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1 Introduction

Logic programs, deductive databases, and more generally non-monotonic theories, use various forms
of default negation, not F', whose major distinctive feature is that not F' is assumed “by default”,
i.e., it is assumed in the absence of sufficient evidence to the contrary. The meaning of “sufficient
evidence” depends on the specific semantics used. For example, in Reiter’s Closed World Assump-
tion, CWA [Rei78], not A is assumed for atomic A if A is not provable, or, equivalently, if there
is a minimal model in which A4 is false. On the other hand, in Minker’s Generalized Closed World
Assumption, GCWA [Min82, GPP89], or in McCarthy’s Circumscription, CIRC [McC80], not A is
assumed only if A is false in all minimal models. In Clark’s Predicate Completion semantics for
logic programs [Cla78], this form of negation is called negation-as-failure because not A is derivable
whenever attempts to prove A finitely fail.

The more recent semantics proposed for logic programs and deductive databases, such as the
stable semantics [GL8S], well-founded semantics [VGRS90], partial stable or stationary semantics
[Prz90] and static semantics [Prz95b], propose even more sophisticated meanings for default nega-
tion, closely related to more general non-monotonic formalisms such as Default Logic, DL [Rei80],
AutoEpistemic Logic, AEL [Moo85], and AutoEpistemic logic of Beliefs, AEB [Prz97a]. Under all
of these semantics, however, default negation “not ” significantly differs from classical negation “=7”.

*Extended abstract of this paper appeared in the Proceedings of the European Workshop on Logic in Artificial
Intelligence (JELIA’96), Lecture Notes on Artificial Intelligence, Springer Verlag, 1996, vol. 1126, pp. 143-163.

tPartially supported by JNICT-Portugal

fPartially supported by the National Science Foundation grant #IRI-9313061.



For example, the formula:
charged(z) A ~guilty(z) D acquitted(x)

says that a person charged with a crime should be acquitted if he or she is actually proven to be
not guilty. On the other hand, the formula

charged(x) A not guilty(x) D acquitted(x)

says that one should be acquitted of any charges by default unless sufficient evidence of that person’s
guilt is demonstrated. In particular, one should be acquitted if there is no information available
about one’s guilt or innocence.

1.1 Default negation does not suffice

Although default negation proved to be quite useful in various domains and application frameworks,
it is not the only form of negation that is needed in non-monotonic formalisms. Indeed, while default
negation not A of an atomic formula A is always assumed “by default”, we often need to be more
careful before jumping to negative conclusions. For example, it would make little sense to say

not innocent(x) D guilty(x)

to express the fact that being guilty is the opposite of being innocent because it would imply that
people should be considered guilty “by default”. Similarly, we would not want to say:

crossing(x), not train(x) D drive(x)

to express the fact that one may safely cross a railway track if (s)he first makes sure that there is
no train approaching, because such a clause would imply that (s)he should cross the railway even if
(s)he did not bother to look around at all.

1.2 Classical negation does not provide a solution

One could argue that the above feature constitutes the main difference between default negation and
classical negation and therefore if default negation not F' does not work in some particular context
then classical negation = F should be used instead. One problem with such an approach is that
classical negation = F is not part of the language of standard logic programs and deductive databases
and thus it is not immediately available without an appropriate extension of their languages and
semantics, such as the one proposed in [Prz95b]. More importantly, however, classical negation = F
has some specific characteristics which often make it unsuitable or at least insufficient in the context
of non-monotonic reasoning:

e Classical negation —F satisfies the so called “law of the excluded middle”, FV —=F, for every
formula F. While it is a natural axiom in the domain of formal logic and mathematics, it
is not suitable for commonsense reasoning where we are often faced with situations in which
some things are true, some are false and yet some others are not (perhaps, yet) determined
to be either true or false. For example, an employer may be faced with some candidates who
are clearly qualified for the job, and thus should be hired, some who are clearly not qualified,
and thus should be rejected, and yet some other candidates whose qualifications are not clear
and who therefore should be interviewed in order to determine their suitability for the job
(see [Gel92]). However, if we attempt to describe the first two statements using real classical
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negation “=” in the clauses:

quali fied(z)Dhire(z), —qualified(x)Dreject(x)



then, by virtue of the law of the excluded middle, we will immediately conclude that every
candidate must either be hired or rejected without leaving any room for those who need to be
further interviewed.

The either/or character of the law of the excluded middle presupposes that we have sufficient
information to determine, at least in principle, whether any given property or its opposite is
true. However, when dealing with incomplete information or with properties involving gradual
change we often encounter “gray areas” in which neither the property nor its opposite seem
to hold.

The law of the excluded middle leads to particularly unintuitive results when used with refer-
ence to non-existing or non-applicable properties or objects, e.g., in statements like “the pink
elephant in my pocket is either old or not old” or “the chair is either happy or unhappy”. It
would be clearly more appropriate to say “the chair is neither happy nor unhappy”.

Moreover, the law of the excluded middle is highly non-constructive and thus does not fit well
within the somewhat vague “spirit” of logic programming and deductive databases which seems
to rely heavily on “directional reasoning”, i.e., on first establishing the validity of premises of
a clause before deducing its consequents and not the other way around. As a result of its
non-constructive character, the law of the excluded middle is also computationally expensive.

o Classical literals A and —A4 are not treated symmetrically by default negation. More precisely,
in the absence of evidence to the contrary, default negation not A of positive literals (atoms) A
is always assumed, while the same does not apply to negative literals = A. For example, even
though GCWA (or circumscription) applied to the theory

charged(tom)

charged(x) A guilty(z) D convicted(x)

implies not convicted(tom)! this is no longer the case if we perform a simple syntactic substi-
tution of —innocent for guilty thus obtaining

charged(tom)

charged(x) A ~innocent(x) D convicted(z)

because the new theory has minimal models in which convicted(tom) is true.

As we can see, a simple syntactic substitution of —innocent for guilty turns out to have a
significant impact on the semantics of the resulting theory. As a consequence, default negation,
not F, is heavily dependent on the syntactic form of the formula F, and, in particular, it is
not tnvariant under the equivalence or renaming of predicates.

Often times, however, we would like to apply negation by default symmetrically to both positive
and negative literals. For instance, in the preceding example, given no information about Tom’s
qualifications we would like to conclude that Tom was neither found qualified nor unqualified,
i.e., that both not qualified(Tom) and not (~qualified(Tom)) hold. This would provide us
with an important information that Tom has to be interviewed.

1.3 Symmetric negation

Based on the above discussion, we conclude that, in addition to default negation, “not ”, and classical
negation,
denoted here by “~

[

—”, which are already used in non-monotonic reasoning, we need a new form of negation,
, which has the following properties:
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e Similarly to classical negation, it satisfies the basic properties of negation such as the double-
negation law ~{~F) = F and the distributive laws {FV G) = ~F A~G and {FAG) =
~FV ~Gh

“

e However, as opposed to classical negation, symmetric negation “~’ is to be treated symmet-
rically by the default negation “not”, i.e., in the absence of evidence to the contrary, both
not A and not (~A) are to be assumed. More generally, the non-monotonic semantics should

be invariant under the renaming of any predicates from A to ~A and vice versa;
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e Moreover, also in contrast to classical negation, “~” should not be required to satisfy the law
of the excluded middle, 4V ~A;

e It also should substantially differ from default negation in that the negation ~A of atomic
formulae A should not be assumed by default.

4

In view of the second property, we will call the form of negation “~” satisfying the above three
properties symmetric negation. It is important to point out that the above conditions are not
intended to be jointly sufficient to fully characterize symmetric negation and thus they do not
uniquely determine this notion but rather represent constraints which may be met by several different
notions.

Gelfond and Lifschitz [GL90] were the first to point out the need for such negation in logic
programming and to propose a specific semantics for such negation for logic programs with the stable
semantics. Somewhat unfortunately, they called their negation “classical negation”. Independently,
Pearce and Wagner in [PW90a] studied Nelson’s strong negation [Nel49] and pointed out the need
for using strong negation in non-monotonic reasoning. However their strong negation is different
from the strong negation defined in this paper (see Remark 3.2).

Subsequently, several researchers proposed different, often incompatible, forms of symmetric
negation for various semantics of logic programs and deductive databases [DR91, PA92, Prz91,
Prz95b, Pea90, Wag93]. To the best of our knowledge, however, no systematic study of symmetric
negation in non-monotonic reasoning was ever attempted in the past?. In this paper we conduct
such a systematic study of symmetric negation:

e We introduce and discuss two natural, yet different, definitions of symietric negation: one
is called strong negation and the other is called explicit negation. For logic programs with
the stable semantics, both symmetric negations coincide with Gelfond-Lifschitz’s “classical
negation”.

o We study properties of strong and explicit negation and their mutual relationship as well as
their relationship to default negation “not” and classical negation *

”
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o We show how one can use symimetric negation to provide natural solutions to various knowledge
representation problems, such as theory and interpretation update and belief revision.

