Dynamic Updates of Non-Monotonic Knowledge Bases

J. J. Alferes J. A. Leite, L. M. Pereira
Dept. Matematica A.L. Centre
Univ. Evora and Dept. Informatica
AL Centre Univ. Nova de Lisboa
Univ. Nova de Lisboa, 2825 Monte da Caparica
2825 Monte da Caparica Portugal
Portugal
H. Przymusinska T. C. Przymusinski
Computer Science Computer Science
California State Univ. of California
Polytechnic Univ. Riverside, CA 92521
Pomona, CA 91768 USA
USA
Abstract

In this paper we investigate updates of knowledge bases represented by logic programs. In
order to represent negative information, we use generalized logic programs which allow default
negation not only in rule bodies but also in their heads.We start by introducing the notion of an
update P @& U of one logic program P by another logic program U. Subsequently, we provide a
precise semantic characterization of P@ U, and study some basic properties of program updates.
In particular, we show that our update programs generalize the notion of interpretation update.

We then extend this notion to compositional sequences of logic programs updates P, @& P> &
..., defining a dynamic program update, and thereby introducing the paradigm of dynamic logic
programming. This paradigm significantly facilitates modularization of logic programming, and
thus modularization of non-monotonic reasoning as a whole.

Specifically, suppose that we are given a set of logic program modules, each describing
a different state of our knowledge of the world. Different states may represent different time
points or different sets of priorities or perhaps even different viewpoints. Consequently, program
modules may contain mutually contradictory as well as overlapping information. The role of
the dynamic program update is to employ the mutual relationships existing between different
modules to precisely determine, at any given module composition stage, the declarative as well
as the procedural semantics of the combined program resulting from the modules.

1 Introduction

Most of the work conducted so far in the field of logic programming has focused on representing
static knowledge, i.e., knowledge that does not evolve with time. This is a serious drawback when
dealing with dynamic knowledge bases in which not only the extensional part (the set of facts)
changes dynamically but so does the intensional part (the set of rules).

In this paper we investigate updates of knowledge bases represented by logic programs. In order
to represent negative information, we use generalized logic programs which allow default negation not
only in rule bodies but also in their heads. This is needed, in particular, in order to specify that some

atoms should became false, i.e., should be deleted. However, our updates are far more expressive
than a mere insertion and deletion of facts. They can be specified by means of arbitrary program
rules and thus they themselves are logic programs. Consequently, our approach demonstrates how to
update one generalized logic program P (the initial program) by another generalized logic program
U (the updating program), obtaining as a result a new, updated logic program P & U.

Several authors have addressed the issue of updates of logic programs and deductive databases
(see e.g. [12, 13, 14, 1]), most of them following the so called “interpretation update” approach,
originally proposed in [15, 8]. This approach is based on the idea of reducing the problem of finding
an update of a knowledge base DB by another knowledge base U to the problem of finding updates
of its individual interpretations (models'). More precisely, a knowledge base DB’ is considered
to be the update of a knowledge base DB by U if the set of models of DB’coincides with the
set of updated models of DB, i.e., “the set of models of DB’ = “the set of updated models of
DB”. Thus, according to the interpretation update approach, the problem of finding an update
of a deductive database DB is reduced to the problem of finding individual updates of all of its
relational instantiations (models) M. Unfortunately, such an approach suffers, in general, from
several important drawbacks?:

e In order to obtain the update DB’ of a knowledge base DB one has to first compute all the
models M of DB (typically, a daunting task) and then individually compute their (possibly
multiple) updates My by U. An update My of a given interpretation M is obtained by changing
the status of only those literals in M that are “forced” to change by the update U, while keeping
all the other literals intact by inertia (see e.g. [12, 13, 14]).

e The updated knowledge base DB’ is not defined directly but, instead, it is indirectly character-
ized as a knowledge base whose models coincide with the set of all updated models My of DB.
In general, there is therefore no natural way of computing® DB’ because the only straightfor-
ward candidate for DB’ is the typically intractably large knowledge base DB’ consisting of
all clauses that are entailed by all the updated models My of DB.

e Most importantly, while the semantics of the resulting knowledge base DB’ indeed represents
the intended meaning when just the extensional part of the knowledge base DB (the set of
facts) is being updated, it leads to strongly counter-intuitive results when also the intensional
part of the database (the set of rules) undergoes change, as the following example shows.

Example 1.1 Consider the logic program P :

P: sleep < nottv_on
tv_on — (1)
watch_tv < tv_on.

Clearly M = {tv_on,watch_tv} is its only stable model. Suppose now that the update U states that
there is a power failure, and if there is a power failure then the TV is no longer on, as represented
by the logic program U :

U: nottv_on + power_failure
power_failure <+

2)

IThe notion of a model depends on the type of considered knowledge bases and on their semantics. In this paper
we are considering (generalized) logic programs under the stable model semantics.

2In [1] the authors addressed the first two of the drawbacks mentioned below. They showed how to directly
construct, given a logic program P, another logic program P’ whose partial stable models are exactly the interpretation
updates of the partial stable models of P. This eliminates both of these drawbacks (in the case when knowledge bases
are logic programs) but it does not eliminate the third, most important drawback.

3 In fact, in general such a database DB’ may not exist at all.

According to the above mentioned interpretation approach to updating, we would obtain My =
{power_failure,watch_tv} as the only update of M by U. This is because power_failure needs
to be added to the model and its addition forces us to make tv_on false. As a result, even though
there is a power failure, we are still watching TV. However, by inspecting the initial program and the
updating rules, we are likely to conclude that since “watch_tv” was true only because “tv_on” was
true, the removal of “tv_on” should make “watch_tv” false by default. Moreover, one would expect
“sleep” to become true as well. Consequently, the intended model of the update of P by U is the
model M[’] = {power_failure, sleep}.
Suppose now that another update Uy follows, described by the logic program:

Us : notpower_failure (3)

stating that power is back up again. We should now expect the TV to be on again. Since power was
restored, i.e. “power_failure” is false, the rule “nottv_on < power_failure” of U should have no
effect and the truth value of “tv_on” should be obtained by inertia from the rule “tv_on <+ 7 of the
original program P. a

This example illustrates that, when updating knowledge bases, it is not sufficient to just consider
the truth values of literals figuring in the heads of its rules because the truth value of their rule
bodies may also be affected by the updates of other literals. In other words, it suggests that the
principle of inertia should be applied not just to the individual literals in an interpretation but
rather to the entire rules of the knowledge base.

The above example also leads us to another important observation, namely, that the notion of
an update DB’ of one knowledge base DB by another knowledge base U should not just depend on
the semantics of the knowledge bases DB and U, as it is the case with interpretation updates, but
that it should also depend on their syntaz. This is best illustrated by the following, even simpler,
example:

Example 1.2 Consider the logic program P :
P : innocent < not found_guilty (4)

whose only stable model is M = {innocent}, because found_guilty is false by default. Suppose now
that the update U states that the person has been found guilty:

U: found_guilty < . (5)

Using the interpretation approach, we would obtain My = {innocent, found_guilty} as the only
update of M by U thus leading us to the counter-intuitive conclusion that the person is both innocent
and guilty. This is because found_guilty must be added to the model M and yet its addition does
not force us to make innocent false. However, it is intuitively clear that the interpretation M(’] =
{found_guilty}, stating that the person is guilty but no longer presumed innocent, should be the only
model of the updated program. Observe, however, that the program P is semantically equivalent to
the following program P’ :

P': innocent + (6)

because the programs P and P’ have exactly the same set of stable models, namely the model M.
Nevertheless, while the model My = {innocent, found_guilty} is not the intended model of the
update of P by U it is in fact the only reasonable model of the update of P’ by U. a

In this paper we investigate the problem of updating knowledge bases represented by generalized
logic programs and we propose a new solution to this problem that attempts to eliminate the

drawbacks of the previously proposed approaches. Specifically, given one generalized logic program
P (the so called initial program) and another logic program U (the updating program) we define a
new generalized logic program P @ U called the update of P by U. The definition of the updated
program P & U does not require any computation of the models of either P or U and is in fact
obtained by means of a simple, linear-time transformation of the programs P and U. As a result,
the update transformation can be accomplished very efficiently and its implementation is quite
straightforward®.

