
Evolving Logic Programs

José Júlio Alferes1, Antonio Brogi2,
João Alexandre Leite1, and Lúıs Moniz Pereira1

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Logic programming has often been considered less than ad-
equate for modelling the dynamics of knowledge changing over time.
In this paper we describe a simple though quite powerful approach to
modelling the updates of knowledge bases expressed by generalized logic
programs, by means of a new language, hereby christened EVOLP (after
EVO lving Logic Programs). The approach was first sparked by a crit-
ical analysis of previous efforts and results in this direction [1,2,7,11],
and aims to provide a simpler, and at once more general, formulation of
logic program updating, which runs closer to traditional logic program-
ming (LP) doctrine. From the syntactical point of view, evolving pro-
grams are just generalized logic programs (i.e. normal LPs plus default
negation also in rule heads), extended with (possibly nested) assertions,
whether in heads or bodies of rules. From the semantics viewpoint, a
model-theoretic characterization is offered of the possible evolutions of
such programs. These evolutions arise both from self (or internal) up-
dating, and from external updating too, originating in the environment.
This formulation sets evolving programs on a firm basis in which to ex-
press, implement, and reason about dynamic knowledge bases, and opens
up a number of interesting research topics that we brush on.

1 Introduction

Until recently, LP has often been considered less than adequate for modelling
the dynamics of knowledge changing over time. To overcome this limitation,
languages like LUPS [2] and EPI [7] have been defined. For this purpose, LUPS
provides several types of update commands: assert, retract, always, cancel,
assert event, retract event and always event, all of which having a rule as
argument. Such commands can be made conditional on the current state, the
conditions being preceded by the keyword when. An example of a LUPS com-
mand is: always L ← L1, . . . , Lk when Lk+1, . . . , Lm, meaning that, from the
moment it is given onwards, whenever all of Lk+1, . . . , Lm are true, the knowl-
edge base should be updated with the rule L ← L1, . . . , Lk. A declarative, as
well as a procedural semantics for sequences of sets of commands is defined in
[2], where its application to several areas is illustrated. EPI [7] proposes two
additional main features, both achieved by extensions of LUPS commands: to
allow for the specification of commands whose execution depends on the concur-
rent execution of other commands; and to allow for external events to condition
the evolution of the knowledge base.

S. Flesca et al. (Eds.): JELIA 2002, LNAI 2424, pp. 50–62, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Evolving Logic Programs 51

Both these languages, a bit against the spirit of LP (which, in pure programs,
has no keywords), are too verbose. Their verbosity makes them complex, difficult
to use, and to prove program properties. Moreover, each keyword encodes a high-
level behaviour for the addition of rules. And this constitutes a problem in case
one wants to describe a different, unforeseen, high-level behaviour. For instance,
one may want: to make the addition of a command dependent upon conditions
that may span more than one state; to model changes to update commands
themselves; etc. None of these high-level behaviours are achievable by LUPS or
EPI commands. Of course, one could further extend these languages. Not only
would this make them more and more complex, but also some yet unforeseen
but desirable commands would certainly be still missing. We took the opposite
approach: instead of extending these languages with new commands, we analyzed
what is basic in them, what they offer that is new compared to classical LP, and
then minimally add constructs to LP to account for the new capabilities of
evolution and updating. The resulting language, EVOLP, provides a simpler,
and at once more general, formulation of logic program updating, which runs
closer to traditional LP doctrine.

EVOLP generalizes LP to allow specification of a program’s own evolution,
in a single unified way, by permitting rules to indicate assertive conclusions in
the form of program rules. Such assertions, whenever they belong to a model
of the program P , can be employed to generate an updated version of P . This
process can then be iterated on the basis of the new program. When the pro-
gram semantics affords several program models, branching evolution will occur
and several evolution sequences are possible. Branching can be used to specify
incomplete information about a situation. The ability of EVOLP to nest rule
assertions within assertions allows rule updates to be themselves updated down
the line, conditional on each evolution strand. The ability to include assertive
literals in rule bodies allows for looking ahead on program changes and acting
on that knowledge before the changes take place.