¢ Rather than to limit our discussion to some narrow class of non-monotonic theories, such as
the class of logic programs with some specific semantics, we conduct our study so that it is
applicable to a broad class of non-monotonic formalisms, which includes the well-known for-
malisms of circumscription, autoepistemic logic and all the major semantics recently proposed
for logic programs (stable, well-founded, stationary, static and others).

e In order to achieve the desired level of generality, we define the notion of symmetric negation in
the knowledge representation framework of AutoEpistemic logic of Beliefs, AEB, introduced
by Przymusinski in [Prz97a], which was shown to isomorphically contain all of the above
mentioned formalisms as special cases. As a result, we automatically provide the corresponding
notions of symmetric negation for all formalisms embeddable into AEB.

?For logic programs, an extensive study was carried out in [AP92].



The paper is organized as follows. In the next section we briefly recall the definition and basic
properties of the Autoepistemic Logic of Beliefs, AEB, as well as the translation of logic programs
into belief theories in AEB. In Section 3 we introduce strong negation, the first form of symmetric
negation, discuss its basic properties and illustrate its simple application to the problem of interpre-
tation and theory update.

In Section 4 we introduce explicit negation (the second form of symmetric negation), we estab-
lish 1ts basic properties and in Section 5 we discuss applications of explicit negation to knowledge
representation. In Section 6 we briefly discuss some issues involved in the implementation of explicit
negation. We conclude with some final remarks.

2 Autoepistemic Logic of Beliefs

First we briefly recall the definition and basic properties of the Autoepistemic Logic of Beliefs, AEB,
introduced by Przymusinski in [Prz97a]. Consider a fixed propositional language £ with standard
connectives (V, A, D, =) and the propositional letter L (denoting false). The language of AEB is a
propositional modal language £ 4pp obtained by augmenting the language £ with a modal operator
B, called the belief operator. The atomic formulae of the form BF, where F is an arbitrary formula of
Lapp. are called belief atoms. The formulae of the original language £ are called objective. Observe
that arbitrarily deep level of nested beliefs is allowed in belief theories. Any theory 7' in the language
Lapp is called a belief theory.

Definition 2.1 (Belief Theory) By an autoepistemic theory of beliefs, or just a belief theory,
we mean an arbitrary theory in the language Lapp, i.e., a (possibly infinite) set of arbitrary clauses
of the form:

BiIN. . AB,ABGINAN...NBGAN-BFyN..N=-BF, D> A;V..VAp,

where k. l,m,n > 0, A;s and B;s are objective atoms and F;s and G;s are arbitrary formulae of
Lirgp. Such a clause says that if the B;s are true, the G;s are believed, and the F;s are not believed
then one of the A;s is true.

By an affirmative belief theory we mean any belief theory all of whose clauses satisfy the condition
that m > 0. m|

We assume the following two simple axiom schemata and one inference rule describing the ar-
guably obvious properties of belief atoms:

(D) Consistency Axiom: —5.L1.
(K) Normality Axiom: For any formulae F and G: B(F D> G) > (BF D BG).

F

(N) Necessitation Rule: For any formula F: %

The first axiom states that tautologically false formulae are not believed. The second axiom
states that if we believe that a formula F' implies a formula G and if we believe that F' is true then
we believe that G is true as well. The necessitation inference rule states that if a formula F has
been proven to be true then F is believed to be true.

Definition 2.2 (Formulae Derivable from a Belief Theory)
For any belief theory T, we denote by Cnapp(T) the smallest set of formulae of the language Lapp
which contains the theory T, all the (substitution instances of ) the azioms (K) and (D) and is closed
under both standard propositional consequence and the necessitation rule (N).

We say that a formula F is derivable from theory T in the logic AEB if F belongs to Cnapp(T).
A belief theory T is consistent if the theory Cnapp(T) is consistent. a

Ut



In the presence of the axiom (K), the axiom (D) is equivalent to the axiom BF D =B—F, stating
that if we believe in a formula F' then we do not believe in its negation —=F. Moreover, it is easy
to see that the axioms imply that the belief operator B obeys the distributive law for conjunctions
B(FANG) = BF ABG (see [Prz97a]). For readers familiar with modal logics it should be clear by
now that we are, in effect, considering here a normal modal logic with one modality B which satisfies
the cousistency axiom (D) [MT94a].

Let us recall that throughout the paper we view the modal language £ 4pp simply as a proposi-
tional language extending the underlying objective language L. In particular, formulae of the form
BF are considered to be propositional atoms in the extended language £4pp and models of belief
theories, i.e., models of theories in the language L 4pp, are just classical models of propositional
theories.

Definition 2.3 (Minimal Models) [Prz97a]

By ¢ minimal model of a belief theory T we mean a model M of T with the property that there is
no smaller model N of T which coincides with M on belief atoms BF . If a formula F is true in all
minimal models of T then we write: T i F and say that F is minimally entailed by T. O

For readers familiar with circumscription, this means that we are considering circumscription
CIRC(T;K) of the theory T in which atoms from the objective language £ are minimized while the
belief atoms BF' are fixed, i.e., T |Emin F = CIRC(T; L) | F.In other words, minimal models are
obtained by first assigning arbitrary truth values to the belief atoms and then minimezing objective
atoms.

2.1 Static Autoepistemic Expansions
The intended meaning of belief atoms BF is based on the principle of predicate minimization:
BF if F is minimally entailed = F 1is true in all minimal models.

Accordingly, beliefs in AEB can be called minimal beliefs (see [Min82, GPP89] and [McC80]). As
in Moore’s Autoepistemic Logic, also in the Autoepistemic Logic of Beliefs the intended meaning
of belief atoms is implemented by defining plausible sets of beliefs that an ideally rational and
introspective agent may hold, given a set of premises 7.

Definition 2.4 (Static Autoepistemic Expansion) [Prz97a/
A belief theory T° is called a static autoepistemic expansion of a belief theory T if it satisfies the
following fixed-point equation:

T<> = C‘?lAL«:]_;(T U {BF : T<> 'zmin F}).
where F ranges over all formulae of Lapp. a

The definition of static autoepistemic expansions is based on the idea of building an expansion
T* of a belief theory T by closing it with respect to: (i) the derivability in the logic AEB, and, (ii)
the addition of belief atoms BF satisfying the condition that the formula F' is minimally entailed by
T°. Consequently, the definition of static expansions enforces the intended meaning of belief atoms
described above. Note that negations =BF of the remaining belief atoms are not ezplicitly added to
the expansion although some of them will be forced in by the Normality and Consistency Axioms.

It turns out that every belief theory T in AE B has the least (in the sense of set-theoreticinclusion)
static expansion T° which has an terative definition as the least fized point of the monotonic® belief
closure operator:

\I/T(S) = C’ILAEB(T U {BF : S ':min F})

where S is an arbitrary belief theory and the F’s range over all formulae of L4gp.

3Strictly speaking the operator is only monotone on the lattice of all theories of the form 7' U Mj.; where T is fixed
and Mj.; ranges over all belief formulae.



Theorem 2.1 (Least Static Expansion) [Prz97a/
Every belief theory T in AEB has the least static expansion, namely, the least fived point T° of the
monotonic belief closure operator Up.

More precisely, the least static expansion T° of a belief theory T can be constructed as follows.
Let T° =T and suppose that T® has already been defined for any ordinal number a < (3.

o If =« + 1 s a successor ordinal then define:
T = U p(T*) = Cnapp( TU{BF :T* i F} and F € Lapp ).

o Otherwise, define TP = Uaes T
The sequence {T®} is monotonically increasing and has a unique fized point T® = T = ¥p(T?),

for some ordinal . a

According to the following recent result established in [BDP96], for any finite belief theory only
one tteration of the operator ¥p is needed.

Theorem 2.2 [BDPIG] For every finite belief theory T, the least static expansion T of T is given
by:
T<> = \IfT(T) = C’HAEB(T U {BF : T ':mz'n F}) O

Observe that the least static autoepistemic expansion T° of T contains those and only those
formulae which are true in all static autoepistemic expansions of 7. It defines the so called static
semantics of a belief theory T. It is easy to verify that a belief theory T either has a consistent
least static expansion T7°° or it does not have any consistent static expansions at all. Moreover, least
static expansions of affirmative belief theories are always consistent [Prz97a].

Example 2.1 Counsider the following belief theory T" describing a simple diagnosis of car problems:

B-Broken O Runs
B-Runs D Fizx.

