By a generalized logic program P in a language L we mean a finite or infinite
set of propositional clauses of the form L0 ← L1, . . . , Ln where each Li is a
literal (i.e. an atom A or the default negation of an atom not A). If r is a clause
(or rule), by H(r) we mean L0, and by B(r) we mean L1, . . . , Ln. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). By a (2-
valued) interpretation M of L we mean any set of literals from L that satisfies
the condition that for any A, precisely one of the literals A or not A belongs
to M . Given an interpretation M we define M+ = {A : A is an atom, A ∈ M}
and M− = {not A : A is an atom, not A ∈ M}. Wherever convenient we omit
the default (negative) atoms when describing interpretations and models. Also,
rules with variables stand for the set of their ground instances. We say that a
(2-valued) interpretation M of L is a stable model of a generalized logic program
P if ξ(M) = least (ξ(P) ∪ ξ(M−)), where ξ(.) univocally renames every default
literal not A in a program or model into new atoms, say not A. In the remaining,
we refer to a GLP simply as a logic program (or LP).

A.2 Dynamic Logic Programming

Hext we recall the semantics of dynamic logic programming [1]. A dynamic logic
program P = {Ps : s ∈ S} = P0 ⊕ ... ⊕ Pn ⊕ ..., is a finite or infinite sequence of
LPs, indexed by the finite or infinite set S = {1, 2, . . . , n, . . .}. Such sequence
may be viewed as the outcome of updating P0 with P1, ..., updating it with Pn,...
The role of dynamic logic programming is to ensure that these newly added rules
are in force, and that previous rules are still valid (by inertia) for as long as they
do not conflict with more recent ones. The notion of dynamic logic program
at state s, denoted by

⊕

s P = P0 ⊕ ... ⊕ Ps, characterizes the meaning of the
dynamic logic program when queried at state s, by means of its stable models,
defined as follows:

Definition 1 (Stable Models of DLP). Let P ={Ps : s ∈ S} be a dynamic
logic program, let s ∈ S. An interpretation M is a stable model of P at state s
iff

M = least ([ρ (P)s − Rej(P, s, M)] ∪ Def (ρ (P)s , M))

where

ρ (P)s =
⋃

i≤s
Pi

Rej(P, s, M) = {r ∈ Pi : ∃r′ ∈ Pj , i < j ≤ s, H(r) = not H(r′) ∧ M " B(r′)}
Def(ρ (P)s, M) = {not A | !r ∈ ρ (P)s : (H(r) = A) ∧ M " B(r)}

If some literal or conjunction of literals φ holds in all stable models of P at state
s, we write

⊕

s P " φ. If s is the largest element of S we simply write
⊕

P " φ.

Computing Environment-Aware Agent Behaviours 231

A.3 LUPS

Here we recall the semantics of the language of updates LUPS closely following
its original formulation in [3], with the semantical modification of [22]. The
object language of LUPS is that of generalized logic programs. A sentence U in
LUPS is a set of simultaneous update commands (described in Section 2), that,
given a pre-existing sequence of logic programs P0 ⊕ · · · ⊕ Pn (i.e. a dynamic
logic program), whose semantics corresponds to our knowledge at a given state,
produces a sequence with one more program, P0⊕· · ·⊕Pn⊕Pn+1, corresponding
to the knowledge that results from the previous sequence after performing all the
simultaneous commands. A program in LUPS is a sequence of such sentences.

Knowledge can be queried at any state t ≤ n, where n is the index of the
current knowledge state. A query will be denoted by:

holds L1, . . . , Lk at t?

and is true iff the conjunction of its literals holds at the state obtained after the
tth update. If t = n, the state reference “at t” is skipped.

Definition 2 (LUPS). An update program in LUPS is a finite sequence of
updates, where an update is a set of commands of the form (1) to (7).

The semantics of LUPS is defined by incrementally translating update pro-
grams into sequences of generalized logic programs and by considering the se-
mantics of the DLP formed by them.

Let U = U1⊗...⊗Un be a LUPS programs. At every state t the corresponding
DLP, Υt (U) = Pt, is determined.

The translation of a LUPS program into a dynamic program is made by
induction, starting from the empty program P0, and for each update Ut, given the
already built dynamic program P0⊕· · ·⊕Pt−1, determining the resulting program
P0 ⊕ · · · ⊕ Pt−1 ⊕ Pt. To cope with persistent update commands, associated
with every dynamic program in the inductive construction, a set containing all
currently active persistent commands is considered, i.e. all those commands that
were not cancelled until that point in the construction, from the time they were
introduced. To be able to retract rules, a unique identification of each such rule
is needed. This is achieved by augmenting the language of the resulting dynamic
program with a new propositional variable “N(R)” for every rule R appearing in
the original LUPS program. To properly handle non-inertial commands, we also
need to uniquely associate those rules appearing in non-inertial commands with
the states they belong to. To this end, the language of the resulting dynamic logic
program must also be extended with a new propositional variable “Ev(R, S)”
for every rule R appearing in a non-inertial command in the original LUPS
program, and every state S.

Definition 3 (Translation into dynamic logic programs). Let U = U1 ⊗
· · ·⊗Un be an update program. The corresponding dynamic logic program Υ (U) =
P = P0 ⊕ · · · ⊕ Pn is obtained by the following inductive construction, using at
each step t an auxiliary set of persistent commands PCt:

232 J.J. Alferes et al.

Base step: P0 = {} with PC0 = {}.
Inductive step: Let Υt−1(U) = Pt−1 = P0 ⊕ · · · ⊕ Pt−1 with the set of

persistent commands PCt−1 be the translation of Ut−1 = U1 ⊗ · · · ⊗ Ut−1. The
translation of Ut = U1 ⊗ · · · ⊗ Ut is Υt(U) = Pt = P0 ⊕ · · · ⊕ Pt−1 ⊕ Pt with the
set of persistent commands PCt, where:

PCt = PCt−1 ∪ {assert R when φ : always R when φ ∈ Ut} ∪
∪ {assert event R when φ : always event R when φ ∈ Ut} ∪
− {assert [event] R when φ : cancel R when ψ ∈ Ut ∧

⊕

Pt−1 " ψ}
− {assert [event] R when φ : retract R when ψ ∈ Ut ∧

⊕

Pt−1 " ψ}

NUt = Ut ∪ PCt

Pt = {not N(R) ←: retract R when φ ∈ NUt ∧
⊕

Pt−1 " φ} ∪
∪ {N(R) ←;H(R) ← B(R), N(R) : assert R when φ ∈ NUt ∧

⊕

Pt−1 " φ}∪
∪ {H(R) ← B(R), Ev(R, t) : assert event R when φ ∈ NUt ∧

⊕

Pt−1 " φ}∪
∪ {not N(R) ← Ev(R, t) : retract event R when φ ∈ NUt ∧

⊕

Pt−1 " φ}∪
∪ {not Ev(R, t − 1) ←;Ev(R, t) ←}

Definition 4 (LUPS Semantics). Let U be an update program. A query

holds L1, . . . , Ln at t

is true in U iff
⊕

t Υ (U) " L1, . . . , Ln.

Further details, properties, and examples about the language of updates
LUPS and its semantics can be found in [3,22].

