
Belief, Provability, and Logic Programs

José Júlio Alferes
D. Matemática, U. Évora, and
CRIA Uninova
2825 Monte da Caparica
Portugal
(jja@fct.unl.pt)

Luı́s Moniz Pereira
DCS, U. Nova de Lisboa, and
CRIA Uninova
2825 Monte da Caparica
Portugal
(lmp@fct.unl.pt)

ABSTRACT. The main goal of this paper is to establish a nonmonotonic epistemic
logic with two modalities – provability and belief – capable of expressing and
comparing a variety of known semantics for extended logic programs, and clarify their
meaning. In particular we present here, for the first time, embeddings into epistemic
logic of logic programs extended with a second kind of negation under the well–
founded semantics, and contrast them to the recent embeddings into autoepistemic
logics of such programs under stable models based semantics.
Because of the newly established relationship between our epistemic logic and

extended program semantics, the former benefits from the procedures and implemen-
tations of the latter, and can be applied to at least the same class of AI problems that
the latter can. Moreover, one issue of epistemic logic introduced here, belief revision,
can profit from adapting techniques employed by the latter for contradiction removal.
Furthermore, the languageof the epistemic logic presented here beingmore general

than that of extended programs, it offers a basic tool for further generalizations of the
latter, for instance regarding disjunction and modal operators.

Introduction

The relationships between logic programming and several nonmonotonic reasoning
formalisms bring them mutual benefits. Nonmonotonic formalisms provide semantics
for logic programs, and help understand how these can express and compute solutions
toAI problems. Conversely, the nonmonotonic formalisms benefit from the procedures
and implementations of logic programming. Also, relations among nonmonotonic
formalisms have been studied via logic programming shunting.
For normal logic programs the bridge to default theories [Rei80] was first made

in [BF87]. In [EK89] negation as failure of normal programs was first formalized as
abduction, and in [Dun91] was extended to capture both stable models [GL88] and the
well-founded semantics (WFS) of normal logic programs [GRS91].
The view of logic programs as autoepistemic theories [Moo85] first appeared in

[Gel87], which envisages every literal of logic programs as , i.e.

has the epistemic reading: “there is no reason to believe in ”1. In [Bon92] a variety
of translations of negation as failure by belief literals are studied, in order to show
how different logic programming semantics can be obtained from autoepistemic logics
(AELs). In [Prz93], Przymusinski assigns to the translation with the
reading “ is believed to be false”.

Several authors have stressed the importance of extending logic programming with
a second kind of negation in addition to default negation, for use in deductive
databases, knowledge representation, and nonmonotonic reasoning [GL90, KS90,
PAA91b, Wag91]. Different semantics for extended logic programs with -negation
have appeared [DR91, GL90, KS90, PA92, Prz90, Prz91b, Wag91]. [AP92] contrasts
some of these, where distinct meanings of -negation are identified: classical, strong
and explicit. It is also argued that explicit negation is preferable.
Some work exists comparing extended logic programs semantics and nonmono-

tonic reasoning formalisms. In [GL90] the answer-sets semantics for extended pro-
grams is introduced and compared to default theories. A comparison between the
WFS with explicit negation (WFSX) [PA92] and default theories is given in [PAA92].
WFSX is captured within an abductive framework in [ADP93].

As noted by [Che93, LS93b, MT93], Gelfond’s translation cannot be generalized
to extended programs.

Example 1 According to Gelfond’s translation, :

is rendered as the theory
;

This theory entails but the semantics of under most of the approaches
(e.g. underWFSX and answer-sets) is

A suitable translation between extended programs with answer-sets semantics and
reflexiveAEL theorieswas proposed independently in [LS93b] and [MT93]. Reflexive
AEL, introduced in [Sch91], views the operator as “is known” instead of the “is
believed” of Moore’s AEL [Moo85]2. The translation renders an objective literal
(resp.) as (resp. where denotes classical negation), i.e. “ is
known to be true” (resp. “ is known to be false”), and renders as ,
i.e. “it is known that L is not known”. In [LS93b, MT93] the authors prove that
the answer-sets of an extended program correspond to the reflexive expansions of its
translation. Equivalently, the embedding of extended programs into reflexiveAEL can
also be defined for (non-reflexive) AEL [LS93b, MT93], by translating any objective
literal into This translation was proposed in [Che93] too.

1Referred to here as Gelfond’s translation.
2Roughly, this is achieved by adding instead of just , when holds.

2

In [Pea93], the author surmises a translation also equivalent to the ones above.
This translation is justified by first relating answer-sets to constructive logics with
strong negation [Nel49], and then using the already known translation of the latter into
nonmonotnic S4.