Let us first observe that T |=pi, 2 Broken, T =iy (Runs & B-Broken) and T Epin (Fiz &
B-Runs). Indeed, in order to find minimal models of T we just need to assign arbitrary truth
values to the two belief atoms B—-Broken and B-Runs, and then minimize the objective atoms
Fix, Broken and Runs. We easily see that T has the following four minimal models*:

My, = {B-Broken, B-Runs, ~Broken, Runs, Fix};

M, = {-B-Broken, =B~ Runs, =Broken, =Runs, —~Fiz};
M; = {-B-Broken, B-Runs, ~Broken, ~Runs, Fix};
M, = {B-Broken, =B=Runs, =Broken, Runs, = Fixz}.

Since in all of them the formulae = Broken, Runs < B-Broken and Fix < B-Runs are satisfied,
we infer that T |Ein —Broken, T \=pin (Runs & B-Broken) and T |y, (Fiz & B-Runs).
Consequently, since T = Uy (T) = Cnapp(T U {BF : T Emin F}), we obtain:

{B=Broken, B(Runs < B-Broken),3(Fiz < B-~Runs)} C T".

Since T' = Runs, from the Necessitation rule it follows that BRuns € T'. By the Consistency
axiom we infer that =B—Runs € T' and thus also B(=B-Runs) € T'. Since

T' = B(~Fiz < ~B-Runs)

4Tor simplicity, when describing static expansions of this and other examples we list only those elements of the
expansion that are “relevant” to our discussion. In particular, we usually omit nested beliefs.



by the Normality axiom:

T' & B(-Fiz) & B(~B-~Runs)

and therefore B—~Fixz € T'. It is easy to check that T is (clearly, the least) fixed point of ¥4 and
therefore T° = T' = Cnapp(T U {B-Broken, Runs, 3B-Fix}) is the least static expansion of T
The static semantics of T asserts our belief that the car is not broken and thus runs fine and does
not need fixing. One easily verifies that T' does not have any other (consistent) static expansions. O

2.2 Embeddability of Circumscription and Autoepistemic Logic

Onue easily sees that propositional circumscription (and thus also CWA, GCW A and ECW A [Rei78,
Min82, GPP89]) can be properly embedded into AEB.

Proposition 2.1 (Embeddability of Circumscription) [Prz97a] Propositional circumscrip-
tion, CWA, GCW A and ECW A are all properly embeddable into the Autoepistemic Logic of Beliefs,
AEB. More precisely, if T is any objective theory then T has a unique static expansion T° and any
objective formula F is logically implied by the circumscription CIRC(T) of T if and only if T°
logically tmplies the belief atom BEF:

CIRC(T)EF = T°|=BF. 0O

Moreover, a simple extension, AELB, of AEB, obtained by adding an additional knowledge
operator, has been shown [Prz97a] to isomorphically contain Moore’s Autoepistemic Logic, AEL.

2.3 Logic Programs as Belief Theories

Major semantics defined for normal and disjunctive logic programs are also embeddable into AFB
[Prz97a). In particular, this is true for the stable semantics [GL8S], well-founded semantics
[VGRS90], partial stable or stationary semantics [Prz90] and static semantics [Prz95b] of normal
and disjunctive logic programs.

Suppose that P is a disjunctive logic program consisting of rules:

AiV.. VA, —«BiAN...ANB,, AnotCy A... \NnotC,,.

The translation of P into the affirmative belief theory T—(P) is given by the set of the corresponding
clauses:

BiAN...AB,ANB=-CiAN...ANB=C,, DA V...V A, (1)

obtained by replacing the default negation, not F, by the belief atom, B—F, and by replacing the
rule symbol — by the standard material implication D.
The translation, T (P), gives therefore the following meaning to the default negation:

de
not F Ef B-F = F is believed to be false = —F is minimally entailed. (2)

Theorem 2.3 (Embeddability of Stationary and Stable Semantics) [Prz97a] There is a
one-to-one correspondence between stationary (or, equivalently, partial stable) models M of the
program P and consistent static autoepistemic expansions T of its translation T (P) into a belief
theory. Namely, for any objective atom A we have:

AeM 4ff AeT° 4ff BAeT*®
—“AeM ff B-AeT°.

In particular, the well-founded model My o of the program P corresponds to the least static expansion
of Te—(P). Moreover, stable models (or answer sets) M of P correspond to those consistent static
autoepistemic expansions T¢ of T (P) that satisfy the condition that for all objective atoms A,
either BA € T° or B=A € T®, i.e., that every atom is either believed or disbelieved in T°. |



Example 2.2 It is easy to see that the belief theory T considered in Example 2.1 can be viewed as
a translation Tp—(P) of the stratified logic program P given by:

Runs <« notBroken
Fix — notRuns.

The unique consistent static expansion,
T° = Cnapp(T U{B~Broken, Runs, B=Fiz, })
of T' corresponds therefore to the unique perfect model,
M = {not Broken, Runs, not Fix}

of P, which is also its unique well-founded and stable model [Prz90]. |

3 Strong Negation

In the Introduction we concluded that in addition to default negation, not F, non-monotonic reason-
ing requires a new type of negation which is similar to classical negation —=F, in the sense that it is
not assumed by default, but does not satisfy the law of the excluded middle and ensures a symmetric
treatment of positive and negative information by default negation. In this section we define the
so called strong negation, ~F, and argue that it is a natural candidate for such a negation. We
study properties of strong negation and its relationship to default negation and classical negation.
We also illustrate how strong negation can be applied to provide a natural solution to an important
knowledge representation problem.

We introduce strong negation within the broad framework of the Autoepistemic Logic of Beliefs,
AEB, described in Section 2. As a result, the definition of strong negation applies to all non-
monotonic formalisms embeddable into AEB. including circumscription, autoepistemic logic and
all the major semantics recently proposed for logic programs. The definition is patterned after
the original definition given in [GL90] and therefore, when applied to logic programs with stable
semantics, strong negation coincides with Gelfond-Lifschitz’s so called “classical negation” .

Strong negation is introduced to belief theories T in the Autoepistemic Logic of Beliefs, AEB,

by:

(1) augmenting the underlying objective language £ with a set S= {~A: A € S} of new objective
propositional symbols, called strong negation atoms, where S is any fixed set of propositional
symbols from L. As a result we obtain an extended objective language £ and an extended
language of beliefs Ligs.

(2) adding to the belief theory T the following strong negation constraint:
(S4) AN ~A D L or, equivalently, ~A4 D -—A,
for every strong negation atom ~A in S.

The strong negation constraint 54 states that A and ~A cannot be both true and thus ensures that
the intended meaning of strong negation ~A is “~A s the opposite of A”. For example, a proposition
A may describe the property of being “qualified” while the proposition ~A describes the property
of being “unqualified”. The strong negation constraint states that a person cannot be both qualified
and unqualified. We do not assume, however, that everybody is already known to be either qualified
or unqualified. R R

In practice, given a theory T, the set S is usually defined as § = {~A4 : ~4 occursin T}.
As a result, theories which do not contain strong negation atoms ~A are not affected by the strong



negation constraints in any way. We waunt to emphasize that rather than introducing strong negation
at the meta-level, by including strong negation constraints in the logical closure operator Cnagp,
we instead make strong negation part of the object-level language, by making the constraints part
of any belief theory in which the corresponding atoms ~A occur. In the sequel, we will implicitly
assume that the strong negation constraint 54 is implicitly included in any belief theory T which
contains the atom ~A.

For the sake of readability, instead of using somewhat cumbersome names, like ~good_teacher,
to denote the strong negation of the predicate good_teacher, we use more readable names, such
as bad_teacher. Furthermore, even though we ouly consider propositional languages, we often use
variables as a shortcut for all ground instantiations of a given formula.

Example 3.1 Consider a university that periodically evaluates faculty members based on their
research and teaching performance. Faculty members who are known to be strong researchers and
who are believed to be good teachers (as we all know, it is difficult to objectively evaluate teaching)
receive positive evaluation. On the other hand, those who are believed not to be strong researchers
as well as those that are believed to be poor teachers receive negative evaluation. Anyone who
received a teaching award is considered to be a good teacher and anyone who published at least
10 reviewed papers during the evaluation period is considered a good researcher. The individuals
whose evaluation status is not yet determined undergo some further (unspecified) review process.
This leads us to the following belief theory in AEB:

good_researcher(z) A B good_teacher(x) D good_evaluation(x)
B-good_researcher(x) D bad_evaluation(x)

Bbad_teacher(x) D bad_evaluation(x)

teaching_award(z) D good_teacher(z)

many_publications(x) D good_researcher(z).

The predicates bad_teacher, bad_evaluation and bad_researcher are intended to represent strong
negation of the predicates good_teacher, good_evaluation and good_researcher, respectively, and,
therefore, we need to add to our theory strong negation constraints (54 ) for each one of them:

good_researcher(x) A bad_researcher(z) D L
good_teacher(z) A bad_teacher(z) D L
good_cvaluation(z) A bad_evaluation(xz) D L.