The ensuing notion of self evolving programs is more basic than the subse-
quent elaboration of general evolving programs, those that also permit, besides
internal or self updates, for updates arising from the outside. So first we define
a language of programs able to express changes to its very programs, and study
how programs may evolve by themselves. Only afterwards do we analyze and
define extensions that cater for the interference from external updates.

The proposed formulation sets EVOLP on a firm formal basis in which to
express, implement, and reason about dynamic knowledge bases, and opens up a
number of interesting research topics that we brush on. As a consequence of the
richness of the new paradigm, our emphasis in this paper will be much more on
the appealingness of its foundational precepts and scaffolding, than on exploring
specific properties, as these require constraining the general core setting with
distinctive further options. Accordingly, in the next two sections we formally
define the syntax and semantics of EVOLP. Then we present examples of usage.
We end with a section on discussion, brief comparisons with related work, open
issues, and themes of future work.

52 José Júlio Alferes et al.

2 Self-evolving Logic Programs

What is required to let logic programs evolve by themselves? To start with, one
needs some form of negation in heads of rules, so as to let older rules to be su-
pervened by more recent ones updating them, and thus admit non-monotonicity
of rules. Second, one needs a means to state that, under some conditions, some
new rule or other is to be added to the program.

Accordingly, for the syntax of EVOLP we simply adopt that of generalized
LPs augmented with the reserved predicate assert/1, whether as the rule head
or in its body, whose sole argument is itself a full-blown rule, so that arbitrary
nesting becomes possible. Formally:

Definition 1. Let L be any propositional language (not containing the predicate
assert/1). The extended language Lassert is defined inductively as follows:
1. All propositional atoms in L are propositional atoms in Lassert.
2. If each of L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom A or its

default negation not A), then L0 ← L1, . . . , Ln is a generalized logic program
rule over Lassert.

3. If R is a rule over Lassert then assert(R) is a propositional atom of Lassert.
4. Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of gen-
eralized logic program rules over Lassert.

We decided not to include an explicit retract construct in the basic language.
Indeed, as we have default negation available also in rule heads, retraction of
rules can be encoded in EVOLP. This encoding is, however, left out of this paper.

Self-evolving programs can update their own rules and exhibit a dynamic,
non-monotonic behaviour. Their meaning is given by a set of evolution stable
models, each of which is a sequence of interpretations or states. The basic idea
is that each evolution stable model describes some possible self-evolution of one
initial program after a given number n of evolution steps. Each self-evolution is
represented by a sequence of programs, each program corresponding to a state.

The sequences of programs are treated as in Dynamic Logic Programs (DLP)
[1], where the most recent rules are put in force, and the previous rules are valid
(by inertia) as far as possible, i.e. they are kept for as long as they do not conflict
with more recent ones. In DLP, default negation is treated as in stable models
of normal [8] and generalized programs [12]. Formally, a dynamic logic program
is a sequence P1 ⊕ . . . ⊕ Pn (also denoted

⊕
P, where P is a set of generalized

logic programs indexed by 1, . . . , n), and its semantic is determined by1:

Definition 2. Let
⊕

{Pi : i ∈ S} be a dynamic logic program over language L,
let s ∈ S, and let M be a set of propositional atoms of L. Then:

Defaults(M) = {not A ← . |$ ∃A ← Body ∈ Pi(1 ≤ i ≤ s) : M |= Body}
Rejects(M) = {L0 ← Body ∈ Pi | ∃ not L0 ← Body′ ∈ Pj , i < j ≤ s ∧

M |= Body′}
1 For more details, the reader is referred to [1].

Evolving Logic Programs 53

where A is an atom, not L0 denotes the complement w.r.t. default negation of
the literal L0, and both Body and Body′ are conjunctions of literals.

Definition 3. Let P =
⊕

{Pi : i ∈ S} be a dynamic logic program over language
L. A set M of propositional atoms of L is a stable model of P at state s ∈ S iff:

M ′ = least
([⋃

i≤s
Pi − Rejects(M)

]
∪ Defaults(M)

)

where M ′ = M ∪ {not A | A $∈ M}, and least(.) denotes the least model of the
definite program obtained from the argument program by replacing every default
negated literal not A by a new atom not A.