The embedding of stable models semantics into AEL was generalized to WFS
in [Prz91a], using Gelfond’s translation, but where Generalized Closed World As-
sumption (GCWA) [Min87] replaces the ClosedWorld Assumption (CWA) [Rei78] in
what regards the adoption of default literals. No study of embeddings of WFS with
-negation exists to date. One main purpose of this paper is to remedy this. Signifi-
cantly, the embedding proposed in [Che93, LS93b, MT93, Pea93] does not generalize
to extended programs under WFS.

Example 2 The program:

translates into the non-reflexive AEL theory

It is easy to see that this theory has no expansion, evenwhenGCWA is taken up instead
of CWA. The same goes for the reflexive AEL translation.

Indeed, that translation is too specific, and can only be applied to stable models
based semantics (i.e. that are two-valued).
In contradistinction, our stance is that, for greater generality, the second kind

of negation introduced in logic programming represents and requires, for translation
into some epistemic logic, an additional modality other than the one necessary for
interpreting negation by default3. In our view, an objective literal (resp.) should
be read

“ is proven false”

denoted by (resp. “ is proven true”); and should be read “it is believed
that L is not proven”, denoted by Thus, refers to epistemic knowledge as
defined by propositional provability, and relates to the consistency modality by

The belief operator of this logic is , and is inspired by the one introduced
in [Prz93].

The main goal of this paper is to define, in section 1, an AEL augmented with
the modality which is capable of expressing and comparing various semantics of
extended programs. The flexibility and generality of our approach are brought out
in section 2, by establishing how different notions of provability and knowledge, and
different semantics for extended programs are captured by it, and so providing for a

3In [Lif92] the author also proposes a bi-modal logic (MBNF) for interpreting extended logic programs.
There is a MBNF rendering of answer-sets which, as shown in [Che93, LS93b], is equivalent to the
AEL-unimodal translations, already discussed above, that express answer-sets too.

3

better understanding of the different kinds of negation. The improved generality of
our AEL language provides a tool for examining further generalizations of extended
logic programming. This is discussed in section 3. For the sake of self-sufficiency, in
appendix we present the definitions of Answer-Sets, andWFSX semantics.

1 A logic of belief and provability

In this sectionwe define an epistemic logic, , with provability and belief modalities,
and showhow it captures theWFSX semantics for extended logic programming [PA92],
which extendsWFS with explicit negation [AP92], in addition to default negation.
We begin by considering definite extended logic programs only (i.e. extended

programs without negation by default), and by defining a modal logic to interpret such
programs. We then extend this logic to deal with belief propositions. Finally, we relate
the logic to the full language of WFSX.

1.1 Provability in extended definite programs

To motivate and make clear the meaning of the provability modality, we begin with
the simpler problem of how to capture the meaning of extended programs without
negation by default, i.e. sets of rules of the form:

0 1 0 (1)

where each is an atom or its explicit negation Without loss of generality, as
in [PP90], we assume that all rules are ground, and programs may be infinite sets of
such rules.
The semantics of these programs is desireably monotonic, and must be noncon-

trapositive, i.e. distinguish between and so that rules can be
viewed as (unidirectional) “inference rules”; Gelfond’s translation does not capture
this distinction: both rules translate to

Example 3 In example 1, notice how is derived in via the contrapositive of the
first rule.

The cause of the problem is that translates into “ is false”, and the rule
connective into material implication. In contrast, the semantics of extended logic
programs wants to interpret as “ is provenly false”, in a grounded sense, and
as an inference rule. To capture this meaning we introduce the modal operator

referring to (propositional) “provability”, or “epistemic knowledge”, and accordingly
translate rule (1) into:

1 0 (2)

where any explicitly negated literal is translated into and reads “ is
provenly false”, and any atom is translated into and reads “ is provenly true”.
This translation directly captures the intuitive meaning of a rule

“if all 1 are provable then 0 is provable”

4

and does not conflate contrapositives: becomes whilst is
rendered as
Note the similarities to the translation defined in [LS93b, MT93] into reflexive

AEL, where an atom is translated into and into where is the
knowledge operator of modal logic SW5.
We need to assume little about and this guarantees flexibility. is defined as

the necessity operator of the smallest normal modal system, modal logicK. This logic
includes only4, modus ponens, and:

Necessitation:

Distribution over conjunctions:

:

In logic K, is the dual of the modal consistency operator i.e.
This weak modal logic, although sufficient for WFSX when combined with a belief
modality and nonmonotonicity (as shown below), can also express other (stronger)
meanings of just by introducing more axioms for it. In section 2, in particular,
we interpret as knowledge by introducing, as usual, the additional axioms for the
stronger logic SW5.
Since at this stagewe are simply interested in the semantics of monotonic (definite)

extended programs, we do not require yet a nonmonotonic version of this logic.
Above we said that translation (2) can capture the semantics of extended logic

programs. The next theorem makes this statement precise for answer–sets andWFSX
semantics. It generalizes for almost every semantics of extended logic programs,
the only exception being, to our knowledge, the “stationary semantics with classical
negation” defined in [Prz91b], which is contrapositive.