Suppose that both Ann and Tom published at least 10 papers. Suppose, further, that Ann is a good
teacher, both Mary and Keith received teaching awards but Tom is considered to be a bad teacher.
Moreover, Keith and Paul have a lot of joint publications so at least one of them must be a good

researcher:
many_publications(Ann)

many-publications(Tom)

good_teacher(Ann)

teaching_award(Mary)

teaching_award(Keith)

bad_teacher(Tom)

good_researcher(Keith)V good_researcher(Paul).
The resulting belief theory has one consistent static expansion in which Ann receives a positive
evaluation because she is a good researcher and is believed to be a good teacher. Tom receives a
negative evaluation because even though he is a good researcher, he is also believed to be a bad
teacher. Mary receives a negative evaluation as well because even though she is a good teacher,
there is no evidence of good research work in her file (i.e., Bgood_researcher(Mary) holds).

Keith’s and Paul’s status is not yet clear and thus they will have to be further reviewed. Indeed,

none of them individually has been shown to be a strong researcher so they are not eligible for positive
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evaluation. At the same time none of them is believed to be a bad teacher and there is some evidence

supporting each one of them being a good researcher (i.e., neither B—good_researcher(Paul) nor

B-good_researcher(Keith)is true) and therefore they are not subject to negative evaluation, either.
Observe, however, that if we later find out that Paul is in fact a lousy researcher:

bad_researcher(Paul)

then Paul will receive a negative evaluation and we will conclude (by virtue of the strong negation
constraint) that Keith is a good researcher and thus Keith will receive a positive evaluation. a

Remark 3.1 The correctness of the above example has been verified by using the pro-
totype enterpreter for static semantics developed by Stefan Brass and based on the

characterizations of static semantics obtained in [BDPY6]. The interpreter is available
from ftp://ftp.informatik.uni-hannover.de/software/static/static.html via FTP and
WWW. O

Even though the strong negation operator ~F is defined so far ounly for atomic formulae F' of
the language £, we can easily extend it to arbitrary formulae F of the extended language £. This
is accomplished by adding the following axiom schemas for all formulae F and G of the language £:

~~F) = F

NEF) = ()
~FVG) = ~FA~G
~FANG) = ~FVaG.

Using the above axioms, strong negation ~F' of an arbitrary formula F' of the language L can be
shown to be equivalent to a formula of the language L itself. Moreover, if two formulae F and G
of the language £ are equivalent then so are their strong negations ~F and ~G. Readers interested
in the details of this extension of the strong negation operator ~F to arbitrary formulae F and in
its properties should consult the paper [Prz97h]. In the remainder of this section, whenever the
operator ~F is used with reference to a non-atomic formula F it is implicitly assumed that the
above axiom schemas are part of the belief theory.

Remark 3.2 The underlying logic with strong negation, ~F, counsidered in this paper does not
coincide with the so called “classical logic with strong negation” [Vak77, PW90b], i.c., with classical
logic augmented with Nelson’s strong negation [Nel49]. The difference lies in the mutual relationship
between strong and classical negations. In classical logic with strong negation, which is known to
be equivalent to 3-valued Lukasiewicz’s logic, the two negations = and ~ mutually cancel each other
because of the axiom ~(—F) = F. Ou the other hand, the logic presented in this paper contains the
axiom ~—F) = —(~F) ensuring that the two negations commute and thus are mutually symmetric.

The consequences of this seemingly small difference are profound. It is well-known that in the
classical logic with strong negation two formulae F' and G may be tautologically equivalent and yet
their strong negations ~F and ~G not be equivalent. For example, A and == A are tautologically
equivalent and yet ~A is not equivalent to ~——A4) because the latter formula is equivalent to —A.
This problem can be avoided only if ~A is always equivalent to —A, i.e., when strong negation
actually coincides with classical negation. On the other hand, in the logic presented in this paper,
one can prove that if two formulae F' and G of the language £ are equivalent then so are their strong
negations ~F and ~G. Readers should consult the paper [Prz97b] for a more detailed treatment of
this subject. In there the strong negation operator is also extended to all formulae of the modal
language with beliefs Lapp. O

The above extension preserves the basic property of strong negation, namely, the fact that it is
stronger than classical negation. However, this is only true for positive formulae, i.e., those that do
not use classical negation —.
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Proposition 3.1 (Strong Negation vs. Classical Negation) Suppose that T is a belief theory
and F 1is a positive formula of L. Then:

T k= (~F D —F).

Proof. If F = Ais atomic then, due to the strong negation constraints, (~F' D =F) € T. Suppose
that the claim is true for positive formulae G and H.

If F=~G than TE (~G D -G) and therefore T | (G D —~F) which implies that
Tk (~FD>-F).

IfF=GVHthenTkE (~¢D-G)and TE (~H D> —H). Since T E~F = (~GAN~H), we
obtain that T | (~F D (=G A —H) and therefore T = (~F D =F). The proof for conjunction is
completely analogous. a

From the above Proposition one easily derives an important relationship between the strong
negation operator and the belief operator:

Proposition 3.2 (Strong Negation vs. Beliefs) Suppose that T is a belief theory. All static
autoepisternic expansions TC of T are closed under the inference rule:

~F
B-F

where F 1s any positive formula of L. In particular, this is true for the least static expansion of T'.

Proof. By the previous Proposition, if ~F belongs to T° then so does =F. By Necessitation, also
B—F belongs to T°. m|

This result confirms the intuitively desirable fact that (positive) formulae F' whose strong nega-
tion ~F is known to hold are also believed to be false. Observe that for any positive formula F of L
., both F' and ~F are assumed false by default, i.e., both B—~F and B-~(~F) are true, because, in the
absence of any other information, F' and ~F are false in all minimal models. This is the intended
behavior for symmetric negation.

Remark 3.3 However, whenever needed, for any given positive formula F', one can easily ensure
that one of the formulae, F' or ~F, is true by default, and thus that only the other is false by default.
This can be accomplished by assuming one of the following default azioms:

B-F D ~F or B—|(~F) D F

which say that if we disbelieve F' (respectively, ~F') then ~F (respectively, F') can be assumed to
be true. For example, the first default axiom causes ~F to be true by default thus forcing strong
negation to behave in a way that is similar (but not identical) to classical negation. This will prove
useful later on when we discuss the application of strong negation to theory and interpretation
update. Moreover, assuming both by default makes them both undefined, in the absence of other
information.

One can also prevent any minimization of F and ~F by assuming the law of the excluded maddle,
FV ~F, for a given formula F, which causes precisely one of F or ~F to be true at all times. a

As we mentioned in the Introduction, non-monotonic formalisms based on some form of predicate
manimization, such as CWA, circumscription and most semantics of logic programs, do not treat
atomic formulae A and their classical negations =A symmetrically and thus they are not tnvariant
under a simple renaming substitution replacing atoms by their negations and vice versa.

The Autoepistemic Logic of Beliefs, a superset of such formalisms, naturally suffers from the same
problem. For example, the belief theory B-A D C has a unique static expansion in which C'is true,
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and, yet, after substituting A’ for —A, the resulting theory BA’ D C has a unique expansion which
no longer contains C'. However, since strong negation atoms ~A4 are introduced as regular objective
atoms and since renaming of atoms has no effect on the semantics, we immediately conclude that
beliefs in AEB are invariant under renaming of any predicates from A to ~4 and vice versa.

Proposition 3.3 (Strong Negation is Symmetric) Static semantics of belief theories in AEB
18 tnvartant under the renaming of any predicates from A to ~A and vice versa.

More precisely, suppose that S is a subset of the set of all objective predicates from L and let ©
be the operator simultaneously replacing all occurrences of the atom ~A by A and all occurrences of
the atom A by ~A, for all atoms A in S. Then T° is a static expansion of a belief theory T in AEB
if and only if ©(T°) is a static expansion of the theory O(T). O

The above simple proposition illustrates the most basic difference between classical and strong
negation.

3.1 Strong Negation and Logic Programming

Since logic programs under major semantics, including stable semantics [GL8S|, well-founded se-
mantics [VGRS90], partial stable or stationary semantics [Prz90] and static semantics [Prz95b], can
be translated into belief theories in AEDB via the embedding defined in Section 2.3 [Prz95b, Prz95a],
the introduction of strong negation into belief theories immediately introduces strong negation into
logic programs with these semantics.

In particular, it follows from [GL90, Prz90] that stable semantics augmented with strong negation
is equivalent to stable semantics with the so called “classical negation”, originally introduced by
Gelfond and Lifschitz [GL90]. We assume here that “classical negation” of an atom A is translated
into its strong negation ~A.