Due to the fact that we apply the inertia principle not just to atoms but to entire program rules,
the semantics of our updated program P & U avoids the drawbacks of interpretation updates and
it seems to properly represent the intended semantics. As mentioned above, the updated program
P @ U does not just depend on the semantics of the programs P and U, as it was the case with
interpretation updates, but it also depends on their syntaz. In order to make the meaning of the
updated program clear and easily verifiable, we provide a complete characterization of the semantics
of updated programs P & U.

Nevertheless, while our notion of program update significantly differs from the notion of inter-
pretation update, it coincides with the latter (as originally introduced in [12] under the name of
revision program and later reformulated in the language of logic programs in [13, 14]) when the
initial program P is purely extensional, i.e., when the initial program is just a set of facts. Our
definition also allows significant flexibility and can be easily modified to handle updates which incor-
porate contradiction removal or specify different inertia rules. Consequently, our approach can be
viewed as introducing a general dynamic logic programming framework for updating logic programs
which can be suitably modified to make it fit different application domains and requirements.

Finally, we extend the notion of program updates to sequences of programs, defining the so
called dynamic program updates. The idea of dynamic updates is very simple and quite fundamental.
Suppose that we are given a set of program modules P, indexed by different states of the world
s. Each program P, contains some knowledge that is supposed to be true at the state s. Different
states may represent different time periods or different sets of priorities or perhaps even different
viewpoints. Consequently, the individual program modules may contain mutually contradictory as
well as overlapping information. The role of the dynamic program update @ {P;:s € S} is to
use the mutual relationships existing between different states (as specified by the order relation) to
precisely determine, at any given state s, the declarative as well as the procedural semantics of the
combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm of dy-
namic logic programming. Given individual and largely independent program modules P describing
our knowledge at different states of the world (for example, the knowledge acquired at different
times), the dynamic program update @ {P; : s € S } specifies the exact meaning of the union
of these programs. Dynamic programming significantly facilitates modularization of logic program-
ming and, thus, modularization of non-monotonic reasoning as a whole. Whereas traditional logic
programming has concerned itself mostly with representing static knowledge, we show how to use
logic programs to represent dynamically changing knowledge.

Our results extend and improve upon the approach initially proposed in [10], where the authors
first argued that the principle of inertia should be applied to the rules of the initial program rather
than to the individual literals in an interpretation. However, the specific update transformation
presented in [10] suffered from some drawbacks and was not sufficiently general.

We begin in Section 2 by defining the language of generalized logic programs, which allow default
negation in rule heads. We describe stable model semantics of such programs as a special case of the
approach proposed earlier in [11]. In Section 3 we define the program update P & U of the initial
program P by the updating program U. In Section 4 we provide a complete characterization of the
semantics of program updates P @ U and in Section 5 we study their basic properties. In Section 6

4The implementation is available at: http://www-ssdi.di.fct.unl.pt/~jja/updates/.

we introduce the notion of dynamic program updates. We close the paper with concluding remarks
and notes on future research.

2 Generalized Logic Programs and their Stable Models

In order to represent negative information in logic programs and in their updates, we need more
general logic programs that allow default negation not A not only in premises of their clauses but
also in their heads®. We call such programs generalized logic programs. In this section we introduce
generalized logic programs and extend the stable model semantics of normal logic programs [6] to
this broader class of programs. In the subsequent paper [5] we extend our results to 3-valued (partial)
models of logic programs, and thus, in particular, to well-founded semantics.

The class of generalized logic programs can be viewed as a special case of a yet broader class of
programs introduced earlier in [11]. While our definition is different and seems to be simpler than
the one used in [11], when restricted to the language that we are considering, the two definitions can
be shown to be equivalent. It should be stressed that the class of generalized logic programs differs
from the class of programs with the so called “classical” negation [7] which allow the use of strong
rather than default negation in their heads.

It will be convenient to syntactically represent generalized logic programs as propositional Horn
theories. In particular, we will represent default negation not A as a standard propositional variable
(atom). Suppose that K is an arbitrary set of propositional variables whose names do not begin
with a “not”. By the propositional language Li generated by the set K we mean the language £
whose set of propositional variables consists of:

{A:AeK}U{notA: AeK}. (7)

Atoms A € K, are called objective atoms while the atoms not A are called default atoms. From the
definition it follows that the two sets are disjoint.

By a generalized logic program P in the language Lx we mean a finite or infinite set of propo-
sitional Horn clauses of the form:

L« Li,...,Ly, (8)

where L and L; are atoms from Lx. If all the atoms L appearing in heads of clauses of P are
objective atoms, then we say that the logic program P is normal. Consequently, from a syntactic
standpoint, a logic program is simply viewed as a propositional Horn theory. However, its semantics
significantly differs from the semantics of classical propositional theories and is determined by the
class of stable models defined below.

By a (2-valued) interpretation M of Lx we mean any set of atoms from Lx that satisfies the
condition that for any A in K, precisely one of the atoms A or not A belongs to M. Given an
interpretation M we define:

Mt = {AeK:Ae M}
M- {notA: Aek, notAe M} = {notA:AekK, A¢ M}.

By a (2-valued) model M of a generalized logic program P we mean a (2-valued) interpretation of
P that satisfies all of its clauses. A program is called consistent if it has a model. A model M is
considered smaller than a model N if the set of objective atoms of M is properly contained in the
set of objective atoms of V. A model of P is called minimal if there is no smaller model of P. A
model of P is called least if it is the smallest model of P. It is well-known that every consistent
program P has the least model M = {A: A is an atom and P - A}.

5For further motivation and intuitive reading of logic programs with default negations in the heads see [11].

Definition 2.1 (Stable models of generalized logic programs) We say that a (2-valued) in-
terpretation M of Li is a stable model of a generalized logic program P if M is the least model of
the Horn theory P U M~ :

M = Least(PUM™), 9)
or, equivalently, if M = {A: A is an atom and PUM ™+ A} . a
Example 2.1 Consider the program:
a — notb c b e — notd
notd < mnotc,a d <+ note (10)

and let K = {a,b,c,d,e}. This program has precisely one stable model M = {a, e, not b, not ¢, not d}.
To see that M is stable we simply observe that:

M = Least(P U {not b, not c, not d}). (11)
On the other hand, the interpretation N = {not a, note,b,c,d} is not a stable model because:
N # Least(P U {note,nota}) = {d, nota, note}. O (12)

Following an established tradition, whenever convenient we will be omitting the default (negative)
atoms when describing interpretations and models. Thus the above model M will be simply listed
as M = {a,e}.

Throughout the paper by the semantics of a generalized logic program we mean the stable
semantics. We also say that two generalized logic programs in a given language £ are semantically
equivalent if they have the same set of stable models.