Theorem 1.1 Let be an extended logic program, and the theory obtained from
by means of translation (2). If , for no atom then:

WFSX

WFSX

where denotes, as usual, the consequence relation in modal logic (in this case
), and (resp. WFSX) means that belongs to all answer–sets (resp.

allWFSX partial stable models) of
Otherwise, the only answer–set is the set of all objective literals, and is contra-

dictory wrt toWFSX.

1.2 Belief and provability

Besides explicit negation, extended logic programs also allow negation by default,
which is nonmonotonic and usually understood as a belief proposition. Thus, we need

4For a precise definition of logic K and its properties see [Che80, HC84].

5

to enlarge modal logic K with a nonmonotonic belief operator.

Before tackling themore general problem, we begin bydefiningwhat beliefs follow
from definite extended programs. Such programs are readily translatable into sets of
Horn clauses, thereby possessing a unique minimal model. So, as a first approach
consider:

“the agent believes in a formula if it belongs to the minimal model of the theory”

i.e.
if then

Example 4 The program of example 1 translates into :

whose least model is Thus an agent with knowledge believes all of ,
and .

Moreover we insist on the principle that, for rational agents,

if then (coherence).

Coherence states that whenever is provenly true then it is mandatory to believe
that is not provenly false5. The coherence principle introduced for extended logic
programming in [PA92] is an instance of it. In the above example absenceof coherence
does not interfere with the result. This is not in general the case:

Example 5 Consider ; whose least model is and
hold by introspection. Moreover, by coherence, an agent must sustain both
and

This kind of reasoning may seem strange since the agent must believe in comple-
mentary formulae (e.g. in and in). But, as shown below, when the axioms
for are introduced, we’ll see, these will detect inconsistency out from the intuitively
inconsistent theory i.e. belief cannot be held of proven complements.

As for little is assumed about , both for the sake of flexibility and because
it is indeed enough for characterizing WFSX. More precisely, we assume the axioms
introduced in [Prz93] for the belief operator:

For any tautologically false formula :

For any formulae and :
5Note that .

6

As proven in [Prz93], from these axioms it follows for every formula that

6

. Consequently, from believing two complementary formulae, and ,
inconsistency follows because
In summary, for a theory resulting from a definite extended program, the set of

beliefs of an agent is the closure, under the above axioms, of:

as required by introspection and coherence, respectively.

In order to enlarge the logicK with a nonmonotonic belief operator we proceed as
above, but now consider the case where formulae of the form or (hereafter
called belief formulae) occur in theories. In this case it is not adequate to obtain the
belief closure as above. To deal with belief formulae in theories we must consider, as
usual in AEL, the expansions of a theory.
An expansion of a theory is a fixpoint of the equation:

where is a set of belief formulae depending on Intuitively, each expansion
stands for a belief state of a rational agent. One issue arises: which kind of nonmono-
tonicity to introduce in such theories?
In this respect two main approaches have been followed in the literature:

One, present in Moore’s AEL and in reflexive AEL, is based on CWA – an agent
believes in in an expansion iff , and does not believe in iff

– and it captures two–valued (or total) logic program semantics, i.e.
those where whenever does not belong to a model then belongs to it.

The other approach is based on GCWA – an agent believes in in an expansion
iff , and does not believe in iff – and captures

three–valued (or partial) logic program semantics. This approach is followed in
the AEL of closed beliefs [Prz91a], and in his static semantics [Prz93]7.

Here we adopt the second approach too. The reasons for prefering a logic based
on GCWA rather than on CWA are tantamount to those that prefer semantics based
on WFS rather than on stable models, and are extensively discussed in the literature
(e.g. in [AP92, Bon92, GRS91, Prz91a, Prz93]). In this paper we do not go into the
details for this preference, but summarize [Prz91a]: With CWA quite “reasonable”

6In fact, this implication is equivalent to , by the second axiom it is equivalent to
, which is true because is tautologically false.

7Note that the question of distinguishing between these two approaches is not relevant for definite
programs, since in them nonderivability coincides with deriving the complement in the (single) minimal
model.

7

theories are often inconsistent; expansions are non–cumulative,non–rational, and non–
relevant even for theories resulting from normal logic programs8; expansions cannot
be effectively computed (even for propositional logic programs); the insistance on total
models often lacks expressivity. Non of this occurs with GCWA based expansions.
In the sequel we formally define our epistemic logic. We begin by extending the

language of propositional logicwithmodal operators and standing for “provability”
and “belief”. Theories are recursively defined as usual. Moreover we assume every
theory contains all axioms of logicK for and the above two axioms for .