Theorem 3.1 (Strong Negation Extends “Classical” Negation) There is a one-to-one cor-
respondence between stable models M of a logic program P with “classical negation” and consistent
static autoepistemic expansions T of its translation Te-(P) into belicf theory that satisfy the con-
dition BAV B—-A, for all objective atoms A. a

From Proposition 3.2 and the fact that default negation, not F' is translated into B—F, one
immediately derives an important relationship between strong negation and default negation in
logic programs:

Proposition 3.4 (Strong Negation vs. Default Negation) Suppose that P is a logic program.
The inference rule:

~F
not F
is satisfied by all semantics of P obtained by the embedding of P into AEB via the translation T (P)
and for all positive formulae F of L. a

Remark 3.4 It is also worth noting that, for atomic objective formulae A, the default axioms
discussed above have a particularly simple translation into logic programming rules:

~A — not A and A — not ~A.
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3.2 Application of Strong Negation to Knowledge Representation

Applications of various forms of symmetric negation to knowledge representation have been studied
in a number of papers and proved to be quite extensive (see e.g. [APP96, GL92, Kow90], [Kow92,
PAA93, PDA93a, PDA93Db, Prz97a]). In particular, in [Prz97a] strong negation is used to provide
a simple embedding of Gelfond’s epistemic specifications [Gel92] into AELB and in [APP96] strong
negation is applied to propose a solution to the problem of belief revision. Here we show how one
can apply strong negation to provide a natural solution to an important knowledge representation
problem, namely, to the problem of theory update. This generalizes to arbitrary belief theories the
approach to theory update proposed earlier in [MT94b, PT95].

Katsuno and Mendelzon [KM91] have distinguished two abstract frameworks for reasoning about
change: theory revision and theory update. As opposed to theory revision, which involves a change
in knowledge or belief with respect to a static world, theory update involves a change of knowledge
or belief in a changing world. Winslett [Win88] showed that reasoning about actions should be done
“one model at a time.” That is, when reasoning about the outcome of an action, we must consider
its effect in each one of the states of the world that are consistent with our (possibly incomplete)
knowledge of the current state of the world. This insight is reflected in the general definition of
theory update due to Katsuno and Mendelzon, which can be formulated as follows.

Let T and S be sets of propositional formulae. A set S’ of formulae is a “theory update” of S
by T if

Models(S") = { I' : 31 € Models(S) . I’ is “an update of I by T7 }.

From this definition we infer that in order to determine “theory update” it suffices to define when
an interpretation I' is an update of an interpretation I by a theory T. Below we illustrate how
strong negation can be used to define interpretation update by an arbitrary belief theory T"in AEB.
As we already mentioned, this is a generalization to arbitrary belief theories of the approach to
interpretation update proposed earlier in [MT94b, PT95].

Suppose that T is the theory discussed in Example 3.1 describing a university that periodically
evaluates its faculty based on their research and teaching performance and consisting of formulae:

good_researcher(z) A B good_teacher(z) D good_evaluation(z)
B-good_researcher(x) D bad_evaluation(x)

Bbad_teacher(x) D bad_evaluation(x)

teaching_award(x) D good_teacher(x)

many_papers(x) D good_researcher(z)

together with strong negation constraints for all the atoms appearing in the theory, e.g.:
good_researcher(x) A bad_researcher(xz) D L,..., etc.
Moreover, suppose that I is an interpretation of the objective language C given by:
I = {good_evaluation(Jack), good_evaluation(Lisa), good_teacher(Scott)} U
U {many_papers(Lisa), teaching.-award(Jack), many_papers(Scott)}.

In order to produce an interpretation I’ of the objective language Z, which can be considered an
update of I by the belief theory T, we first augment 7" with the default axioms B—(~A4) D A, for
every atom A in I, e.g.:

B-bad_evaluation(Jack) D good_evaluation(Jack),. .., ete.
These axioms can be viewed as natural inertia or frame axiomns stating that predicates that are

initially true in I remain true unless we have some evidence to the contrary. We will denote the set
of these default axioms by Dj.



The augmented belief theory Tt = T'U D has a unique static expansion in which Jack receives
a negative evaluation because he does not have any research record and Scott receives a positive
evaluation because he is a good teacher and a good researcher. Even though Lisa’s teaching record
is unclear she keeps her positive evaluation due to the default axiom:

B-bad_evaluation(Lisa) D good_evaluation(Lisa).
It is therefore natural to consider the interpretation:
I' = {bad_evaluation(Jack), teaching_award(Jack), good_evaluation(Scott)} U

U {good_researcher(Scott), good_researcher(Lisa), good_evaluation(Lisa)} U
U {good_teacher(Scott), many_papers(Scott), many_papers(Lisa), good_teacher(Jack)},

consisting of all the atomic formulae from the language L that belong to the unique static expansion
Ty of Ty, to be the update of I by T. In general, we may have more than one static expansion of 17
thus resulting in more than one possible interpretation update of I.

It follows from the results proved in [PT95] that revision programming, introduced in [MT94b], is
a special case of this approach obtained when the theory T is a positive logic program. However, the
approach proposed in here is more general because the updating theory T' can be an arbitrary belief
theory in AEB. In particular, T can be an arbitrary propositional theory or it can represent any of
the non-monotonic formalisms embeddable into AEB, such as CWA, circumscription, autoepistemic
logic and all the major semantics recently proposed for logic programs. In [PT95] it was also shown
how to define update in the framework of default logic.

4 Explicit Negation

In this section we introduce an alternative weaker notion of symmetric negation in the Autoepis-
temic Logic of Beliefs, which we call explicit negation. The resulting extension of AEB, called the
Autoepisternic Logic of Beliefs with Explicit Negation, AEBX, demonstrates the flexibility of the
AEB framework in expressing different forms of negation.

After providing motivation and formal definitions, we show that static expansions in AEBX are
sufficiently expressive to characterize the well-founded semantics with explicit negation, WFSX, a
semantics of logic programs introduced earlier in [PA92]. We then contrast explicit negation with
strong negation. Section 5 illustrates an application of explicit negation showing how belief revision
in AEBX can directly capture the contradiction removal techniques used for logic programs [AP94].

4.1 The Issue of Relevance

In logic programming, clauses are seen as inference rules rather than material implications. However,
for definite and normal programs this distinction is immaterial. Due to the absence of negative facts
in such programs, the addition of a contrapositive “Head — —Body of a program rule Head +— Body
has no bearing on the rest of the program.

On the other hand, in normal logic programs extended with a symmetric negation (hereafter,
simply called extended logic programs or ELPs) some care is needed if one wants to preserve the
procedural reading of logic program rules. According to this reading, as in a procedure, the truth
value of the head of a rule is solely determined by the truth value of its body. Thus, the procedural
reading indicates that computing the truth value of a literal can be done by relying solely on the
procedural call graph implicitly defined by the rules for literals. In other words, literals that are
not (transitively) called by the rules for another literal should not influence its truth value. This
well-known property, called relevance [Dix92], is essential to guarantee the availability of (strictly)
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top-down evaluation procedures for a semantics. It is worth noting that the well-founded semantics
for normal logic programs [GRS91] obeys relevance (cf. [Dix92]). On the other hand, neither the
Stable Models Semantics, nor AEB when applied to theories resulting from logic programs with the
strong negation counstraints, satisfy this principle.

One paramount motivation for introducing AEBX is the desire to capture those semantics of
logic program that satisfy relevance and thus permit efficient, top-down implementations. As shown
in Example 4.1, queries for non-relevant semantics cannot, in general, be evaluated in a top-down
fashion using standard logic programming implementation procedures, i.e., by simply following the
program’s call graph. The other was the desire to ensure that AEBX is more expressive than AEB by
providing a meaningful semantics to those consistent programs that appear to have a well-defined
intended meaning and yet do not have a consistent semantics when strong negation is used (see
Example 4.2).

Example 4.1 Take the following theory T and corresponding logic program P, where T' = Tz (P):

B— god_exists D god_exists god_exists — not god_exists
B-god_exists D —god_exists —god_exists «— not god_exists
B-god_exists D —go_to_church —yo_to_church «— not god_exists
go_to_church go_to_church

where the first two rules represent two conflicting default axioms, which read “I conclude God exists
if I disbelieve Its non-existence” and “I conclude God doesn’t exist if I disbelieve Its existence”.
The third rule states that “If I disbelieve the existence of God then I do not go to church”, and the
fourth that “I go to church”.

If —is understood as strong negation, i.e. if strong negation constraints are added to 7', then
the theory has one expansion, where god_exists because I go to church. Indeed, go_to_church D
——go_to_church (strong negation constraint), which by contraposition of the third clause entails
=B-god_exists. Therefore, since —god_exists only appears in the second clause, =—god_exists holds
in all minimal models, and by necessitation rule (N), B— god_ewxists. Hence, by the first clause of
T, god_exists holds in all expansions of the theory.

Note that this conclusion is not relevant. Looking at the program P makes it clear that ouly
the first two rules are (transitively) called by god_exists. However, the reader may check that the
theory consisting solely of the first two clauses, does not have god_exists in all its expansions.