The primordial intuitions for the construction of the program sequences are
as follows: regarding head asserts, whenever the atom assert(Rule) belongs to
an interpretation in a sequence, i.e. belongs to a model according to the stable
model semantics (SM) of the current program, then Rule must belong to the
program in the next state; asserts in bodies are treated as any other predicate
literals. Before presenting the definitions that formalize these intuitions, let us
show an illustrative example. Consider the self-evolving program P :

a ← . assert(b ← a) ← not c. assert(not a ←) ← b. c ← assert(not a ←).

The (only) stable model of P is I = {a, assert(b ← a)} and it conveys the
information that program P is ready to evolve into a new program P ⊕ P2 by
adding rule (b ← a) at the next step, i.e. in P2. In the only stable model I2 of
the new program P ⊕ P2, atom b is true as well as atom assert(not a ←) and
also c, meaning that P ⊕ P2 is ready to evolve into a new program P ⊕ P2 ⊕ P3
by adding rule (not a ←) at the next step, i.e. in P3. Now, the (negative) fact in
P3 conflicts with the fact in P , and so this older fact is rejected. The rule added
in P2 remains valid, but is no longer useful to conclude b, since a is no longer
valid. Thus, assert(not a ←) as well as c are also no longer true. In the only
stable model of the last sequence both a, b and c are false.

Definition 4. An evolution interpretation of length n of an evolving program
P over L is a finite sequence I = 〈I1, I2, . . . , In〉 of sets of propositional atoms
of Lassert. The evolution trace associated with an evolution interpretation I is
the sequence of programs 〈P1, P2, . . . , Pn〉 where:

P1 = P, and Pi = {R | assert(R) ∈ Ii−1}, for each 2 ≤ i ≤ n.

Definition 5. Let M = 〈I1, I2, . . . , In〉 be an evolution interpretation of an
evolving logic program P , and let 〈P1, P2, . . . , Pn〉 be its evolution trace. M is
an Evolution Stable Model of P iff for every i (1 ≤ i ≤ n), Ii is a stable model
at i of the DLP: P1 ⊕ P2 ⊕ . . . ⊕ Pi.

Being stable models based, it is clear that a self-evolving program may have
various evolution models of a given length, as well as no evolution stable mod-
els at all. We say that a self-evolving program is inconsistent when it has no

54 José Júlio Alferes et al.

evolution stable models of any length, and that it is inconsistent after n-steps
if it has at least one stable model after n − 1 steps and has no stable models
thereafter. Note that if a program has no stable models after n steps then, for
every m ≥ n it has no stable model after m steps. It is also important to observe
that the set of all evolution stable models of a program, up to any length n, can
be constructed incrementally by means of an operator TP .

Definition 6. Let P be an evolving program. The operator TP on sets of evolu-
tion interpretations is defined by:

TP (I) = {〈I1, . . . , Ii, Ii+1〉 | 〈I1, . . . , Ii〉 ∈ I ∧
∧ Ii+1 is a stable model of P1 ⊕ . . . ⊕ Pi ⊕ Pi+1 at state i + 1}

where P1 = P and, for 1 < j ≤ i + 1, Pj = {R | assert(R) ∈ Ij−1}.

Theorem 1. Given an evolving program P , build the sequence of sets of evolu-
tion interpretations: I1 = {〈I〉 | I is a stable model of P}, and Ii+1 = TP (Ii).
M is an evolution stable model of length n iff M belongs to In.

Each evolution stable model represents one possible evolution of the program,
after a given number of steps. However, they do not directly determine a truth
relation. What is true (resp. false) after a given number of evolution steps? This is
an important question, when one wants to study the behaviour of a self-evolving
program. Here, one will be interested in knowing what is guaranteed to be true
(or false) after n steps of evolution, and what is unknown (or uncertain). In the
example above a is guaranteed true after 1 and 2 steps and false after n steps,
for any n ≥ 3; b and c are true after 2 steps and false after n steps for any n $= 2.