Definition 1.1 A minimal model of a theory is a model of such that there is
no smaller model of coinciding with on belief propositions.

If is true in all minimal models of then we write

An expansion corresponds to a belief state where the agent believes in if
, and does not believe in if With the axioms introduced

for , the second statement is subsumed by the first. Indeed, by the first statement, if
then and from the axioms for it follows, so we’ve seen, that

Just as argued for definite extended programs, when considering theories with
provability and belief one new form of belief obtention (coherence) is in place, namely
if then Thus, expansions should formalize the following notion
of belief :

is minimally entailed or and is entailed

Definition 1.2 An expansion of a theory is a consistent theory satisfying the
fixed point condition:

Example 6 9 Consider an agent with the following knowledge:

Peter is a bachelor;

a man is not married if he is a bachelor;

Susan is married to Peter, if we don’t believe she’s married to Tom;

Susan is married to Tom, if we don’t believe she’s married to Peter;

no one is married to oneself;
8By cumulativity [Dix91] we refer to the efficiency related ability of using lemmas. By rationality

[Dix91] we refer to the ability to add the negation of a non–provable conclusion without changing the
semantics. By relevance [Dix92] we mean that the top–down evaluation of a literal’s truth–value requires
only the call–graph below it

9This example first appeared in [Wag93], in the form of a logic program.

8

rendered by the autoepistemic theory (with obvious abbreviations):

The only expansion of contains, among others, the belief propositions:

In this example all of an agent’s beliefs are completely decided, in the sense that
for any proposition the agent either believes or disbelieves This is not in general
the case.

Example 7 Consider the statements:

it is proven or it is believed that the car can be fixed;

if it is not believed that one can fix the car then an expert is called for;

an expert is not called for;

rendered by the autoepistemic theory :

The only expansion of is:

stating that an agent believes that an expert is not called and that he disbelieves an
expert is called for.
Note that about the agent remains undefined. This is due to, on the

one hand, believing it true is impossible since it is not a consequence in all minimal
models; on the other hand, believing it false leads to an inconsistency.

Like Moore’s autoepistemic theories theories might have several expansions:

Example 8 Consider the theory describing the so–called Nixon diamond situation:

9

has three expansions, namely:

The first states that it is believed that Nixon is a pacisfist; the second that it is believed
that Nixon is not a pacifist; and the third remains undefined in what concerns Nixon
being a pacisfist or not.
When confronted with several expansions (i.e. several possible states of beliefs) a

sceptical reasoner should only conclude what is common to all. Here that means the
third expansion.

1.3 Relation to extended logic programs

An extended logic program is as set of rules of the form:

0 1 1 (3)

where each is an objective literal, i.e. an atom or its –negation
As argued above, an atom is translated into and an explicitly negated atom
into In [LS93b, MT93] literals of the form (default literals) are

translated into in reflexive AEL. [MT93] gives an intuitive reading of this
formula:“it is known that is not known”. In our approach we translate into

i.e. “it is believed (or it is assumed) that is not proven”. So, each rule of
the form (3) is translated into:

1 1 0 (4)

Definition 1.3 A WFSX partial stable model of an extended logic program
corresponds to an expansion when:

For an objective literal : iff

For a default literal : iff

Theorem 1.2 Let be the theory obtained from an extended logic program by
means of translation (4). Then there is a one–to–one correspondence between the
WFSX partial stable models of and the expansions of

This relationship bringsmutual benefits to bothWFSX and the logic. On the one
hand, the logic allows for amore intuitive view ofWFSX, specially in what concerns its
understanding as modeling provability and belief in a rational agent. This allows for a
clearer formulation within WFSX of some problems in knowledge representation and
reasoning, and for a better understandingofWFSX’s results. In particular, it shows that
explicit negation stands for proving falsity of a literal, default negation for believing
that a literal is not provable, and undefinedness for believing neither the falsity nor the

10

verity of a literal. The relationship also sheds light on several extensions ofWFSX (cf.
section 3).
On the other hand, for the class of theories resulting from some extended pro-

grams, the logic can be implemented using the top–down procedures defined for
WFSX[ADP94]. Moreover, for this class, the logic enjoys the properties of cumulativ-
ity, rationality, relevance [Dix92], and others proven forWFSX in [Alf93]. In addition,
the relationship also raises new issues in epistemic logics, and points towards their
solution via the techniques in use in extended logic programming (cf. section 3).

2 Provability versus Knowledge

Above we claimed logic is flexible and general. Next we express with it different
meanings for and hence a variety of semantics for extended logic programs.