With explicit negation (to be defined below) we have different conclusions, and the corresponding
least expansion includes {go_to_church, B~—go_to_church} but not god_exists nor B-~—god_exists (cf.
Example 4.3). O

Example 4.2 Take now the following theory and corresponding logic program:

B-shave(x,x) D shave(John,x) shave(john, X)) — not shave(X, X)
shave(y,z) D go-dine_out(x) go-dine_out(X) «— shave(Y, X)
—shave(Peter, Peter) —shave(peter, peter)

—o_dine_out(John) —~go-dine_out(john)

The first rule states that “John shaves everyone not believed to shave themselves”. The second says
that “If # has been shaved (by anyoune) then = will go out to dine”. The third states that “Peter
does not shave himself”, and the fourth that “John has not gone out to dine”. We would like to
know whether we believe John has shaved himself given that he has not gone out to dine. Note that
believing he has not shaved himself leads to a contradiction, and that the conclusion that he has
shaved himself is not true in all minimal models.

If the strong mnegation constraints are added to this theory then AEB assigns no con-
sistent meaning to it (there is no consistent expansion). On the contrary, if explicit nega-
tion, to be defined below, is used instead the theory has one expansion that includes:
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{go-dine_out(john), B-go_dine_out(john)} but not shave(john,john). The absence of consis-
tent expansions by using strong negation is brought about by the use of the contrapositive
—go_dine_out(X) D -shave(X,X) to conclude —shave(john,john), B-shave(john,john), and
hence shave(john,john) (contradiction). O

As we have seen, the reason strong negation does not directly capture any semantics for extended
logic programs complying with relevance, such as WFSX, is because of its very definition. Strong
negation constraints, -4 D —A, state that strongly negated facts or conclusions entail classically
negated ones, thereby permitting the use of the contrapositives of the material implications resulting
from the translation of the logic program rules.

What the above two paradigmatic examples have in common is the back propagation of truth
values by strong negation, against the logic program rule arrow, into a loop of otherwise undefined
literals (i.e., such that neither L nor not L hold). In the Example 4.1 we have an even loop over
default negation, and in the Example 4.2 an odd one. In the first example, the back propagation
decides the loop one way, and in the second it comes up against the impossibility of resolving the
loop by imposing a truth value. However, as we shall see below, explicit negation does not affect
either loop.

To conclude, because of its use of classical negation contrapositives, strong negation leads both to
logic programs without a semantics and to logic program theories with unwarranted (non-relevant)
conclusions, i.e. conclusions not solely based on the procedural call graph of the logic program.
To be able to capture relevant logic program semantics a weaker notion of symmetric negation is
needed. Theories with explicit negation which are translatable into extended logic programs can be
efficiently queried by the top-down procedural implementation technology of logic programs.

4.2 Introducing Explicit Negation

Explicit negation is added to AEB by means of an explicit negation operator. For the sake of
simplicity, and since we will never consider theories with both explcit and strong negation, we use
the same negation symbol for both. We thus defining the Autoepistemic Logic of Beliefs with Explicit
Negation, AEBX. Specifically, this is accomplished by:

e Augmenting the underlying objective language £ with a set S = {j : A € 8} of new objec-
tive propositional symbols, called dual orezplicit negation atoms, where S is any fixed set of
propositional symbols from £. As a result we obtain an extended objective language £ and
an extended language of beliefs E,\EB. The extension of explicit negation to arbitrary positive
objective formulae can be done in the same way as for strong negation.

¢ Extending the logical closure operator Cn 45 with the following Coherence inference rule
A
B-A
for every objective propositional symbol A®.

A Coherence inference rule says that if one derives the dual, one has to believe its negation,
ie. “A serves as evidence against A”. Since the Coherence inference rules have no effect on belief
theories that do not include explicit negation atoms, in the sequel we will assume them as part of
the operator C'napp without further mention, whenever explicit negation is used.

Example 4.3 The details of this example show the essence of how explicit negation treats both
previous examples, and the way it differs from strong negation.

5I1f A= F then we have —f—.
B-F



The theory

TQ = C’?I,AEB(T @] {Bgtc, B“QT})

is, with the obvious abbreviations, an expansion of the AEBX theory in Example 4.1 (where strong
negation is replaced by explicit negation). Its minimal models are:

M, = {Bgtc, B~gtc, Bge, Bge, ~ge, —ge, ~gte, gtc}
M, {Bgtcv B_'ﬁ* Bg(;’., B_'ﬁv ge, 7ge, _'ﬁv gf(/}
M; = {Bgtc, B-gtc, B~ge, Bge, ~ge, ge, ylte, gtch
M, = {Bgic, B-gtc, B~ge, B-ge, ge, ge, gtc, gic}

B—gtc follows in T° from gtc and the Coherence inference rule.

This example illustrates why explicit negation does not affect the theory’s even loop and, for
the same reason, why it does not affect the odd loop of Example 4.2. Indeed, in the general case,
the explicit negation of the head of a program rule may be true even though its body is undefined
(i.e., such that neither BBody nor B~Body hold in an expansion). In other words, explicit negation
allows the overriding to false of a rule’s head when its body is undefined. Because of this feature,
there is no backward propagation of falsity of the head into the rule’s body. On the other hand,
when the rule’s body is true, then its head must necessarily be true, which, however, represents a
forward, rather than backwards, propagation of truth values.

Notice that an explicit negation model may have evidence for both go_to_church and
go_to_church. Not so for strong or classical negations. However, when there is overwhelming ev-
idence for L (i.e. in all models), but not for L (i.e. only in some of the models), then explicit
negation, via the Coherence inference rule, decides in favor of . And vice-versa. |

As noted above, the definition of explicit negation, contrary to that of strong negation, does
not prevent the existence in a model of both 4 and A, for some atom A. However, this kind of
“paraconsistency” in models does not spill over to AEBX expansions:

Proposition 4.1 Let T be a consistent expansion of a belief theory T in AEBX. Then, for no
atom A:

T°EAANA

Proof. By contradiction, assume that T° is a consistent expansion of T such that T° = A A A, for
a given arbitrary atom A. Since T° is closed under the necessitation rule (N), and by hypothesis
A € T°, also BA € T°. Given that, by hypothesis, A € T° and that T° is, by definition of
AEBX, closed under the Coherence axiom, also BA € T°. Thus, according to the distributive law
for conjunctions mentioned in Section 2, B(A A —A) € T°, i.e. BL € T°. Accordingly, given the
consistency axiom (D), T° is inconsistent (contradiction). O

In other words, if there is overwhelming evidence both for and against some atom A then there
are no cousistent expansiouns.

The following result shows that the relevant logic program semantics WFSX (defined in [PA92])
is embeddable in AEBX. This embeddability result requires, besides the translation defined in Sec-
tion 2.3, a preliminary WFSX-semantics preserving transformation of the logic program. This
transformation consists in the complete elimination of objective literal goals from rule bodies by
means of unfolding, that is by successively replacing them by their various alternative rule defini-
tions. The obtained programs are said to be in “semantic kernel form”. Due to the length of the
proof, and given that it requires a significant body of definitions and results not need elsewhere in
this paper (such as the definitions of WFSX and of “semantic kernel transformation”, plus the result
showing that this transformation is WFSX-semantics preserving [AP96]), the proof of the following
theorem is omitted here.
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Theorem 4.1 (Explicit Negation and WFSX) Let P be an extended logic program in the se-
mantic kernel form. There is a one- to-one correspondence between the partial stable models M
of P, as defined in [PA92], and the consistent static autoepistemic expansions T of its translation
Tp-(P) into an AEBX belicf theory, where “explicit negation” of an atom A is translated into A

O

Up to now, we have mainly considered AEBX theories resulting from the translation of (non-
disjunctive) logic programs. This is so because we have motivated explicit negation by contrast with
strong negation on such programs. Nevertheless, there is motivation to extend AEB with explicit
negation to general theories, and not just logic programs.

The theory of Example 3.1, with strong negation replaced by explicit negation everywhere,
illustrates such general use. In fact, the results will be the same, except when later one adds

good_researcher(Paul), expressing that there is evidence against Paul being a good researcher®. As
shown in Example 3.1, by using strong negation, one additionally concludes that Paul will receive a
negative evaluation, and that Keith is a good researcher and so receives a positive evaluation. When
explicit negation is used instead, we still conclude that Paul will receive a negative evaluation, but we
no longer surmise that Keith is a good researcher. Instead, a milder conclusion follows, that Keith
is belteved to be a good researcher. This conclusion is not enough to give Keith a good evaluation.
See Example 4.4, for a detailed explanation of how these results are obtained.