Definition 7. Let P be an evolving program over the language L. We say that a
set of propositional atoms M over Lassert is a stable model of P after n steps iff
there exist I1, . . . , In−1 such that 〈I1, . . . , In−1, M〉 is an evolution stable model
of P . We say that propositional atom A of L is: true after n steps iff all stable
models of P after n steps contain A; false after n steps iff no stable model of
P after n steps contains A; unknown after n steps otherwise (iff some stable
models of P after n steps contain A, and some do not).

3 Evolving Logic Programs

With this alone, evolving programs are autistic: there is no way one can con-
trol or influence their evolution after initialization. To allow for control and
influence from the outside, full-fledged evolving programs consider, besides the
self-evolution of a program, that new rules may arrive from an outside envi-
ronment. This influence from the outside may be, at each moment, of various
kinds. Notably: observation of facts (or rules) that are perceived at some state;
assertion orders directly imposing the assertion of new rules on the evolving pro-
gram. Both can be represent as EVOLP rules: the former by rules without the
assert predicate, and the latter by rules with it. Consequently, we shall represent
outside influence as a sequence of EVOLP rules:

Evolving Logic Programs 55

Definition 8. Let P be an evolving program over the language L. An event
sequence over P is a sequence of evolving programs over L.

The rules coming from the outside, be they observations or assertion orders,
are to be understood as events given at a state, that are not to persist by
inertia. I.e. if R belongs to some set Si of an event sequence, this means that
R was perceived or given after i − 1 evolution steps of the program and that
this perception is not to be assumed by inertia from then onward. With this
understanding of event sequence, it is easy to define the evolution stable model
of an evolving program influenced by a sequence of events. Basically, a sequence
of interpretations is a stable model of a program given a sequence of events, if
each Ii in the sequence is a stable model at state i of the trace plus the events
added at state i.

Definition 9. An evolution interpretation 〈I1, I2, . . . , In〉, with evolution trace
〈P1, P2, . . . , Pn〉, is an evolution stable model of P given 〈E1, E2, . . . , Ek〉 iff for
every i (1 ≤ i ≤ n), Ii is a stable model at state i of P1 ⊕ P2 . . . ⊕ (Pi ∪ Ei).

Notice that the rules coming from the outside indeed do not persist by inertia.
At any given step i, the rules from Ei are added and the (possibly various) Ii

obtained. This determines the programs Pi+1 of the trace, which are then added
to Ei+1 to determine the models Ii+1.

Clearly this definition generalizes the one of self evolving programs (if all the
sets of events in a sequence are empty, this definition collapses to Definition 5).

The definition assumes the whole sequence of events given a priori. In fact
this need not be so because the events at any given step n only influence the
models in the evolution interpretation from n onward.

Proposition 1. Let M = 〈I1, . . . , In〉 be an evolution stable model of P given
an event sequence 〈E1, . . . , En〉. Then, for any m > n and any sets of events
En+1, . . . , Em, M is also an evolution stable model of P given an event sequence
〈E1, . . . , En, En+1, . . . , Em〉.

In fact, the evolution stable models of a program given a sequence of events
can also be constructed incrementally by means of an operator T ev

P .

Theorem 2. Let P be an evolving program, and let I be a set of evolution
interpretations of P given the event sequence 〈E1, . . . , Ei〉. The operator T ev

P is,
where P1 = P and, for 1 < j ≤ i + 1, Pj = {R | assert(R) ∈ Ij−1}:

T ev
P (I, Ei+1) = { 〈I1, . . . , Ii, Ii+1〉 | 〈I1, . . . , Ii〉 ∈ I∧

∧ Ii+1 is a stable model of P1 ⊕ . . . ⊕ Pi ⊕ (Pi+1 ∪ Ei+1)}
Consider the sequence: I1 = {〈I〉 | I is a stable model of P ∪ E1}, and
Ii+1 = T ev

P (Ii, Ei+1). M is an evolution stable model of length n given the
event sequence 〈E1, . . . , En〉 iff M belongs to In.