Given a generalized logic program P and an interpretation M, by the Gelfond-Lifschitz transform
of P w.r.t. M we mean a generalized logic program % obtained from P by (a) removing from P all
clauses which contain default premises not A such that A € M, and, (b) removing default premises
not A from all the remaining clauses. Clearly, the above definition extends the notion of the Gelfond-
Lifschitz transform [6] from the class of normal programs to the class of generalized logic programs.
The following proposition easily follows from the definition of stable models.

Proposition 2.1 An interpretation M of Lx is a stable model of a generalized logic program P if
and only if

M+:{A:A€Kand§|—A} (13)
and
- P
M~ D2 {notA: Aeck and i F notA}.O (14)

Clearly, the second condition in the above proposition is always vacuously satisfied for normal
programs. Since the first condition characterizes stable models of normal programs [6], we immedi-
ately obtain:

Proposition 2.2 The class of stable models of generalized logic programs extends the class of stable
models of normal programs. More precisely, an interpretation is a stable model of a normal program
in the sense of Definition 2.1 if and only if it is a stable model in the sense of Gelfond-Lifschitz [6].
O

3 Program Updates

Suppose that K is an arbitrary set of propositional variables, and P and U are two generalized logic
programs in the language £ = Lx. By K we denote the following superset of K:

K=KU{A™, Ap, Ap, Ay, Ay : A€ K} (15)

This definition assumes that the original set /C of propositional variables does not contain any of the
newly added symbols of the form A=, Ap, Ay, Ay, A;; so that they are all disjoint sets of symbols.
If £ contains any such symbols then they have to be renamed before the extension of K takes place.
We denote by £ = L¢ the extension of the language £ = L generated by K.

Definition 3.1 (Program Updates) Let P and U be generalized programs in the language L. We
call P the original program and U the updating program. By the update of P by U we mean the
generalized logic program P & U , which consists of the following clauses in the extended language

L:

(RP) Rewritten original program clauses:

Ap < By,... ,Bp,C{,...,C, (16)
A, < By,...,Bn,Cr,...,C, (17)
for any clause:
A « By, ..., By, notCy, ..., notCy,
respectively,
notA < By, ..., Bp, notCq, ..., notCy,

in the original program P. The rewritten clauses are obtained from the original ones by re-
placing atoms A (respectively, the atoms not A) occurring in their heads by the atoms Ap
(respectively, Ap) and by replacing negative premises not C by C~.

The role of the new meta-level atoms Ap and Ap is to indicate the fact that these clauses
originally came from the program P. Moreover, as we will demonstrate below, the new atoms
A~ serve as meta-language representation of the default atoms not A.

(RU) Rewritten updating program clauses:

Ay < By,...,B,,Cy,...,C, (18)
Ay < By,...,Bn,C,...,C; (19)
for any clause:
A « By, ..., By, notCy, ..., notCy,
respectively,
notA < By, ..., Bp, notCq, ..., notCy,

in the updating program U. The rewritten clauses are obtained from the original ones by
replacing atoms A (respectively, the atoms not A) occurring in their heads by the atoms Ay
(respectively, Ar;) and by replacing negative premises not C' by C~.

The role of the new meta-level atoms Ay and Ay, is to indicate the fact that these clauses
originally came from the updating program U. Moreover, as we will demonstrate below, the
new atoms A~ serve as meta-language representation of the default atoms not A.

(UR) Update rules:

A” Ay (21)

for all objective atoms A € K. The update rules state that an atom A must be true (respectively,
false) in P ® U if it is true (respectively, false) in the updating program U.

(IR) Inheritance rules:

A Ap,not Ay (22)
A™ «— Ap, not Ay (23)

for all objective atoms A € IC. The inheritance rules say that an atom A (respectively, A=) in
the updated program P ® U is inherited (by inertia) from the original program P provided it is
not rejected (i.e., forced to be false) by the updating program U. More precisely, an atom A is
true (respectively, false) in P ® U if it is true (respectively, false) in the original program P,
provided it is not made false (respectively, true) by the updating program U .

(DR) Default rules:

A™ < not Ap,not Ay (24)
not A+ A, (25)

for all objective atoms A € K. The first default rule states that an atom A in P @ U is false if
it s neither true in the original program P nor in the updating program U. The second says
that if an atom is false then it can be assumed to be false by default. It also ensures that A
and A~ cannot both be true. |

Proposition 3.1 Any model N of P®U is coherent, by which we mean that A is true (respectively,
false) in N iff A~ is false (respectively, true) in N, for any A € K. In other words, every model of
P @ U satisfies the constraint not A= A,

Proof. Clearly, due to the second default rule, A and A~ cannot both be true in N. On the
other hand, if both A and A~ are false in IV then, due to the update rules, both not Ay and not A,
must be true. From the first inheritance axiom we infer that not Ap must hold, which, in view of
the first default rule, leads to a contradiction. a

Remark 3.1 According to the above proposition, the atoms A~ can be simply regarded as meta-level
representation of the default negation atoms not A. Similarly, the remaining, newly added atoms,
Ap, Ap, Ay and Ay serve as meta-level representation of the atoms (or their default negations)
derivable from programs P and U, respectively. R

When we discuss interpretations or models of the extended language L = L we often restrict our
attention to the “relevant” atoms, i.e., to the atoms from the base language L = Ly and thus we
ignore, whenever justified, the auziliary, meta-level atoms A=, Ap, Ap, Ay and A,

Example 3.1 Consider the programs P and U from Ezample 1.1:

P sleep <« nottv_on
tv_on ¢
watch_tv <+ tv_on (26)
U: not tv_on
power_failure

power_failure

TT

The update of the program P by the program U is the logic program P & U = (RP)U(RU)U(UR)U
(IR) U (DR), where:

RP : sleepp <« tv_on~
tvonp <
watch_tvp <+ tv_on 27)
RU : tv_on;; < power_failure
power_failurey <+

It is easy to verify that M = {power_failure, sleep} is the only stable model (restricted to relevant
atoms) of P®U. Indeed, power_failure follows from the second clause of (RU) and from the
Update Rules (UR). Now from power_failure, the first rule of (RU) and the Update Rules (UR)
we deduce tv_on~ and thus also not tv_on. From the first rule of (RP) we infer sleepp and from
the Inheritance Rules (IR) we deduce sleep. Finally, watch_tv~ and not watch_tv follow from the
default rules. O

4 Semantic Characterization of Program Updates

In this section we provide a complete semantic characterization of update programs P & U by
describing their stable models. This characterization shows precisely how the semantics of the
update program P @& U depends on the syntax and semantics of the programs P and U.

Let P and U be fized generalized logic programs in the language £. Since the update program
P @ U is defined in the extended language £, we begin by first showing how interpretations of the
language £ can be naturally extended to interpretations of the extended language L.

Since any model N of the update program P & U is coherent (see Proposition 3.1) and since
the atoms Ap, Ap, Ay and Ay appear only in the heads of the rewritten program rules, if NV is
a minimal (in particular, stable) model of the update program P & U then N must satisfy, for any
Aek:

A eN iff notAeN

ApeN iff 3 A « Bodye€ P and N | Body

ApeM iff InotA < Body € P and N |= Body (28)
Ay e M iff JA + Body € U and N [Body

Ay €N iff 3notA « Body €U and N = Body.