4.3 Explicit and Strong Negation Compared

Explicit and strong negation share some similarities. The (derived) inference rule from strong
negation to beliefs shown in Proposition 3.2, also holds for explicit negation. Explicit negation is
in fact characterized by taking this inference rule as primitive, since it is no longer derivable in the
absence of the strong negation axiom.

Another important similarity between both regards the symmetry between atoms and their
negations. The result of Proposition 3.3 still holds if strong negation is replaced by explicit negation.
In other words, explicit negation is also symmetric.

Because of the similarities, strong and explicit negation are even equivalent for the class of
theories whose expansions capture the semantics of logic programs under Stable Models. Indeed,
the result in Theorem 3.1 remains true regardless of whether “classical” negation is translated into
strong or into explicit negation.

For logic programs, explicit negation can be seen as an approximation to strong negation, in the
sense that any relevant consequence of a belief theory with strong negation remain true in AEBX
after strong negation is replaced everywhere by explicit negation:

Proposition 4.2 Let T be a AEB theory with strong negation obtained from an extended logic
program P wvia the translation described in Section 2.3, T, be the AEBX theory obtained from Ty by
replacing strong by explicit negation and deleting all the strong negation constraints tn Ty, and let
T? be an expansion of Ts. Then there exists an expansion Ty of T, such that, for every objective
atom A:

o BAe€T? if and only if BA €Ty
o B-Ae€T? if and only if B~A €Ty ad

Proof. It is easy to check that, for theories resulting from (noun-disjunctive) logic programs, T can
be expressed as:

T2 =Cnapp(Ts U{BA:T? = A} U{B-A:T? Emin A})

where A ranges over all objective atoms. Moreover:

5In Example 3.1 we added instead bad_researcher( Paul), standing for -good_researcher( Paul).
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e BAeT?ifandonly if TP = A
o B—A e T?if and only if T? Epin A
Thus, it is enough to prove that:
T, =Cnappx (Ts U{BA: BAe T} U{B-A:B-AecT;})
is an expansion of T}, i.e.
TP =Cnappx (T, U{BA : T2 E A} U{B-A:T? Epin —A})
where C'n4ppyx is the closure operator with the Coherence inference rules.

Let T), = T,U{BA : BA € T2}U{B-A: B-~A € T}, and let T, be obtained from 7T, by adding the
strong negation coustraints. Clearly, T? = Cnagp(T,) and, by Proposition 3.2, T? = Cnappx(Th).
We now prove that the minimal models of T! exactly coincide with the minimal models of T, thus
proving that, given that Cnappx (T}) is an expansion, Cnappx(T,) = T is an expansion of T,.

Let My,...,M,,... be all the minimal models of T. Since T, C T all these models are models
of T!. Moreover, since the strong negation constraints only delete models M such that, for some
objective atom A, both 4 and —A are true in M, then all the M;s are minimal models of 7.

It remains to be proven that 7). has no other minimal models. This is proven in two steps: first
we prove that (1) for a given fixed combination of belief propositions in some M;, the only minimal
model of T/ is M;; then we prove that (2) no new combinations of belief propositions are possible.

1. Since T! results from the translation of a non- disjunctive program, for a given fixed combi-
nation of belief propositions, there exists a single minimal model M;. By removing the strong
negation constraints, new models appear where, for some objective atom A, both A and -4
hold. These models differ from M; at least in that one of A or -4 became true. Since T, re-
sulted from the translation of a non-disjunctive logic program, the addition of atoms can only
have as consequence the addition of new atoms”. Thus all these models are strictly greater
than M;, and so they are not minimal.

2. By contradiction, assume that T, has a minimal model N with a combination of belief propo-
sitions that does not exist in any of the M;s, i.e. N differs from any of the M; in that there
exists at least one literal L such that BL € M; and =BL € N, or =5L € M; and BL € N.

e Assume that BL € M; and -BL € N. If additionally T Epin L then, by construction of
T,, BL € T], and N is not a model of T), (contradiction). Otherwise, i.e. if T 0 L,
then there exists a minimal model of 7] with =BL, and so the combination of belief
propositions in NV is not new (contradiction).

e Assume that =BL € M; and BL € N. If T} pin L then, since T, is an expansion, all its
minimal models have BL, and so M; is not a model of T (contradiction). If T7 i =L
then, by construction of T, B=L € T,, and N is not a model of T, (contradiction).
Otherwise, i.e. T. i L and T. i, 2L, then there exists a minimal model of T
with BL, and so the combination of belief propositions in N is not new (contradiction).

O

"Note that this is not the case for a disjunctive program where the addition of an atom might cause a new minimal
model to appear. For example, the theory T'= {-a, a Vb, -a D —a} has the minimal model {-a,—a,b}. By removing
the strong negation constraint (the last clause), a new minimal model appears {-a,a,-b}. In this case the addition
of a causes the deletion of b.



Corollary 4.1.1 (Explicit Negation Approximates Strong Negation) Let T; and T, be as
wn Proposition 4.2. If some formula F of the form BL, where L is either an objective atom A or its
negation —A, holds in every expansion of T,, then F also holds in every expansion of T. a

Consequently, query evaluation procedures for explicit negation in logic programs can be used as
sound query evaluation procedures for strong negation in logic programs®. However those procedures
are not complete for strong negation since, as shown by Examples 4.1 and 4.2, the couverse of
Corollary 4.1.1 is not true in general.

Another result contrasting explicit and strong negation is:

Theorem 4.2 (Explicit Negation Extends Strong Negation) There is @ one to one corre-
spondence between expansions of a theory Ty with strong negation and expansions of the AEBX
theory T, obtained by replacing in Ts strong by explicit negation, and by adding, for every atom A,
the clause: A D —A. ad

Proof. The only possible difference between expansions of T, and those of T would be that the former
are closed under Coherence inference rules. However, as shown by Proposition 3.2, all expansions of
T, are also closed under those rules. O

Disjunctive Syllogism is a derived inference rule applicable to classical and strong negations,
but which is not enjoyed by explicit negation. This rule typically allows one to conclude A on the

strength of AV B and =B (or B).

Example 4.4 Consider the theory:

good_researcher(Paul)
good_researcher(Keith)V good_researcher( Paul)

stating that “there is evidence against Paul being a good researcher”, and that “at least one of Keith
or Paul is a good researcher”.

Whereas with strong negation good_researcher(Keith) follows from the theory by virtue of the
Disjunctive Syllogism, with explicit negation it is not so. Instead, a milder conclusion obtains:

First, note that good_researcher(Keith) V good_researcher(Paul) is equivalent to the for-
mula -—good_researcher(Paul) D  good_researcher(Keith). Now, applying Necessitation,
B(—good_researcher(Paul) D good_researcher(Keith)). By then applying axiom (K), we con-
clude B-good-researcher(Paul) D Bgood.researcher(Keith). Since the premise of this im-
plication follows from good_researcher(Paul) by Coherence, we extract the milder conclusion
Bgood_researcher(Keith).

Intuitively, having evidence against Paul being a good researcher does not ensure that Paul is not
a good researcher, and so does not warrant Keith being a good researcher. However, this information
is enough for believing Paul is not a good researcher, and consequently to believe Keith is. Contrast
this reading with the one of strong negation, where good_researcher(Paul) means “Paul is a bad
researcher”. In this case, and knowing that either Paul or Keith is a good researcher, it is expected
that Keith is a good researcher. a

5 Application of Explicit Negation

Applications of the logic programming semantics WFSX have been studied in various domains,
including hypothetical reasoning [PAA93], model-based diagnosis [PDA93b], declarative debugging
of logic programs [PDA93a], and updates [AP97]. Many of these applications require belief revision
methods, via contradiction removal techniques [AP94]. Here we show how to capture belief revision

8In Section 6, the reader can find a brief discussion on the implementation of explicit negation.
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in AEBX aud we illustrate how to extend the above mentioned applications from the class of logic
programs to the significantly broader class of belief theories.

Unlike normal programs, extended logic programs with symmetric negation may be contradictory,
i.e., might not have a (consistent) semantics. While for some programs this seems reasonable (e.g.,
for a program with the two facts @ and @), for some others this may not be justified:

Example 5.1 Counsider the program:

runs <« not broken

runs

stating that “if we assume that a car is not broken, then it runs”, and that “the car does not run”.

None of the logic programming semantics mentioned in this paper assigns a consistent meaning
to this program. Indeed, since there are no rules in the program for broken, all of the semantics
assume not broken true (=broken is true in all minimal models of the corresponding AEB theory),
and so both runs and 7uns hold. If Funs in the logic program is understood as the strong negation
of runs then, since runs A -runs O L, no consistent expansion of the corresponding belief theory
exists. The same happens if 7uns is understood as the explicit negation of runs, cf. Proposition 4.1.