The logic K introduced for is the simplest normal modal system, contained in
any other. With additional axioms to our theories we can define other meanings for
In particular, with the axioms of logic SW510 represents “knowledge”, as in

[Sch91, MT93]. Other formalizations of knowledge, such as that of logic S4.211, are
similarly obtained.
Using the SW5 meaning of but keeping with the same translation, a different

semantics for extended logic programs is obtained:

Theorem 2.1 Let be the theory obtained from an extended logic program by
means of translation (4), augmented with the SW5 axioms for Then there is a
one–to–one correspondence between expansions of and the partial stable models of
of WFS with strong negation, as defined in [AP92].

Comparisons between WFS with strong negation and WFSX, found in [AP92,
Alf93], prove the former is less suitable for implementation (as it does not enjoy
relevance [Dix92]), is more credulous, and assigns semantics to less programs.

Example 9 Program :

translates into the theory:

; ;

Using logic K, there is one expansion:

10I.e. axioms T: 4: and W5:
11[LS93a] uses S4.2 to formalize knowledge in a logic which also includes belief. We intend to compare

this logic with ours when their final version becomes available to us.

11

If logic SW5 is used instead, there is no expansion. This happens because, by axiom
T, entails and by the contrapositive of the second clause of entails

Thus, by the third clause, every minimal model of every possible expansion
has and so must be added. This is inconsistent with having
in all models, and so no expansion exists. WFSX assigns a meaning to , namely

because axiom T is not assumed.

From theorem 2.1 and the results of [AP92] it follows that:

Theorem 2.2 Let be the theory obtained from an extended logic program by
means of translation (4), augmented with the SW5 axioms for and the axiom

. Then there is a one–to–one correspondence between the expansions
of and the partial stable models of of the “stationary semantics with classical
negation” of [Prz91b].

Since answers–sets are the total stablemodels ofWFSwith strong negation [AP92]:

Definition 2.1 An expansion is total iff for every formula :

Theorem 2.3 Let be the theory obtained from an extended logic program by
means of translation (4), augmented with the SW5 axioms for Then there is a
one–to–one correspondence between the total expansions of and the answer–sets of
.

3 Further developments

Since the language of is more general than that of extended logic programs, our
logic is a tool for further generalizations of extended logic programming, for instance
disjunction. All that is required is to define a translation of disjunctive extended
logic programs into the logic. The study of possible translations, and the relationship
between the resulting and extant semantics for disjunctive programs is the subject of
ongoing investigations by us.
Another possible direct generalization of extended logic programming is with the

modal operators of the logic, allowing for conjunction and disjunction within their
scope. Examples of the use and usefulness of the belief operator for normal disjunc-
tive programs can be found in [Prz93].

With the relationship between logic and extended logic programming now
established some issues already tackled in the latter can also be raised in the former.
Furthermore, the former can profit from adapting techniques employed in the latter.
One of the issues presented here in more detail is contradiction removal, or belief
revision.
Recently, several authors have studied this issue in extended logic programming

[DR91, Jon91, PA93, PAA91a]. The basic idea behind these approaches is that

12

literals be viewed as assumptions, so that if an assumption partakes in a contradiction
then its revision is in order. In epistemic logics this idea translates into: “If the results
of introspection lead to the inexistence of expansions then revise your beliefs”.

Example 10 The theory :

is consistent but has no expansion. This is so because is true in all minimal
models and thus, by introspection, must be added causing a contradiction. In
fact, this is a typical case where the result of introspection leads to contradiction12.

In order to assign a meaning to consistent theories without expansions two ap-
proaches are possible: to define a more sceptical notion of expansion, introducing less
belief propositions by introspection; or to minimally revise the theory in order to pro-
vide for expansions. [AP94] contrast these two approaches in the logic programming
setting, dubbing the first “contradiction avoidance”, and the second “contradiction re-
moval”, and showing them equivalent under certain conditions. The techniques used
there to deal with this issue in logic programming can readily be employed in our
epistemic logic:
Contradiction avoidance in the logic amounts to weakening the condition for

introspection. This can be accomplished by allowing introduction of belief proposi-
tions solely for some chosen subset of the formulae minimally entailed by the theory.
Of course, not all subsets are allowed. In particular, we are only interested in maximal
subsets compatible with consistency. The study of additional preference conditions
among these subsets is tantamount to the one in extended logic programming examined
in [PA93].
Contradiction removal in the logic amounts to minimally adjoining, to some

consistent theory without expansions, new clauses to inhibit the addition by introspec-
tion of belief propositions responsible for contradiction.

Example 11 The theory resulting from adjoining the “inhibiting clause”

to the theory of example 10 has one expansion

The extra clause states that believing is impossible, since it directly implies
and in this way inhibits the otherwise inevitable addition of

In extended logic programs the inhibition clause above translates to

12Note this problem is not peculiar to our logic. The same occurs as well in e.g. AEL and reflexive AEL.