A notion of truth after a number of steps given an event sequence can be
defined similarly to that provided for self-evolving programs:

56 José Júlio Alferes et al.

Definition 10. Let P be an evolving program over the language L. We say
that a set of propositional atoms M over Lassert is a stable model of P af-
ter n steps given the sequence of events SE iff there exist I1, . . . , In−1 such that
〈I1, . . . , In−1, M〉 is an evolution stable model of P given SE. We say that propo-
sitional atom A of L is: true after n steps given SE iff all stable models after
n steps contain A; false after n steps given SE iff no stable model after n steps
contains A; unknown after n steps given SE otherwise.

4 Examples of Usage

Having formally presented EVOLP, we next show examples of usage. For lack of
space, we do not elaborate on how EVOLP actually provides the results shown.

EVOLP was developed as a language capable of undergoing changes in a
knowledge base, both by self-evolution as well as imposed from the outside. One
immediate application area is that of modelling systems (or agents) that evolve
over time and are influenced and/or controlled by the environment.

Example 1. Consider an agent in charge of controlling a lift that receives from
outside signals of the form push(N), when somebody pushes the button for going
to floor N , or floor, when the lift reaches a new floor. Upon receipt of a push(N)
signal, the lift records that a request for going to floor N is pending. This can
easily be modelled by the rule: assert(request(F)) ← push(F)2. Mark
the difference between this rule and the rule request(F) ← push(F). When the
button F is pushed, with the latter rule request(F) is true only at that moment,
while with the former request(F) is asserted to the evolving program so that it
remains inertially true (until its truth is possibly deleted afterwards).

Based on the pending requests at each moment, the agent must prefer where
to go. This could be modelled in the evolving program by the rules:

going(F) ← request(F), not unpref(F). better(F1, F2) ← at(F),
unpref(F) ← request(F2), better(F2, F). | F1 − F | < | F2 − F |.

Predicate at/1 stores, at each moment, the number of the floor where the lift
is. Thus, if a floor signal is received, depending on where the lift is going, at(F)
must be incremented/decremented i.e., in EVOLP:

assert(at(F + 1)) ← floor, at(F), going(G), G > F.
assert(not at(F)) ← floor, at(F), going(G), G > F.
assert(at(F − 1)) ← floor, at(F), going(G), G < F.
assert(not at(F)) ← floor, at(F), going(G), G < F.

When the lift reaches the floor to which it was going, it must open the door.
After that, it must remove the pending request for going to that floor:

open(F) ← going(F), at(F). assert(not request(F)) ← going(F), at(F).

Note that there is no need to remove the facts going(F): by removing the
request(F), going(F) will no longer be concluded for that F . To illustrate the
2 In the examples, rules with variables simply stand for all their ground instances.

Evolving Logic Programs 57

behaviour of this evolving program, consider that initially the lift is at the 5th
floor (i.e. at(5) also belongs to the program), and that the agent receives the
sequence 〈{push(10), push(2)}, {floor}, {push(3)}, {floor}〉. This program with
this event sequence has, for every n, a single stable model after n steps which, the
reader can check, gives the desired results modelling the intuitive behaviour of
the lift. Apart from the (auxiliary) predicates to determine the preferred request,
for the first 6 steps the stable models are (with the obvious abbreviations):

1 step : {at(5), push(10), push(2), as(req(10)), as(req(2))}
2 steps : {at(5), req(10), req(2), going(2), f loor, as(at(4)), as(not at(5))}
3 steps : {at(4), req(10), req(2), going(2), push(3), as(req(3)))}
4 steps : {at(4), req(10), req(2), req(3), going(3), f loor, as(at(3)), as(not at(4))}
5 steps : {at(3), req(10), req(2), req(3), going(3), open, as(not req(3))}
6 steps : {at(3), req(10), req(2), going(2)}

The first rule above specifies the effect of the action of pushing a button.
Actions specify changes to an evolving knowledge base, and so they can be
represented by EVOLP rules specifying those changes. In general, an action,
action, with preconditions preconds and effect effect can be represented by:
assert(effect) ← preconds, action. Moreover, unlike existing languages for de-
scribing actions or updates, EVOLP allows for changes in the rules that specify
action effects. Suppose the lift becomes old and sometimes the buttons get stuck
and don’t work. The knowledge base can be updated accordingly by sending to
it an event: assert(not assert(request(F)) ← stuck(F)). The effect of this event
rule is that, from the moment it is given onward, request(L) is only asserted if
there is a push(F) action and stuck(L) is false at the moment the push occurs.