But one can argue that, since the car does not run, it follows by “reductio ad absurdum” that
our assumption that the car is not broken must be incorrect and thus has to be revised. a

The Contradiction Removal with Explicit Negation ( CRSX ) technique of [AP94] removes contra-
diction from logic programs under WFSX (wherever possible), by revising any default assumption
that would otherwise lead to contradiction. To do so, it adds to programs a rule of the form

L« not L

for each such assumption not L, with the effect that no model of the program can now contain not L.
The alternative minimal contradicition removing sets of such “inhibition rules” can be added to the
original program in order to obtain the alternative minimally revised programs.

Example 5.2 The ounly revision of the program in Example 5.1, is obtained by adding to it
broken «— not broken

The revised program is no longer contradictory: its WFSX is {Tuns, not runs}. Furthermore, this
addition is minimal. a

The addition of inhibition rules will be allowed for only some pre-designated set of literals the
revisables. These are the literals that can be independently revised. Other literals may have their
truth value revised but ouly as a consequence of changes in the revisables. Restricting the revisables is
crucial for controlling the causal level at which assumption withdrawal may be performed. Indeed,
in an application domain such as diagnosis, revising the functional normality assumption about
a component may be conditional upon revising the functional normality assumption about some
subcomponent. Conversely, it may suffice to hypothesize the abnormality of a subcomponent to put
in question the normality of the component containing it. We deal next with both issues.

Example 5.3 Consider now the (contradictory) program:

runs <« not broken
broken <«  flatTire
broken <« badBattery



If addition of inhibition rules is allowed for any literal, then one such minimal addition removing
the contradiction is {broken < not broken}. This revision can be seen as a diagnosis of the car
that simply states the car might be broken. However, in this case one would like the diagnosis to
delve deeper into the car’s functional structure, and obtain two minimal diagnoses: one suggesting
a possible problem with a flat tire, and another suggesting a possible problem with a bad battery.
This is achieved by declaring as revisables ouly badBattery and flatTire. a

This declaration of revisables is akin to the declaration of abducible literals in abductive logic
programming. There, a solution to an abductive query is obtained by minimally, and consistently,
adding to the theory facts needed in order to prove the abductive query literal. Moreover, addition
of facts is only allowed for literals declared abducibles?®.

Example 5.4 Consider the program obtained from Example 5.3 by removing the fact Tuns, i.e.
the program:
runs <+ notbroken
broken <« flatTire
broken <« badBattery

If every literal is abducible, then one abductive solution for not runs is {broken} (i.e., this is one
possible explanation of the fact that the car is not running). To obtain only the deeper diagnosis of
the car, simply declare as abducibles { flatTire,badBattery}: the abductive solutions to that query
become then {flatTire} and {badBattery}. O

This technique can easily be imported into AEBX. Define the revisions of a theory T which has
no expansions (a contradictory theory), as the non-contradictory theories obtained by minimally
adding clauses of the form

B-L>L

which disallow (consistent) expansions in which B=L is true'’.

It is noteworthy to emphasize that, as opposed to logic programs, in AEBX there is no need for
recourse to a meta-linguistic declaration of revisables. The language itself is sufficiently expressive
to handle the definition of revisables. To realize this let us get back to the car example, which in
AEBX is rendered as the belief theory T

B-broken D runs
badBattery D broken
flatTire D broken

where broken is non-revisable. In CRSX this declaration of non-revisability means that broken may
have its truth value revised only indirectly, as a consequence of changes in the revisables, but never
directly on account of the addition of an inhibition rule for it. In AEBX it means that beliefs about
broken may change only indirectly, as a consequence of changes in beliefs about revisables, but never
directly because of the addition of an inhibition clause for it. To achieve this, we must require that
belief changes about broken be solely determined by the belief changes about the revisables, so that
adding a single inhibition clause, for broken only, is insufficient because the resulting theory has no
consistent expansions.
By Necessitation and the axiom (K), the closure of T contains:

BflatTire V BbadBattery D Bbroken.

9A formal comparison of contradiction removal and abduction in logic programs can be found in [DP95].
10 An expansion with B=L would also contain L and BL, since expansions are closed under necessitation, and would
thus be inconsistent.



Thus, belief in the truth of broken follows from belief in flatTire or belief in badBattery. For the
falsity of belief in broken to be determined by the falsity of beliefs in flatTire and badBattery we
need an additional statement, which ensures that if both flatTire and badBattery are disbelieved
then broken must be disbelieved as well, i.e.:

B-flatTire A B-badBattery D B-broken (3)
Example 5.5 The belief theory T above, augmented with clause (3), has two revisions:

T U {B-badBattery D badBattery}
T U {B-flatTire D flatTire}

each corresponding to one of the desiredly deeper diagnoses.

Observe that T/ = TU{B-broken D broken} is not a revision. Indeed, all minimal models of the
theory have = flatTire and —badBattery, because there are no clauses defined for neither flatTire
nor badBattery. Thus every expansion of 77 must contain {B-flatTire, B-badBattery}. Now, by
clause (3), every expansion of T’ includes B—Broken, and thus, by the inhibition clause for broken
and by Necessitation, is inconsistent. a

Notice the similarity between clause (3) and Clark’s completion [Cla78] of broken. The latter
implies that if both flatTire and badBattery are false then broken is false, whilst (3) states the
same about the corresponding beliefs. For this reason (3) is called the belief completion clause for
broken. The formal definition of belief completion rules can be found in [APP96].

The specification of revisables is captured in the language of AEBX by adding for each literal
which is not a revisable the corresponding belief completion clause. This language level declarative
specification achieves the same effect as the declaration of revisables for logic programs, which in
the latter case can only be made meta-linguistically. Though not detailed here, it can also be used
to explain the intuitive notion that a literal is abducible unless the rules defining it are closed by a
completion clause. Moreover it has greater generality, by allowing conditions to be added to belief
completion clauses. For example, instead of simply stating that broken is not a revisable, we might
want to say that broken is not revisable only if the atom deeper is a consequence of the theory. In
such a case we would just add:

deeper A B=flatTire A B—badBattery D B-broken

This allows for flexible control over the level of revision: adding the fact deeper, or concluding it,
results in only causally deeper faults being obtained. Otherwise superficial faults can be obtained.
Diverse complex diagnosis preferences and strategies can be encoded in AEBX (see [DNPS95] to
find out how this can be accomplished by changing the revisables in logic programs).

We conclude by remarking that either one of symmetric negation in AEB can be used to obtain a
solution to belief revision not relying on a theory transformation: instead of the addition of minimal
sets of inhibition rules, alternative revisions can be obtained directly by modifying the definition of
expansions, leading to the notion of Careful Autoepistemic Expansions (see [APP96]).

6 On the Implementation of Explicit Negation

As we argued above, one advantage of explicit negation is that theories that are translatable into
logic programs can be implemented and queried by efficient (strictly) top-down methods based on
standard logic programming techniques.

Top-down query evaluation procedures for explicit negation in extended logic programs can be
obtained by adapting existing procedures for well-founded semantics of normal programs. One such
adaptable derivation procedure is defined in [ADP94]. It relies on the definition of two kinds of
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derivation. One, called verity derivation, proving truth, and another proving noun-falsity of literals
(where non-falsity of L means that not L ¢ WFM). Shifting from one kind of derivation to the
other is required when trying to prove a default literal not L: the verity derivation of not L succeeds
if-and-only-if the non-falsity derivation of L fails; the non-falsity derivation of not L succeeds if-and-
only-if the verity derivation of L fails. Apart from the switch between derivation types at default
literals, the derivation procedure relies on the usual SLD-like rewritting techniques.

Two adaptations are required to incorporate explicit negation (described in [ADP94], where
soundness and completeness wrt. WFSX is proven). The first incorporates one extra method for
deriving truth of a default literal not L — the verity derivation of not L succeeds, additionally, if the
verity derivation of L succeeds — and the second restricts non-falsity derivations of objective literals
— a non-falsity derivation of L fails if a verity derivation of L succeeds. The first adaptation directly
reflects the Coherence inference rule that defines explicit negation. Also as a consequence of this
rule, if some L is true then not L must be also true and L cannot be false. This justifies the failure
required by the second adaptation in non-falsity derivations.

7 Conclusion

We have shown that, in order to represent and reason about knowledge, one requires a form of
negation which is not automatically assumed by default and which is symmetric with respect to
default negation. Neither classical negation nor default negation satisfy these coonditions.

We then introduced, within the broad framework of Autoepistemic Logic of Beliefs, two types of
symmetric negation, strong and explicit, and illustrated their application on a number of knowledge
representation examples.

Although similar, strong and explicit negation differ in their use of contrapositives and their
amenability to strictly top-down querying procedures. They are alike in that they both capture
the answer-sets semantics [GL90], differ from classical negation, and enjoy symmetry. Of the two,
explicit negation is weaker and easier to implement. It can be viewed and used as an approximation
to strong negation.
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