13

and is called an inhibition rule for [PAA91a]. Similarly to what is done in [PAA91a]
for extended logic programming, also for the logic we can define the revisions of
a theory as those obtained by minimal additions of inhibiting clauses which achieve
contradiction removal (i.e. allow the resulting theory to have an expansion). Thus,
the revisions of a theory are those theories

where is a minimal set of clauses of the form such that has
at least one expansion. Given the similarities of this approach and the contradiction
removal techniques in extended logic programs, the procedures [AP94] and imple-
mentations of the latter, developed in order to avoid generating all possible revisions,
are also applicable to the former.

Further discussion, and results, on this topic can be found in a recent paper by us
an Teodor Przymusinski [APP94].

Conclusions

To start, we’ve provided a first embedding, in a two-modality AEL, of well–founded
semantics based extensions of logic programs, either with explicit or strong negation
[AP92], and shown how they differ in that setting.
Second, we’ve contrasted this embedding with recent ones for stable semantics

based extensions of logic programs with a second kind of negation [Che93, LS93b,
MT93, Pea93].
Third, we’ve shown the usefulness of employing the combination of the two natural

epistemic modalities of provability and belief for explicating the semantics of logic
programs in AEL.
Fourth, we’ve introduced into epistemic logics the issue of belief revision in the

face of inexistance of expansions, and how to tackle it inspired by similar questions
and attending techniques previously developed, in the logic programmming context,
for contradiction removal [Jon91, PAA91a, AP94].
Fifth, we’ve shown how (via the procedures and implementations of the extended

logic programs we’ve embedded in our AEL) an important subset of this AEL can be
employed to represent and solve a variety of nonmonotonic reasoning problems, al-
ready captured in and dealt with by extended logic programs: namely taxonomies, rea-
soning about actions, diagnosis, updates, and debugging [PAA91b, PAA93, PDA93].
Sixth, as the language of our epistemic logic is more general than that of extended

programs, the former can now be used as a tool for further generalizations of the latter,
for instance wrt disjunction and modalities.

Acknowledgments

We acknowledge Esprit BRA Compulog 2 (no. 6810), and JNICT - Portugal for their
support. Thanks to Carlos Damásio and Teodor Przymusinski for helpful discussions.

14

References

[ADP93] J. J. Alferes, P.M.Dung, andL.M. Pereira. Scenario semantics of extended
logic programs. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on
LP & NMR, pages 334–348. MIT Press, 1993.

[ADP94] J. J. Alferes, C. V. Damásio, andL. M. Pereira. Top-down query evaluation
for well-founded semantics with explicit negation. In A. Cohn, editor,
European Conf. on AI, pages 140–144. Morgan Kaufmann, 1994.

[Alf93] José Júlio Alferes. Semantics of Logic Programs with Explicit Negation.
PhD thesis, Universidade Nova de Lisboa, October 1993.

[AP92] J. J. Alferes and L. M. Pereira. On logic program semantics with two kinds
of negation. In K. Apt, editor, Int. Joint Conf. and Symp. on LP, pages
574–588. MIT Press, 1992.

[AP94] J. J. Alferes and L. M. Pereira. Contradiction: when avoidance equal
removal. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of LP, volume
798 of LNAI. Springer–Verlag, 1994.

[APP94] J. J. Alferes, L. M. Pereira, and T. Przymusinski. Belief revision in non-
monotonic reasoning and logic programming. Technical report, CRIA,
UNINOVA and Univ. of California at Riverside, December 1994.

[BF87] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and
circumscription in stratified logic programming. In Symp. on Principles of
Database Systems. ACM SIGACT-SIGMOD, 1987.

[Bon92] P. Bonatti. Autoepistemic logics as a unifying framework for the semantics
of logic programs. In K. Apt, editor, Int. Joint Conf. and Symp. on LP,
pages 417–430. MIT Press, 1992.

[Che80] B. Chellas. Modal Logic: An introduction. Cambridge Univ. Press, 1980.

[Che93] J. Chen. Minimal knowledge + negation as failure = only knowing (some-
times). In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP &
NMR, pages 132–150. MIT Press, 1993.

[Dix91] J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek,
and V. S. Subrahmanian, editors, LP & NMR, pages 166–180. MIT Press,
1991.

[Dix92] J. Dix. A framework for representing and characterizing semantics of
logic programs. In B. Nebel, C. Rich, and W. Swartout, editors, 3rd Int.
Conf. on Principles of Knowledge Representation and Reasoning. Morgan
Kaufmann, 1992.

15

[DR91] P. M. Dung and P. Ruamviboonsuk. Well founded reasoning with classical
negation. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP &
NMR, pages 120–132. MIT Press, 1991.

[Dun91] P. M. Dung. Negation as hypotheses: An abductive framework for logic
programming. In K. Furukawa, editor, 8th Int. Conf. on LP, pages 3–17.
MIT Press, 1991.