Accordingly, the truth or falsity in IV of the atoms A~, Ap, A, Ay and Aj; depends only on
the truth or falsity in N of the atoms A from K. This leads us to the following definition:

Definition 4.1 (Extended Interpretation) For any interpretation M of L we denote by M its
extension to an interpretation of the extended language L defined, for any atom A € K, by the
following rules:

A—eM iff notAeM

ApeM iff 3A + Bodye P and M E Body
A;EJ/W\ iff InotA « Body € P and M | Body
Ay e M iff JA « Body € U and M = Body

AEEJ\/I\ iff I notA < Body € U and M | Body.O

This definition immediately implies:

Proposition 4.1 If N is a minimal model of the update program P ® U and M = N|L is its re-
striction to the language L then N = M. a

We will also need the following definition:

Definition 4.2 For any interpretation M of the language L define:

Defaults[M] = {notA:V(A < Body) € P U U we have M [~ Body};

Rejected[M] = {A<+ Body € P:M |= Body, 3 (not A < Body') € U, M |= Body'} U
U {not A+ Body € P: M = Body, 3 (A < Body') € U, M |= Body'};

Residue[M] = P U U — Rejected[M]. i

The set Defaults[M] contains default negations not A of all unsupported atoms A in M, i.e.,
atoms that have the property that the body of every clause from P U U with the head A is false in
M. Consequently, negation not A of these unsupported atoms A can be assumed by default. The
set Rejected[M] C P represents the set of clauses of the original program P that are rejected (or
contradicted) by the update program U and the interpretation M. The residue Residue[M] consists
of all clauses in the union PUU of programs P and U that were not rejected by the update program
U. Note that all the three sets depend on the interpretation M as well as on the syntazr of the
programs P and U.

Now we are able to describe the semantics of the update program P& U by providing a complete
characterization of its stable models.

Theorem 4.1 (Characterization of stable models of update programs) An interpretation
N of the language L = Lg is a stable model of the update program P © U if and only if N is the
extension N = M of an interpretation M of the language L that satisfies the condition:

M = Least(P U U — Rejected[M] U Defaults[M]), (29)
or, equivalently:
M = Least(Residue[M] U Defaults[M]).

Proof. (=) Suppose that N is a stable model of the update program P ® U and let R =
(P®U)UN~. From Definition 2.1 it follows that:

N = Least(R) = Least((P®U)U N7). (30)

Let T = Residue[M] U Defaults[M] and let H =Least(T’) be its least model (in the language £).
We are supposed to show that the restriction M = N|L of N to the language £ coincides with H.
From Proposition 4.1, we infer that the following equivalences hold true for every atom A € K:

A e N iff notAe M iff notAe N

Ape N iff 3 A « Body e P, M = Body iff 3 A « Body € P, N = Body

ApeN iff InotA < Body € P, M |=Body iff InotA < Body € P, N |= Body

Ay e N iff 3A « Body €U, M [Body ifft 3A « Body € U, N = Body

Ay eN iff InotA < Bodye U, M= Body iff InotA < Body €U, N = Body.
(31)

Denote by S the sub-language of L that includes only propositional symbols {A: A€ K} U{A™ :

A € K}. By means of several simple reductions we will transform the program R = (P@®U) U N~
in the language £ into a simpler program Y in the language S so that:

10

e The least model J = Least(Y) of Y is equal to the least model N = Least(R) of R when
restricted to the language S, i.e., J = N|S;

e The program Y in the language S is syntactically identical to the program T' = Residue[M] U
Defaults[M] in the language £, except that notA is everywhere replaced by A~.

First of all, we observe that from (31) it follows that for any A € K neither Ap nor Ay belongs
to N if and only if notA € Defaults[M]. Accordingly, the first default rulein R = (P®U)UN",
namely, A~ < not Ap, not Ay, can be replaced by the rule:

A~ for all A € K such that notA € Defaults[M]

without affecting the least model of R. As a result we obtained a transformed program R'.
;From (31) it also follows that the inheritance rules (IR):

A Ap,not A, (32)
A” « Ap,not Ay (33)

in R’ can be replaced by the simpler rules:
AT+ Ap (35)

without affecting the least model of R’ restricted to the language S as long as we remove from R’
all the rules:

Ap(—Bl,...,Bm,Cl_,...,CT: (36)
Ap < Biy,...,Bn,Cr,...,Cx (37)
respectively, that correspond to program rules:

A < By, ..., By, notCy, ..., notCy,

notA < By, ..., By, notCy, ..., notCy,

from P that were rejected by U, i.e., to the rules that belong to Rejected[M]. This is due to the fact
that both Ap and A, (respectively, both A, and Ay) are true in N if and only if there is a program
clause:

A < By, ..., By, notCy, ..., notCy,
respectively:
notA < By, ..., By, notCy, ..., notCy,

in P that belongs to Rejected[M]. Since the propositional symbols Ap and A, do not appear in
bodies of any other clauses from R’, removing these rules from R’ does not in anyway affect the truth
of the propositional symbols A and A~ and thus it does not affect the least model of R’ restricted
to the language S. As a result we obtain the program R".

We can now remove all the negative facts in N~ and the default rules not A + A~ from R"
because they only involve propositional symbols not A which no longer appear in bodies of any other
clauses from R"and thus do not affect the least model of R restricted to the language S. As a
result we obtain the program R'.

11

Finally, since we are only interested in the sub-language S, we can now safely remove from R’
all the auxiliary propositional symbols Ap and A, obtaining as a result the final program Y in the
language S that consists of all the clauses:

A< Bi,...,Bw,CT,...,Cs
A=« By,...,Bn,Cy,...,Co

corresponding to the clauses from Residue[M]| = P U U — Rejected[M] together with all the atomic
facts:

A~ where notA € Defaults[M].

Clearly, this program is entirely identical to the program T' = Residue[M] U Defaults[M], except
that notA is everywhere replaced by A~. Consequently, the least model J of Y is identical to the
least model H of T', except that notA is everywhere replaced by A~. Moreover, due to the way in
which it was obtained, the least model J = Least(Y") of the program Y is equal to the least model
N = Least(R) of R restricted to the language S, i.e., J = N|S. This implies that for any A € K:

AeN iff AeJ iff AeH
A—eN iff A~ eJ iff notAeH.

We conclude that M = N|L = H, because from (31) it follows that notA € N iff A~ € N. This
completes the proof of the implication from left to right.
The converse implication is established in a completely analogous way. O

Example 4.1 Consider again the programs P and U from FEzample 1.1. Let M =
{power_failure, sleep}. We obtain:

Rejected[M]|={tv_on <}

sleep < not tv_on
watch_tv < tv_on

not tv_on < power_failure
power_failure
Defaults[M]={not watch_tv}

Residue[M] =

and thus it is easy to see that
M = Least(Residue[M] U Defaults[M]).

Consequently, M s a stable model of the update program P & U. In fact, it is the only stable model
of this program. a

5 Properties of Program Updates

In this section we study the basic properties of program updates. Since Defaults[M] C M~, we
conclude that the condition

M = Least(Residue[M] U Defaults[M]) (C1)

which, according to Theorem 4.1, is equivalent to M being a stable model of P & U, clearly implies
the condition:

M = Least(Residue[M]U M ™) (C2)
which, according to Proposition 2.1, is equivalent to M being a stable model of

Residue[M] = P U U — Rejected[M]. Consequently, we immediately obtain:

12

Proposition 5.1 If N is a stable model of P ® U then its restriction M = N|L to the language L
is a stable model of Residue[M] =P U U — Rejected[M]. o

In general, the converse of the above implication does not hold. This is because (C1) states that
the model M is determined not just by the set M~ of all negative atoms not A but rather by the
generally smaller set De faults[M] of negations of unsupported atoms.

