
Declarative Semantics for the Rule Interchange
Format Production Rule Dialect

Carlos Viegas Damásio, José Júlio Alferes, and João Leite

CENTRIA, Dep. Informática, FCT/Universidade Nova de Lisboa, Portugal
cd|jja|jleite@di.fct.unl.pt

Abstract. The Rule Interchange Format Production Rule Dialect (RIF-
PRD) is a W3C Recommendation to define production rules for the
Semantic Web, whose semantics is defined operationally via labeled ter-
minal transition systems.
In this paper, we introduce a declarative logical characterization of the
full default semantics of RIF-PRD based on Answer Set Programming
(ASP), including matching, conflict resolution and acting.
Our proposal to the semantics of RIF-PRD enjoys several features. Being
based on ASP, it enables a straightforward integration with Logic Pro-
gramming rule based technology, namely for reasoning and acting with
ontologies. Then, its full declarative logical character facilitates the in-
vestigation of formal properties of RIF-PRD itself. Furthermore, it turns
out that our characterization based on ASP is flexible enough so that
new conflict resolution semantics for RIF-PRD can easily be defined and
encoded. Finally, it immediately serves as the declarative specification of
an implementation, whose prototype we developed.

1 Introduction

In this paper we present a sound and complete declarative semantical char-
acterization of the Production Rule Dialect of the Rule Interchange Format
(RIF-PRD) [6] – including matching, conflict resolution and acting – based on
Answer-Set Programming [11], accompanied by a prototypical implementation.
While contributing to a better understanding of RIF-PRD, our proposal brings
greater flexibility to RIF-PRD as it facilitates integration with other rule based
technologies and is easily extensible e.g. with other conflict resolution strategies.

The W3C Rule Interchange Format (RIF) exists to enable interoperability
among rule languages in general, allowing rules written for one application to
be published, shared, and re-used in other applications and other rule engines.
Whereas the core dialect of RIF [3] is designed to support the interchange of
definite Horn rules without function symbols (“Datalog”), the Production Rule
Dialect of RIF (RIF-PRD) [6] extends it to deal with production rules, and is
currently a W3C Recommendation. Production rules can be seen as condition-
action rules, and are particularly useful to specify behaviors and support the
separation of business logic from business objects. According to RIF-PRD, the
condition part of production rules is like the condition part of logic rules (as

covered by RIF-Core and its basic logic dialect extension, RIF-BLD [4]). Actions
can assert facts, modify facts, retract facts, and have other side-effects, unlike
conclusions of logic rules, which contain only a logical statement.

The following are examples of production rules taken from [6], about the
status of customers, and corresponding discounts at checkout:
–Gold rule: “Silver” customers with shopping carts worth at least $2,000 are
awarded the “Gold” status.
–Discount rule: “Silver” and “Gold” customers are awarded a 5% discount on
the total worth of their shopping cart.
–New customer and widget rule: “New” customers who buy a widget are
awarded a 10% discount on the total worth of their shopping carts, but loose
any voucher they may have been awarded.
–Unknown status rule: a message must be printed, identifying any cus-
tomer whose status is unknown (that is, neither “New”, “Bronze”, “Silver”
nor “Gold”), and the customer must be assigned the status “New”.

RIF-PRD specifies an abstract syntax and associates the abstract constructs
with normative semantics and a normative XML concrete syntax. It also specifies
a presentation syntax that provides a more succinct representation of production
rules. For example, the third rule above can be represented as follows [6]:

Forall ?cust such that (And(?cust # ex1:Customer
?cust[status->"New"]))

(If Exists ?cart ?item (And (?customer[shoppingCart->?cart]
?cart[containsItem->?item]
?item # ex1:Widget)))

Then Do((?s ?cust[shoppingCart->?s])
(?val ?s[value->?val])
(?voucher ?cust[voucher->?voucher])
Retract(?cust[voucher->?voucher]) Retract(?voucher)
Modify(?s[value->func:numeric-multiply(?val 0.90)]))))

The RIF-PRD operational semantics for production rules and rule sets is
based on labeled terminal transition systems [14] where state transitions re-
sult from executing the action part of instantiated rules, according to the loop:
(Match): the rules are instantiated based on the definition of the rule condi-
tions and the current state of the data source; (Conflict resolution): a decision
algorithm, often called the conflict resolution strategy, is applied to select which
rule instance will be executed; (Act): the state of the data source is changed,
by executing the selected rule instance’s actions. If a terminal state has not been
reached, the control loops back to the first step (Match).

An important part of the control loop that governs the semantics concerns
the conflict resolution strategy used to select one of the several available rules
for execution. Strategies are denoted by keywords (of type rif:IRI), that are
attached to rule sets permitting that production rule producers and consumers
agree on a different semantics. RIF-PRD also prescribes a normative strategy,
forward chaining denoted by rif:forwardChaining, which eliminates rules from
a conflict set (a set of applicable rules) based on the following ordered criteria:

1.Refraction: eliminate rules that were already applied and whose conditions
for application haven’t changed since;
2.Priority: eliminate rules with lower priority;
3.Recency: eliminate rules that have been applicable for longer.

At the end of the application of these criteria, RIF-PRD prescribes that one
of the remaining rules be chosen “in some way” (e.g. randomly).