Another interesting aspect which, unlike existing languages, is easy to deal
with in EVOLP, is that of incomplete knowledge of the outside environment.
Suppose that, in the sequence of events above, instead of the last event the
system receives a signal that may (or may not) be a floor signal. This can easily
be coded by replacing the corresponding fact floor by the two rules:

floor ← not no signal. no signal ← not floor.

With this, after 4 steps (and from then onwards), there are 2 evolution stable
models: one corresponding to the evolution in case the floor signal is considered;
the other, in case it isn’t. The truth relation can here be used to determine what
is certain despite the undefinedness of the events received. E.g. after 5 steps, it
is true that the lift is going to the 3rd floor, has requests for floors 2, 3 and 10,
it is unknown whether the lift is at floor 3 or 4 (though it is false that the lift is
at any other floor), and unknown whether the door is open.

This example does not exploit the full power of EVOLP. In particular the
assertions made are of simple facts only. For illustrating how an assertion of a
rule can be used, consider the following example from legal reasoning:

Example 2. Whenever some law is proposed, and before it is made valid it must
first be voted by parliament (v (.)) and then approved by the president (a (.)).

58 José Júlio Alferes et al.

Further consider a scenario where a law stating that abortions are punishable
with jail is proposed (r1). This can be added to an evolving program as an event:

assert (assert (assert (jail (X) ← abort (X)) ← a (r1)) ← v (r1))
Subsequently, after the events v (r1) and a (r1) are observed, the rule jail (X) ←
abort (X) is in force and anyone who performs an abortion goes to jail. For exam-
ple, if the knowledge base contains abort (mary), then it also entails jail (mary).
Now suppose that a law stating that abortions are not punishable with jail if
there is life danger for the pregnant is proposed (r2). This rule can be added as:

assert (assert (assert (not jail (X) ← abort (X) , danger (X)) ← a (r2)) ← v (r2))

After v (r2) and a (r2) are observed, rule not jail (X) ← abort (X) , danger (X)
is in force, and anyone who performs an abortion and is in danger would not
go to jail. If the knowledge base also contains, e.g., the facts abort (lisa) and
danger (lisa) then it would not entail jail (lisa). Note that before the events
v (r2) and a (r2) are observed Lisa would go to jail, and even after those events,
Mary still goes to jail because danger (mary) is not true.

Lack of space prevents us from showing here more examples from other po-
tential application areas of EVOLP. Instead of doing so, we end this section
by schematically showing how to code in EVOLP some high level behavioural
changes to knowledge bases. Starting with a simple one, which happens to corre-
spond to the behaviour of a LUPS always command, suppose we want to state
that whenever some conditions Cond are met then rule Rule is to be asserted.
This can be coded by assert(Rule) ← Cond. If such a behaviour is to be in-
cluded not from the beginning of the program evolution, but rather only after
some time, instead of adding that rule in the evolving program one can send, at
the appropriate time, an outside event assert(assert(Rule) ← Cond).

One may also want the rule to be in force after some other condition is
met, e.g. if Cond1 then add a rule imposing that whenever Cond2 then Rule is
asserted. This is not possible to code directly in LUPS, but is easy in EVOLP,
due to availability of nested asserts: assert(assert(Rule) ← Cond2) ← Cond1.

In EVOLP the rules coming from the outside are time point events, i.e. do
not persist by inertia, and rules in the evolving program are subject to inertia.
But one may want to specify, as part of the self evolution of the program, a non
inertial rule. For example: “whenever Cond is met add L ← Body in the next
state as a time point event, i.e. add it in the next state and then remove it from
subsequent states (unless in the following states something else adds the rule
again)”. The coding of such a rule in EVOLP is not that direct. First one may
make the rule L ← Body conditional on the truth of say event(L ← Body), and
add both the rule and a fact for event(L ← Body) whenever Cond is met:

assert(event(L ← Body)) ← Cond.
assert((L ← Body, event(L ← Body))) ← Cond.