Example 5.1 Let P contain only the fact A < , let U contain only the clause not A <+ not A and let
M = {not A}. Since Residue[M] =U clearly M is a stable model of Residue[M] and thus satisfies
the condition (C2). However, since Defaults[M] =0 the interpretation M does not satisfy (C1)
and thus M is not a stable model of the updated program P@®U. In fact, M = { A} is the only stable
model of P® U. O

However, if Rejected[M] = () then the two conditions (C1) and (C2) coincide because then M is
a model of Residue(M) = PUU and thus Defaults[M] = M~. In particular, Rejected[M] = if
M is a stable model of P UU which yields:

Proposition 5.2 If M is a stable model of the union PUU of programs P and U then its extension
N = M is a stable model of the update program P ® U. Thus, the semantics of the update program
P& U is always weaker than or equal to the semantics of the union PUU of programs P and U. O

In general, the converse of the above result does not hold. In particular, the union P U U may
be a contradictory program with no stable models.

Example 5.2 Consider again the programs P and U from Ezample 1.1. It is easy to see that PUU
is contradictory. a

Similarly, if either P or U is empty then, for any interpretation M, Rejected|M] = @, and,
therefore we conclude:

Proposition 5.3 If either P or U is empty then M is a stable model of PUU iff N = Misa
stable model of P@®U. Thus, in this case, the semantics of the update program P® U coincides with
the semantics of the union PUU. a

If both P and U are normal programs, or, alternatively, if both P and U have only clauses with
default atoms not A in their heads, then also Rejected[M] = () and therefore we obtain:

Proposition 5.4 If both P and U are normal programs (or if both have only clauses with default
atoms not A in their heads) then M is a stable model of PUU iff N = M is a stable model of PoU.
Thus, in this case the semantics of the update program P @ U also coincides with the semantics of
the union PUU of programs P and U. a

5.1 Program Updates Generalize Interpretation Updates

In this section we show that interpretation updates, originally introduced under the name “revision
programs” by Marek and Truszczynski [12], and subsequently given a somewhat simpler characteri-
zation by Przymusinski and Turner [13, 14], constitute a special case of program updates. Here, we
identify the “revision rules”:

in(A) <« in(B),out(C)

out(A) « in(B),out(C) (38)
used in [12], with the following generalized logic program clauses:
A « B,notC (39)

not A <« B,notC.

13

Theorem 5.1 (Program updates generalize interpretation updates) Let I be any interpre-
tation and U any updating program in the language L. Denote by Py the generalized logic program
in L defined by

Pr={A < :Acl} U {notA < :notAel}.

Then M is a stable model of the program update Pr ® U of the program Pr by the program U iff M
is an interpretation update of I by U (in the sense of [12]).

Proof. Przymusinski and Turner [13, 14] showed that an interpretation M of £ is an interpre-
tation update (in the sense of [12]) of I by a program U iff M is a stable model of the following
program P(I,U):

Encoded interpretation I:

A7 +
for every A such that A isin I, and ,
Al +
for every A such that not A is in 1.
Rewritten clauses from U:
A+ B,...,B,,C ,...,C, (40)
A” « By,...,B,,C,...,C, (41)
for any clause:
A < By, ..., By, notCy, ..., notCy,
respectively,
notA < By, ..., By,notCq, ..., notC,,
in the updating program U.
Inheritance rules:
A<+ Aj,not A- (42)
A7 «— A7 ,not A (43)
for all objective atoms A € K.
Default rule:
not A« A7,

for all objective atoms A € K.

It is easy to see that the above program P(I,U) is semantically equivalent to the program update
P; & U of the program P; by the updating program U. a

This theorem shows that when the initial program P is purely ezxtensional, i.e., contains only
positive or negative facts, then the interpretation update of P by U is semantically equivalent to the
updated program P @ U. As shown by the Examples 1.1 and 1.2, when P contains deductive rules
then the two notions become significantly different.

Remark 5.1 It is easy to see that, equivalently, we could include only positive facts in the definition
of the program Pj:

Pr={A « AcI}

thus resulting in a normal program Pr. m|

14

5.2 Adding Strong Negation

We now show that it is easy to add strong negation —A ([7, 2, 3]) to generalized logic programs. This
demonstrates that the class of generalized logic programs is at least as expressive as the class of logic
programs with strong negation. It also allows us to update logic programs with strong negation and
to use strong negation in updating programs.

Definition 5.1 (Adding strong negation) Let K be an arbitrary set of propositional variables.
In order to add strong megation to the language L = Lx we just augment the set K with new
propositional symbols {—A : A € K}, obtaining the new set K*, and consider the extended language
L* = Li«. In order to ensure that A and —A cannot be both true we also assume, for all A € K |
the following strong negation axioms, which themselves are generalized logic program clauses:

tA «+ -—-A
wot—A A (5N))

Remark 5.2 In order to prevent the strong negation rules (SN) from being inadvertently overruled
by the updating program U, one may want to make them always part of the most current updating
program (see the next section). ad

6 Dynamic Program Updates

In this section we introduce the notion of dynamic program update @{ Ps : s € S} over an ordered
set P ={ P;:s € S} of logic programs which provides an important generalization of the notion
of single program updates P & U introduced in Section 3.

The idea of dynamic updates, inspired by [9], is simple and quite fundamental. Suppose that
we are given a set of program modules P, indexed by different states of the world s. Each pro-
gram P; contains some knowledge that is supposed to be true at the state s . Different states may
represent different time periods or different sets of priorities or perhaps even different viewpoints.
Consequently, the individual program modules may contain mutually contradictory as well as over-
lapping information. The role of the dynamic program update @ {P;: s € S} is to use the mutual
relationships existing between different states (and specified in the form of the ordering relation) to
precisely determine, at any given state s, the declarative as well as the procedural semantics of the
combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm of dy-
namic logic programming. Given individual and largely independent program modules P describing
our knowledge at different states of the world (for example, the knowledge acquired at different
times), the dynamic program update @ {Ps; : s € S } specifies the exact meaning of the union of
these programs. Dynamic programming significantly facilitates modularization of logic programming
and, thus, modularization of non-monotonic reasoning as a whole.

Suppose that P = {P; : s € S} is a finite or infinite sequence of generalized logic programs in the
language £ = L, indexed by the finite or infinite set S = {1,2, ..., n, ...} of natural numbers.
We will call elements s of the set S U {0} states and we will refer to 0 as the initial state.

Remark 6.1 Instead of a linear sequence of states S U {0} one could as well consider any finite
or infinite ordered set with the smallest element so and with the property that every state s other
than sg has an immediate predecessor s — 1 and that for every state s, the initial state so is the n-th
immediate predecessor of s, for some finite n. In particular, one may use a finite or infinite tree
with the root so and the property that every node (state) has only a finite number of ancestors. O

By K we denote the following superset of the set K of propositional variables:

K=KU{A™,A,, A7, Ap,, Ay : A€ K, s SU{0}}.

15

As before, this definition assumes that the original set I of propositional variables does not contain
any of the newly added symbols of the form A™, A5, A7, Ap,, Ap so that they are all disjoint sets
of symbols. If the original language K contains any such symbols then they have to be renamed
before the extension of K takes place. We denote by £ = L the extension of the language £ = L
generated by K.