[EK89] K. Eshghi and R. Kowalski. Abduction compared with negation by failure.
In 6th Int. Conf. on LP. MIT Press, 1989.

[Gel87] M. Gelfond. On stratified autoepistemic theories. In AAAI’87, pages 207–
211. Morgan Kaufmann, 1987.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In R. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on LP,
pages 1070–1080. MIT Press, 1988.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
Warren and Szeredi, editors, 7th Int. Conf. on LP, pages 579–597. MIT
Press, 1990.

[GRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[HC84] G. Hughes and M. Cresswell. A companion to modal logic. Methuen,
1984.

[Jon91] K. Jonker. On the semantics of conflit resolution in truth maintenance
systems. Technical report, Univ. of Utrecht, 1991.

[KS90] R. Kowalski and F. Sadri. Logic programs with exceptions. In Warren and
Szeredi, editors, 7th Int. Conf. on LP. MIT Press, 1990.

[Lif92] V. Lifschitz. Minimal belief and negation as failure. Technical report, Dep.
of Computer Science and Dep. of Philisophy, Univ. of Texas at Austin,
1992.

[LS93a] P. Lamarre and Y. Shoham. On knowledge, certainty, and belief (draft).
Personal communication of the second author, Stanford Univ., 1993.

[LS93b] V. Lifschitz and G. Schwarz. Extended logic programs as autoepistemic
theories. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP &
NMR, pages 101–114. MIT Press, 1993.

[Min87] J. Minker. On indefinite databases and the closed world assumption. In
M. Ginsberg, editor, Readings in Nonmonotonic Reasoning, pages 326–
333. Morgan Kaufmann, 1987.

16

[Moo85] R. Moore. Semantics considerations on nonmonotonic logic. Artificial
Intelligence, 25:75–94, 1985.

[MT93] V. Marek and M. Truszczynski. Reflexive autoepistemic logic and logic
programming. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP
& NMR, pages 115–131. MIT Press, 1993.

[Nel49] D. Nelson. Constructible falsity. JSL, 14:16–26, 1949.

[PA92] L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In B. Neumann, editor, European Conf. on AI,
pages 102–106. John Wiley & Sons, 1992.

[PA93] L.M. Pereira and J. J. Alferes. Optative reasoningwith scenario semantics.
In D. S. Warren, editor, 10th Int. Conf. on LP, pages 601–615. MIT Press,
1993.

[PAA91a] L. M. Pereira, J. J. Alferes, and J. N. Aparı́cio. Contradiction Removal
within Well Founded Semantics. In A. Nerode, W. Marek, and V. S.
Subrahmanian, editors, LP & NMR, pages 105–119. MIT Press, 1991.

[PAA91b] L. M. Pereira, J. N. Aparı́cio, and J. J. Alferes. Nonmonotonic reasoning
with well founded semantics. In Koichi Furukawa, editor, 8th Int. Conf.
on LP, pages 475–489. MIT Press, 1991.

[PAA92] L. M. Pereira, J. J. Alferes, and J. N. Aparı́cio. Default theory for well
founded semantics with explicit negation. In D. Pearce and G. Wagner,
editors, Logics in AI. Proceedings of the EuropeanWs. JELIA’92, volume
633 of LNAI, pages 339–356. Springer–Verlag, 1992.

[PAA93] L. M. Pereira, J. N. Aparı́cio, and J. J. Alferes. Non–monotonic reasoning
with logic programming. Journal of Logic Programming. Special issue on
Nonmonotonic reasoning, 17(2, 3 & 4):227–263, November 1993.

[PDA93] L. M. Pereira, C. Damásio, and J. J. Alferes. Diagnosis and debugging as
contradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd Int.
Ws. on LP & NMR, pages 316–330. MIT Press, 1993.

[Pea93] D. Pearce. Answer sets and constructive logic, II: Extended logic programs
and related nonmonotonic formalisms. In L. M. Pereira and A. Nerode,
editors, 2nd Int. Ws. on LP & NMR, pages 457–475. MIT Press, 1993.

[PP90] H. Przymusinska and T. Przymusinski. Semantic issues in deductive
databases and logic programs. In R. Banerji, editor, Formal Techniques in
AI, a Sourcebook, pages 321–367. North Holland, 1990.

[Prz90] T. Przymusinski. Extended stable semantics for normal and disjunctive
programs. In Warren and Szeredi, editors, 7th Int. Conf. on LP, pages
459–477. MIT Press, 1990.

17

[Prz91a] T. Przymusinski. Autoepistemic logic of closed beliefs and logic program-
ming. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP &
NMR, pages 3–20. MIT Press, 1991.