Now, if at any state, for some rule R, event(R) is true then we must make it
false at the next state. But only unless the rule is not going being added as an
event, for some other reason, at that next state, i.e. unless assert(event(R)) is
not itself true. And this can be coded in EVOLP by:

Evolving Logic Programs 59

assert(not event(R)) ← event(R), not assert(event(R))

This rule illustrates one usage of assert in rule bodies. It is needed here to
state that some rule is to be asserted unless some other rule is not going to be
asserted. It is easy to think of examples where such constructs are needed. E.g.
in chain updates to databases where one might want to state that if something
is going to be asserted, then something else must be asserted, etc. This kind of
chain updates, difficult to model in LUPS, are easy to model in EVOLP.

5 Concluding Remarks

We have presented the foundational framework of evolving logic programs, to ex-
press and reason about dynamic knowledge bases. Somewhat related approaches
can be found in the literature, and some words on comparison are in order.

Stemming from the very initial motivation for setting forth this framework,
it is mandatory that we begin with comments on the relation with LUPS [2] and
EPI [7]. Even though their semantics are based on a notion of stable models,
where a sequence of programs can have several stable models, the conditions of
the LUPS and EPI commands are evaluated against a single valuation based
on the union (in [2]) or intersection (in [11,7]) of all stable models. As a result,
each state transition, unlike for EVOLP, produces a single program i.e., the
evolution does not involve branching. This prevents a direct embedding of LUPS
and EPI in EVOLP, but it is possible to informally assume a modified version
of these languages where the conditions would be evaluated at each individual
stable model, for the sake of comparison. Conversely, EVOLP could be easily
modified in the opposite way so as to not have branching, by evaluating the rules
bodies at the union (or intersection) of the stable models to construct the next
program in the sequence. With this caveat, we are ready to state that LUPS
and EPI commands are all specifiable within the language of EVOLP. In the
previous section, we have already shown how to specify in EVOLP a couple
of LUPS commands. This alone is a major achievement inasmuch one of our
motivations was to simplify the rather complex extant languages of updates. But
EVOLP endorses more than LUPS or EPI, e.g.: by employing arbitrary nesting
of assertions, one can for example specify updates whose conditions span more
than one state, e.g. assertions that depend on a sequence of events as in Example
2; since persistent commands in LUPS and in EPI can be encoded as plain rules
in EVOLP, they can be the subject of updates by other rules, as illustrated
in Example 1. Finally, unlike in LUPS and EPI, where update commands and
object level rules are written in different languages, by unifying states and state
transitions in the same language and semantics, EVOLP constitutes a simple
framework not just to understand and write specifications in, but to study the
general properties of updates as well .

A logic-based modelling of simple updates is described in [5], where a de-
ductive database approach to planning is presented. In [5], STRIPS-like plans
are modelled by means of Datalog1s programs [6] which have a stable model se-
mantics amenable to efficient implementation. Updates are used to model state
changes determined by executing planning actions. This approach shares with

60 José Júlio Alferes et al.

ours the choice of the stable model semantics to provide a logical characteriza-
tion of updates. However, [5] models only updates of positive literals, while our
approach accounts for (possibly nested) updates of arbitrary rules. Moreover,
while [5] syntactically hacks program evolution inside programs by using stage
arguments, EVOLP models program evolution at the semantics level, without
adding arguments to predicates.

Action languages [9] and Event Calculus [10] have been proposed to describe
and reason about the effects of actions and events. Intuitively, while such frame-
works and EVOLP are both concerned with modelling changes, the former focus
on the notions of causality, fluents and events, while EVOLP focusses its features
on the declarative evolution of a general knowledge base.

Transaction Logic (TL) [3] is also a LP language for updates. TL is concerned
with finding, given a goal, the appropriate transactions (or updates) to an un-
derlying knowledge base in order to satisfy the goal. Contrary to EVOLP, the
rules that specify changes are separate from the knowledge base itself, making
it impossible to change them dynamically. Moreover the whole process in TL
is query driven. On the contrary, in EVOLP goals are not needed to start an
update process: an EVOLP knowledge base evolves by itself. Also, we have no
notion of finding updates to satisfy a goal: the updates are given, and EVOLP
is concerned with determining the meaning of the KB after those given updates.
Determining such updates amount to a form of abduction over EVOLP pro-
grams, driven by goals or integrity constraints. Similar arguments apply when
comparing EVOLP to Prolog asserts, though in this case there is the additional
argument of there not being a clear semantics (with attending problems when
asserts are subject to backtracking).