Definition 6.1 (Dynamic Program Update) By the dynamic program update over the sequence
of updating programs P = {P; : s € S} we mean the logic program \{P, which consists of the following

clauses in the extended language L:

(RP) Rewritten program clauses:

Ap, < By,...,Bn,C,...,C (44)
Ap < Bi,...,By,Cr,...,Cy (45)
for any clause:
A « By, ..., By, notCy, ..., notC,
respectively, for any clause:
notA < By, ..., By, notCq, ..., notCy

in the program P, where s € S. The rewritten clauses are simply obtained from the original
ones by replacing atoms A (respectively, the atoms not A) occurring in their heads by the atoms
Ap, (respectively, Ap) and by replacing negative premises not C' by C~.

(UR) Update rules:

AS «— Aps

A, « A (46)

for all objective atoms A € K and for all s € S. The update rules state that an atom A must
be true (respectively, false) in the state s € S if it is true (respectively, false) in the updating
program Ps.

(IR) Inheritance rules:
As = As1,not Ap, (47)
AT «— A, |, notAp, (48)

for all objective atoms A € K and for all s € S. The inheritance rules say that an atom A
is true (respectively, false) in the state s € S if it is true (respectively, false) in the previous
state s — 1 and it is not rejected, i.e., forced to be false (respectively, true), by the updating
program Ps.

(DR) Default rules:
45, (49)

for all objective atoms A € K. Default rules describe the initial state 0 by making all objective
atoms initially false. a

16

Observe that the dynamic program update [P is a normal logic program, i.e., it does not contain
default negation in heads of its clauses. Moreover, only the inheritance rules contain default negation
in their bodies. Also note that the program (4P does not contain the atoms A or A~, where A € K,
in heads of its clauses. These atoms appear only in the bodies of rewritten program clauses. The
notion of the dynamic program update @sP at a given state s € S changes that.

Definition 6.2 (Dynamic Program Update at a Given State) Given a fizved state s € S, by
the dynamic program update at the state s, denoted by @,P, we mean the dynamic program update
HP augmented with the following:

(CS;5) Current State Rules:

A+ Ag (50)
A« A (51)
not A+ A (52)

for all objective atoms A € K. Current state rules specify the current state s in which the
updated program is being evaluated and determine the values of the atoms A, A~ and not A.

In particular, if the set S has the largest element max then we simply write @P instead of

@mazp-

Observe that although for any particular state s the program [#/P is not required to be coherent,
the program update @sP at the state s must be coherent (see Proposition 3.1).

The notion of a dynamic program update generalizes the previously introduced notion of an
update P & U of two programs P and U.

Theorem 6.1 Let P, and P, be arbitrary generalized logic programs and let S = {1,2}. The
dynamic program update @D{Pi, P>} = @,{Pi, P>}, at the state s = 2, is semantically equivalent
to the program update Py ® P defined in Section 3.

Proof. The dynamic program update @{ P, P>} contains the following rules.
Rewritten program rules:

Ap, < B1,...,Bn,C{,...,C,
Ap « Bi,...,By,Cy,...,C;
Update and inheritance rules:
A1 — Apl A2 — Ap2
AT A;l A A;2
A1« Ag,not Ap, Ay« A, not Ap,
A; « Ay, notAp A, «— Al ,notAp,
Default rules:
Ay,
Current state rules:
A« A2
A™ — A
not A« A,

17

The rewritten program rules are the same as the corresponding rules in P, & P,. By eliminating

Ag’s and Ay’s, the remaining rules reduce to:

A1 — Apl A Ap2
AT« Ap A7« Ap,
notA <+ A~ A + A, not AISZ
AT« notAp, A™ « Al ,notAp,

By further eliminating A;’s, the above rules reduce to:

A AP2

AT« Ap,
notA <+ A~ A« Ap,notAp,
A~ < notAp,, notAp, A« Ap,notAp,

and thus coincide with the remaining rules in P; @ P,, which completes the proof.O

6.1 Examples
Example 6.1 Let P = {Py, P>, P;}, where Py, P> and P are as follows:

Py : sleep < nottv_on
watch_tv < tv_on
tv_on

Py nottv_on < power_failure
power_failure

P; : notpower_failure +

The dynamic program update over P is the logic program HYP= (RP;) U (RP,) U (RPs) U(UR) U

(IR) U (DR), where

RP, : sleepp, + tv_on™
watch_tvp, < tv_on
tv_onp, +

RPy: tvonp, < power_failure
power_failurep, <

RP;: power_failurep,

and the dynamic program update at the state s is @, P =P U (CS;). Consequently, as intended,
@, P has a single stable model My = {tv_on,watch_tv}; @2P has a single stable model M, =
{sleep, power_failure} and PP = P3P has a single stable model M3 = {tv_on,watch_tv} (all

models modulo irrelevant literals). Moreover. @2P is semantically equivalent to Py ® Ps.

O

As mentioned in the introduction, in dynamic logic programming, logic program modules describe
states of our knowledge of the world, where different states may represent different time points or

18

different sets of priorities or even different viewpoints. It is not our purpose in this paper to discuss
in detail how to apply dynamic logic programming to any of these application domains®. However,
since all of the examples presented so far relate different program modules with changing time, below
we illustrate how to use dynamic logic programming to represent the well known problem in the
domain of taxonomies by using priorities among rules.

Example 6.2 Consider the well-known problem of flying birds. In this example we have several
rules with different priorities. First, the animals-do-not-fly rule, which has the lowest priority; then
the birds-fly rule with a higher priority; the penguins-do-not-fly rule with an even higher priority;
and, finally, with the highest priority, all the rules describing the actual taxonomy (penguins are
birds, birds are animals, etc.). This can be coded quite naturally in dynamic logic programming:

Py : not fly(X) < animal (X)

Py fly(X) « bird(X)

P;: not fly(X) + penguin(X)

Py : animal(X) < bird(X)
bird(X) + penguin(X)
animal (pluto)

bird(duf fy)
penguin(tweety)

The reader can easily check that, as intended, the dynamic logic program at state 4,
@, {P., P>, P;, P,}, has a single stable model where fly(duffy) is true, and both fly(pluto) and
fly(tweety) are false. The reader can also use the implementation of dynamic updates (available at
http://wwuw-ssdi.di.fct.unl.pt/ jja/updates/) to verify this claim. O

Sometimes it is useful to have some kind of a background knowledge, i.e., knowledge that is true in
every program module or state. This is true, for example, in the case of the strong negation azxioms
(SN) discussed in the previous section 5.2, because these axioms must be true in every program
module. This is true as well in the case of the taxonomy rules discussed in the previous example as
well as in the general case of laws in the domain of actions and effects of action. These laws must
be valid in every state and at any time (for example, the law saying that if there is no power then
the TV must be off).

Rules describing background knowledge, i.e., background rules, are easily representable in dy-
namic logic programming: if a rule is valid in every program state, simply add that rule to every
program state. However, this is not a very practical, and, especially, not a very efficient way of
representing background rules. Fortunately, in dynamic program updates at a given state s, adding
a rule to every state is equivalent to adding that rule only in the state s:

Proposition 6.1 Let @, P be a dynamic program update at state s, and let r be a rule such that
VP; € P,r € P;. Let P' be the set of logic programs obtained from P such that Ps € P’ and

Vits,Pl=P—{r}eP iff P,eP

Let SM (6B, P) |K (respectively SM (D, P') |KC) denote the set of all stable models of @, P (respec-
tively. @, P') restricted to the language K. Then:

SM (@ 79) K =SM (@ P’) K

Proof. We begin by proving the following lemma, which shows that if a rule belongs to two
consecutive states, then it may be removed from the one with a smaller index, without affecting the
stable models (restricted to K):

6In fact, this is the subject of our ongoing research. In particular, the application of dynamic logic programming
to the domain of actions is the subject of our ongoing research (see also [5, 4]).