[Prz91b] T. Przymusinski. A semantics for disjunctive logic programs. In Loveland,
Lobo, and Rajasekar, editors, ILPS’91 Ws. in Disjunctive Logic Programs,
1991.

[Prz93] T. Przymusinski. Static semantics for normal and disjunctive programs.
Technical report, Dep. of Computer Science, Univ. of California at River-
side, 1993.

[Rei78] R. Reiter. On closed–world data bases. In H. Gallaire and J. Minker,
editors, Logic and DataBases, pages 55–76. Plenum Press, 1978.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:68–93,
1980.

[Sch91] G. Schwarz. Autoepistemic logic of knowledge. In A. Nerode, W. Marek,
and V. S. Subrahmanian, editors, LP & NMR, pages 260–274. MIT Press,
1991.

[Wag91] G. Wagner. A database needs two kinds of negation. In B. Thalheim,
J. Demetrovics, and H-D. Gerhardt, editors,Mathematical Foundations of
Database Systems, volume 495 of LNCS, pages 357–371. Springer–Verlag,
1991.

[Wag93] G.Wagner. Reasoningwith inconsistencyin extendeddeductivedatabases.
In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP & NMR, pages
300–315. MIT Press, 1993.

18

A Answer-sets, andWFSX definitions

An extended program is a set of rules of the form:

0 1 1 0

where each is an objective literal. An objective literal is either an atom or its
explicit negation We also use to denote complementary literal wrt. the explicit
negation, so that . The set of all objective literals of a program is called
the extended Herbrand base of and denoted by The symbol stands for
negation by default. is called a default literal. Literals are either objective
or default literals. By 1 we mean 1 An
interpretation of an extended program is denoted by , where and
are disjoint subsets of Objective literals in are said to be true in , objective
literals in false by default in , and in undefined in .

We begin by recalling the definition of answer-sets semantics:

Definition A.1 (The !–operator) Let be an extended program, a set of objective
literals, and let (resp.) be obtained from (resp.) by denoting every literal

by a new atom, say . The GL–transformation is the programobtained from
by removing all rules containing a default literal such that , and by

then removing all the remaining default literals from . Let be the least model of
. ! is obtained from by replacing the introduced atoms by .

Definition A.2 (Answer-sets semantics) Let be an extended program. An inter-
pretation is an answer-set of iff:

! and

The answer-sets semantics of is determined by the intersection of all answer-sets
of .

For similarity with the definition of answer-sets semantics, here we presentWFSX
in a distinctly different manner with respect to its original definition. This presentation
is basedon alternatingfix-points of Gelfond–Lifschitz!–like operators [GL88, GL90].
The proof of equivalence between both definitions, as well as proofs of other results
in this section, can be found in [Alf93].
To impose the coherence requirement in WFS we introduce:

Definition A.3 (Semi-normal version of a program) The semi-normal version of a
program is the program obtained from by adding to the (possibly empty)
of each rule the default literal where is the complement of
wrt. explicit negation.

Below we use ! to denote ! and ! to denote !

19

Definition A.4 (Partial stable model) A set of objective literals generatesa partial
stable model (PSM) of an extended program iff:

1 !! ; and
2 !

The partial stable model generated by is the interpretation:

!

In other words, partial stable models are determined by the fix-points of !! .
Given a fix-point , objective literals in are true in the PSM, objective literals not
in ! are false by default, and all others are undefined. Thus, objective literals in
! are all the true or undefined ones. Note that condition 2 imposes that a literal
cannot be both true and false by default (viz. if it belongs to it does not belong to

! , and vice-versa). Moreover note how the use of ! imposes coherence:
if is true, i.e. it belongs to , then in ! , via semi-normality, all rules for are
removed and, consequently, ! , i.e. is false by default.

Example 12 Program ; has no partial stable models. Indeed, the only
fix-point of !! is , and ! . Thus it is not a PSM.

Programs without partial stable models are said contradictory.

Theorem A.1 (WFSX semantics) Every non-contradictory program has a least
(wrt.) partial stable model, the well-founded model of ().

To obtain an iterative “bottom-up” definition for wedefine the following
transfinite sequence :

0

1 !!
for limit ordinal

There exists a smallest ordinal for the sequenceabove, such that is the smallest
fix-point of !! , and ! .

In this constructive definition literals obtained after an application of !! (i.e. in
some) are true in , and literals not obtained after an application of !
(i.e. not in ! , for some) are false by default in .

Theorem A.2 (Relation to WFS) For normal logic programs (i.e. without explicit
negation)WFSX coincides with the well–founded semantics of [GRS91].

Theorem A.3 (Relation to Answer-sets) Let be an extended logic program with
at least one answer-set. Every answer-set of is also a PSM of . Moreover, for any
objective literal :

If then belongs to all answer-sets of .

If then does not belong to any answer-set of .

20