Space limitations prevent us discussing quite a number of other interesting
issues and directions for further work. Nevertheless, we briefly touch upon some
of them here.

A transformational definition of the semantics of EVOLP programs has al-
ready been defined. Informally, the idea is to label program literals with a state
argument so the truth of Ln denotes the truth of literal L after n evolution steps.
The interest of the transformational definition is two-fold. On the one hand, it
provides an alternative characterization of the semantics of EVOLP programs
in terms of the standard semantics of generalized programs. On the other hand,
it is the basis on which we have developed a query-based implementation of the
EVOLP language (available from http://centria.fct.unl.pt/˜jja/updates/).

The proffered semantics models consistent evolutions of programs. Indeed,
according to the definition of evolution stable model, a program is considered
to be inconsistent after n evolution steps if it has at least one evolution stable
model of length (n−1) but no evolution stable model of length n. An important
direction for future work is to extend the basic semantics to allow programs
to continue their computations even if they reach some inconsistency. Different
forms of dealing with contradiction can be considered ranging from naive removal
of directly contradicting rules, to paraconsistency, to forms of belief revision.

Evolving Logic Programs 61

A very interesting perspective to explore is the use of the EVOLP language to
specify evolving agents that interact with the external environment. While the
semantics of evolving programs accounts for rules and updates that may arise
in the external environment, we have not addressed here the issues concerning
the overall software architecture of an evolving agent. For instance, the agent
architecture will be in charge of suitably filtering perceptions and requests that
arrive from the outside, as well as of mastering the asynchronicity between the
agent and the external environment. Another important aspect to be explored
concerns the “acting” abilities of agents. These may be naturally expressed by
means of outgoing updates (directed towards other agents or the external en-
vironment). Yet another direction discerns between sets of controlled and of
uncontrolled events in the environment.

Finally, the availability of a description of the possible behaviours of evolv-
ing programs is a firm ground for performing static program analysis before
putting agents to work with the environment. It is of interest to develop resource-
bounded analyses, quantitative and qualitative, of evolving programs along the
lines of [4] so as to statically determine both their possible and invariant beliefs.

Acknowledgements

This work was partially supported by a bilateral project ICCTI-CNR, and by
project FLUX (POSI/40958/SRI/2001).

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence, 138(1-2), 2002. A
short version appeared in M. Gelfond et al., LPNMR-99, LNAI 1730, Springer.

3. A. Bonner and M. Kifer. Transaction logic programming. In David S. Warren,
editor, ICLP-93, pages 257–279. The MIT Press, 1993.

4. A. Brogi. Probabilistic behaviours of reactive agents. Electronic Notes in Theoret-
ical Computer Science, 48, 2001.

5. A. Brogi, V.S. Subrahmanian, and C. Zaniolo. The logic of totally and partially or-
dered plans: A deductive database approach. Annals of Mathematics and Artificial
Intelligence, 19((1,2)):27–58, 1997.

6. J. Chomicki. Polynomial-time computable queries in temporal deductive databases.
In PODS’90, 1990.

7. T. Eiter, M. Fink, G. Sabbatini, and H Tompits. A framework for declarative
update specifications in logic programs. In IJCAI’01, pages 649–654. Morgan-
Kaufmann, 2001.

8. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowal-
ski and K. Bowen, editors, ICLP’88, pages 1070–1080. MIT Press, 1988.

9. M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles in
Computer and Information Science, 3(16), 1998.

10. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

62 José Júlio Alferes et al.

11. J. A. Leite. A modified semantics for LUPS. In P. Brazdil and A. Jorge, editors,
EPIA-01, volume 2258 of LNAI, pages 261–275. Springer, 2001.

12. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, KR’92. Morgan-
Kaufmann, 1992.