19

Lemma 6.1 Let Py = {P} :i € S} be such that there exists a rule r:

L+ By,...,Bp,notCq,...,notC)

where L is a literal, and r € P} and r € P}, for some j < s. Let P = {P}? :i € S} be such that

Vi#j P?=P' and P} =P/ —{r}

(3

Then SM (D, P1) |K = SM (@, P2) K.

Proof. The proof is made by separately proving that:

1.

for every stable model M; of @, Pi, there exists a stable model M, of @, P, such that
M2|IC = M1|IC;

. and, for every stable model M; of @, P», there exists a stable model M; of @, P; such that

MK = Ms|K.

Each one of these is proven by constructing, for the various possible M; (respectively. Ms, for
the second item) the corresponding M; (respectively. Ms).

First note that, by definition of dynamic program update at a given state, @, P1 = @, P U{r;},

where r; is":

1.

7

Lp, < Bi,... ,Bn,C7,...,Cp

Let M; be a stable model of @, P;.

If {B1,...,Bmn,Cy,...,C;,} € M then it is clear that removing from a program a (definite)
rule whose body is false, does not affect the stable model. In fact:

So, given that r; does not contain any default literals, M; itself is also a stable model of @ Ps.

If {By,...,Bn,C,...,C} C M then {Lp,,Lp,,, } € M; and also, given the update rules
(UR), {Lj,Lj+1} € M, . Moreover, assume that M, itself is not a stable model of @ P
(otherwise the lemma is obviously satisfied). In this case, a stable model of @, P> cannot
contain Lp, (note that the only difference between @, P1 and €, P» is that the latter does
not have a rule whose head is Lp,).

The only rules, in either @, Py or @, P2, with Lp; in the body are®:
(r1) L < L;_y,not Lp, and (r2) Lj < Lp,
and the only rules with either L; or L; in the body are:
(rs) Ljt1 < Lj, not Lp., and (ra) Ly, < L, notLp,,
Moreover, both @, P; and @, P» contain the rules:

(T5) ij+1 — Bl,... ,Bm,Cf,... ,C; and (7‘6) Lj+1 «— ij+1

"Where Lp]. is Ap]. if L is an atom A, or A}, if L is a default literal not A.

J
81In the following rules L~ should be interpreted as the complement of L wrt to —. Le. if L is of the form A~ then
L~ is of the form A.

20

o If L, ¢ My then My = M; — {Lj, Lp,} is a stable model of @, P>. In fact, note that

the differences between EBA;—Z% and EBAS/[—? are that L < L;; belongs only to the latter,

and r; only to the former. Then, L, , ¢ Least(ea]\j[?), and since both (r5) and (rg)

belong to @, P2, {Lp,,,,Ljy1} C Least(ej\}—fz). Moreover, since r; does not belong to
@, P2, it is clear that neither L; nor Lp, belong to the least model. So M, is a stable
model of @, Po.

o If L7 |, € My then My = M; U{L; } —{L;, Lp,} is a stable model of P, P>. This proof
is similar to the one in the previous point. Simply note that, given that L;;1 € M>, there

are no rules in GBTZ% with L} in the body. In fact, the only rule in @D, P> with L7 in
the body is an inheritance rule which also has not L;;, and thus the rule is removed in
the modulo operation.

In both cases M, |K = M;|K.

2. The proof of this point is similar to the one above, and is omitted for brevity. O

Let P™ = {P}* : i € S} be such that: if ¢ < n then P* = P, — {r}; otherwise P}* = P;,. We prove
by induction on n that:

Vn <s:SM (EDP) K =SM (@P”) K
S S
Base: If n = 0 then P = P", and the stable models are trivially the same.

Step: By induction hypothesis, SM (P, P)|K = SM (@, P" ') |K. By lemma 6.1, and since
n<s’ SM(@,P) |K=5SM(@@,P")I|K. So, SM (B, P)|K =5SM (P, P")|K.

Since P* = P’ (by construction of P"), it follows that SM (P, P)|K = SM (P, P') |K. O

Consequently, such background rules need not necessarily be added to every program state.
Instead, they can simply be added at the final state s. Such background rules are therefore similar
to the axioms C'S(s), which are added only when the state s is fixed. In particular, considering the
background rules in every program state is equivalent to considering them as part of the axioms
CS(s). A more detailed discussion of the formalization and usage of background knowledge appears
in our follow-up paper [4].

6.2 Dealing with Contradiction

One of the important and also very difficult issues involving dynamic updates is the issue of consis-
tency of the updated program P @ U. As stated in Section 2, we consider a program to be consistent
if it has at least one stable model and thus a well-defined stable semantics. There are two basic
reasons why the updated program may not be consistent:

1. The updated generalized logic program P®U may contain ezplicitly contradictory information,
such as A and not A, and thus not have any stable models. There are basically three cases to
consider:

(a) The contradictory information may be inherited from the original program P, which
was already inconsistent. In this case one of the possible approaches is to prevent the
contradictory information from being inherited by inertia by limiting the inheritance by
inertia. This approach is discussed in more detail in the next section. Changing the rules
of inertia so that they better suit our needs is also discussed in [4].

90therwise the lemma, would not be applicable.

21

(b) The contradictory information may be the result of the fact that the updating program U
is itself contradictory. This is more difficult to eliminate because the rules of the updating
program U must be, by definition, true in the updated program P & U. One approach
is to always require the updating program U to be consistent. If such a requirement is
impossible to satisfy, we could accept contradiction in the current update but prevent it
from proliferating further to the subsequent updates by using the approach discussed in
(a).

(c) Both the original program and the updating program U may be perfectly consistent and
yet the resulting updated program may contain contradictory information. This is, for
example, the case when the program containing two rules: A «— B and not A is updated
with the single fact: B. In this case, as in the case (a), one of the possible approaches
is to prevent the contradictory information from being part of the updated program by
limiting the inheritance by inertia. This approach is also discussed in more detail in the
next section. Another possibility is to establish some priorities between different rules in
order to prevent contradiction from arising in the first place.

2. Explicit contradiction, like the one discussed in (1), can only arise when the updated program
contains some rules with default negation in there heads. Thus, it cannot arise when the
updated program is normal. However, as is well-known, even normal logic programs may
be implicitly inconsistent simply because they don’t have any stable models. One possible
way of dealing with this problem is to replace the stable semantics by the $-valued stable, or,
equivalently, well-founded semantics. Every normal logic program is known to be consistent
w.r.t. the well-founded semantics, i.e., it has a well-defined well-founded semantics. In our
paper [5] we show how to extend the approach presented in this paper to the 3-valued stable
semantics.

There are many other possible approaches to contradiction removal in program updates and they
are part of our ongoing research in this area. However, a detailed discussion of this subject goes
beyond the scope of the current paper.

6.3 Limiting the Inheritance by Inertia

Inheritance rules (IR) describe the rules of inertia, i.e., the rules guiding the inheritance of knowledge
from one state s to the next state s’. Specifically, they prevent the inheritance of knowledge that
is explicitly contradicted in the new state s'. However, inheritance can be limited even further, by
means of a simple modification of the inheritance rules:

Modified Inheritance Rules (IR’):

As + As_1,notreject(As—1);
A; «— A |, notreject(A, ;)
reject(As—1) < Ap;
reject(A,_;) < Ap,

obtained by adding new predicates reject(A4;) and reject(A;) allowing us to specify additional
restrictions on inheritance.

One important example of such additional constraints imposed on the inertia rules involves
removing from the current state s’ of any inconsistency that occurred in the previous state s. Such
inconsistency could have already existed in the previous state s or could have been caused by the

22

new information added at the current state s’. In order to eliminate such contradictory information,
it suffices to add to the definition of reject the following two rules:

reject(As_1) < A, (58)
reject(A;_;) « As_1 (59)

Similarly, the removal of contradictions brought about by the strong negation axioms of 5.1 can
be achieved by adding the rules:

reject(As_1) — —As1 (60)
reject(—As_1) < As_1 (61)

Other conditions and applications can be coded in this way. In particular, suitable rules can be
used to enact preferences, to ensure compliance with integrity constraints or to ensure non-inertiality
of fluents. Also, more complex contradiction removal criteria can be similarly coded!®.

7 Conclusions and Future Work

We defined a program transformation that takes two generalized logic programs P and U, and,
produces the updated logic program P & U resulting from the update of program P by U. We
provided a complete characterization of the semantics of program updates P@® U and we established
their basic properties. Our approach generalizes the so called revision programs introduced in [12].
Namely, in the special case when the initial program is just a set of facts, our program update
coincides with the justified revision of [12]. In the general case, when the initial program also
contains rules, our program updates characterize precisely which of these rules remain valid by
inertia, and which are rejected. We also showed how strong (or “classical”) negation can be easily
incorporated into the framework of program updates.

With the introduction of dynamic program updates, we have extended program updates to or-
dered sets of logic programs (or modules). When this order is interpreted as a time order, dynamic
program updates describe the evolution of a logic program which undergoes a sequence of modifica-
tions. This opens up the possibility of incremental design and evolution of logic programs, leading to
the paradigm of dynamic logic programming. We believe that dynamic programming significantly fa-
cilitates modularization of logic programming and, thus, modularization of non-monotonic reasoning
as a whole.

A specific application of dynamic logic programming that we intend to explore, is the evolution
and maintenance of software specifications. By using logic programming as a specification language,
dynamic programming provides the means of representing the evolution of software specifications.

However, ordered sets of program modules need not necessarily be seen as just a temporal
evolution of a logic program. Different modules can also represent different sets of priorities, or
viewpoints of different agents. In the case of priorities, a dynamic program update specifies the
exact meaning of the “union” of the modules, subject to the given priorities. We intend to further
study the relationship between dynamic logic programming and other preference-based approaches
to knowledge representation.

Although not explored in here, a dynamic program update can be queried not only about the
current state but also about other states. If modules are seen as viewpoints of different agents, the
truth of some Ag in @ P can be read as: A is true according to agent s in a situation where the
knowledge of the @ P is “visible” to agent s.

10Tn all such cases, the semantic characterization of program updates would have to be adjusted accordingly to
account for the change in their definition. However, pursuance of this topic is outside of the scope of the present
paper.

23

We have already generalized our approach and results to the 3-valued case, which en-
ables us to update programs under the well-founded semantics [5]. We have also already de-
veloped a working implementation for the 3-valued case with top-down querying (available at
http://www-ssdi.di.fct.unl.pt/”jja/updates/).

Our approach to program updates has grown out of our research on representing non-monotonic
knowledge by means of logic programs. We envisage enriching it in the near future with other
dynamic programming features, such as abduction and contradiction removal. Among other ap-
plications that we intend to study are productions systems modeling, reasoning about concurrent
actions and active and temporal databases (some preliminary results are already published in [5]).

Acknowledgments

The extended abstract of this paper appeared in the Proceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’98), Morgan Kaufmann, 1998,
pp. 98-111.

The authors are grateful to the anonymous referees for their helpful comments.

This work was partially supported by PRAXIS XXI project MENTAL, by JNICT project
ACROPOLE, by the National Science Foundation grant # IRI931-3061, and a NATO scholar-
ship while L. M. Pereira was on sabbatical leave at the Department of Computer Science, Univer-
sity of California, Riverside. The work of J. A. Leite was supported by PRAXIS Scholarship no.
BD/13514/97.

References

[1] J.J. Alferes, L. M. Pereira. Update-programs can update programs. In J. Dix, L. M. Pereira and
T. Przymusinski, editors, Selected papers from the ICLP’96 Workshop NMELP’96, vol. 1216
of LNAI, pages 110-131. Springer-Verlag, 1997.

[2] J. J. Alferes, L. M. Pereira and T. Przymusinski. Strong and Ezplicit Negation in Non-
Monotonic Reasoning and Logic Programming. In J. J. Alferes, L. M. Pereira and E. Orlowska,
editors, JELIA 96, volume 1126 of LNAI, pages 143-163. Springer-Verlag, 1996.

[3] Jose Alferes, Luls M. Pereira, and Teodor C. Przymusinski. ”Classical” negation in non-
monotonic reasoning and logic programming. Journal of Automated Reasoning, 20:107-142,
1998.

[4] Jose J. Alferes, Luis M. Pereira, Halina Przymusinska, and Teodor C. Przymusinski. LUPS -
a language for updating logic programs, Proceedings of the Fifth International Conference on
Logic Programming and Non-Monotonic Reasoning, December 2-4, 1999, to appear.

[5] Jose J. Alferes, Luis M. Pereira, Halina Przymusinska, and Teodor C. Przymusinski. Prelim-
inary exploration of actions as updates, Proceedings of the Joint Conference on Declarative
Programming (APPIA-GULP-PRODE’99), L’Aquila, Italy, September 6-9, 1999, to appear.

[6] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski
and K. A. Bowen, editors. Fifth International Logic Programming Conference, pages 1070-1080.
MIT Press, 1988.

[7] M. Gelfond and V. Lifschitz. Logic Programs with classical negation. In Warren and Szeredi,
editors, 7th International Logic Programming Conference, pages 579-597. MIT Press, 1990.

[8] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge base and re-
vising it. In James Allen, Richard Fikes and Erik Sandewall, editors, Principles of Knowledge

24

[10]

[11]

[12]

[13]

[14]

[15]

Representation and Reasoning: Proceedings of the Second International Conference (KR91),
pages 230-237, Morgan Kaufmann 1991.

Jodo A. Leite. Logic Program Updates. M.Sc. Dissertation, Universidade Nova de Lisboa, 1997.

J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In: “Logic
Programming and Knowledge Representation”, LNAT 1471, Berlin, 1998. Springer Verlag. Pro-
ceedings of the Third International Workshop, LPKR’97, Port Jefferson, NY, October 1997,
Jurgen Dix, Luis M. Pereira, and Teodor C. Przymusinski, editors.

V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary report).
In B. Nebel, C. Rich and W. Swartout, editors, Principles of Knowledge Representation and
Reasoning, Proceedings of the Third International Conference (KR92), pages 603-614. Morgan-
Kaufmann, 1992

V. Marek and M. Truszczynski. Revision specifications by means of programs. In C. MacNish,
D. Pearce and L. M. Pereira, editors, JELIA ’94, volume 838 of LNAI, pages 122-136. Springer-
Verlag, 1994.

T. Przymusinski and H. Turner. Update by means of inference rules. In V. Marek, A. Nerode,
and M. Truszczynski, editors, LPNMR’95, volume 928 of LNAI, pages 156-174. Springer-Verlag,
1995.

Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules. Journal of
Logic Programming, 30(2):125-143, 1997.

M. Winslett. Reasoning about action using a possible models approach. In Proceedings of
AAAT88, Morgan Kaufmann, pages 89-93. 1988.

25