The RIF-PRD W3C Recommendation is a crucial and significant step in
standardizing the syntax and semantics of production rules, enabling their in-
teroperability among rule languages in general, and not limited to the Web.
However, there are some issues that require further attention, and some steps
that need to be taken, in order to provide a better understanding and greater
flexibility of RIF-PRD. One important component missing in [6] is a purely log-
ical declarative semantics for RIF-PRD, which would serve as a counterpart to
the operational semantics provided. Such a semantics would provide a better
understanding and further insights into RIF-PRD, while facilitating the inte-
gration of production rules with declarative rules and Logic Programming rule
based technology in general, useful e.g. for reasoning and acting with ontologies.

Another issue that needs further attention is that of providing alternatives
to the default conflict resolution strategy. Though RIF-PRD foresees the specifi-
cation of different conflict resolution strategies, there is no indication in [6] as to
how such alternative strategies could be specified in a way that facilitates their
shared understanding by document producers and consumers. We believe that
any such strategy, including the one normatively specified by RIF-PRD, should
be defined by a set of rules which precisely defines its meaning. In this case,
the keyword for the strategy could be a URI for the set of rules which precisely
defines the strategy.

In this paper, we present a sound and complete declarative semantical char-
acterization of RIF-PRD – including matching, conflict resolution and acting –
based on Answer-Set Programming (ASP) [11], that addresses these outstand-
ing issues. As suggested by RIF-PRD designers, we assume RIF-Core strong
safeness [3] in order to guarantee finite grounding in forward chaining mode.

ASP is a form of declarative programming, similar in syntax to traditional
logic programming and close in semantics to non-monotonic logic, that is now
widely recognized as a valuable tool for knowledge representation and reasoning.
On the one hand, ASP is fully declarative in the sense that the program spec-
ifications resemble the problem specifications, the semantics is very intuitive,
and there is extensive theoretical work that facilitates proving several properties
of answer-set programs. On the other hand, ASP is very expressive, allowing
for compact representations of all NP and coNP problems, or even more com-
plex ones if disjunctive programs are used [7]. Other important characteristics
of ASP include the use of default negation to allow for reasoning with assump-
tions and incomplete knowledge, as well as the existence of a number of well
studied extensions such as preferences, revision, abduction, etc. More relevant
for this work, are the recent results on MKNF+ hybrid knowledge bases where
a faithful, tight and flexible integration of description logics and rules has been

achieved [13]. The integration of rules with ontologies is also possible with dl-
programs [8]. Finally, there are very efficient ASP solvers available (e.g. Clingo,
DLV, Smodels, etc.).

Our proposal enjoys the following features that address the mentioned issues:

– Being based on ASP, it paves the way to a direct integration with Logic
Programming based technology, viz. for reasoning and acting with ontologies;

– Being fully declarative, it facilitates the investigation of further formal prop-
erties of RIF-PRD, e.g. using the approach followed in [5];

– Enjoying the expressivity of ASP, it is flexible enough so that conflict reso-
lution strategies for RIF-PRD are easily defined and encodable;

– Benefiting from the existence of efficient ASP solvers, it can be directly and
efficiently implemented – which we have done using iClingo [9], and is, to
the best of our knowledge, the first implementation of RIF-PRD.

The remainder of this paper is structured as follows: in Sect. 2 we review ASP;
in Sect. 3 we present a sound and complete translation of RIF-PRD rule sets
into ASP; in Sect. 4 we address the specification of conflict resolution strategies
in ASP, illustrating with a sound and complete encoding of forward chaining,
the RIF-PRD normative strategy; we conclude in Sect. 5.

2 Answer Set Programming

In this Section we start by describing the syntax and semantics of Answer-set
Programming, before we introduce iClingo[9], an incremental answer-set system.
We follow the presentation in [9], with some modifications.

The language is built from a set F of constants and function symbols (in-
cluding the natural numbers and usual arithmetic operators), a set V of variable
symbols, and a set P of predicate symbols (including the binary equality and
inequality predicates, and ordinary arithmetic comparison operators). We as-
sume that V contains a distinguished parameter symbol κ (varying over natural
numbers). The set T of terms is the smallest set containing V and all expressions
of the form f (t1, ..., tn), where f ∈ F and ti ∈ T for 0 ≤ i ≤ n. The set A of
atoms contains all expressions of the form p (t1, ..., tn), where p ∈ P and ti ∈ T
for 1 ≤ i ≤ n. A literal is an atom a or its (default) negation not a. Given a set
L of literals, let L+ = {a ∈ A | a ∈ L} and L− = {a ∈ A | not a ∈ L}. A logic
program over A is a set of rules of the form a0 ← a1, ..., am,not am+1, ...,not an,
where ai ∈ A for 0 ≤ i ≤ n. For a rule r of the form above, let head (r) = a
be the head of r, body (r) = {a1, ..., am,not am+1, ...,not an} be the body of
r, and atom (r) = {head (r)} ∪ body (r)+ ∪ body (r)−. For a program P , let
head (P) = {head (r) | r ∈ P} and atom (P) =

�
r∈Patom (r). Given an ex-

pression e ∈ T ∪A, let var (e) denote the set of all variables occurring in
e, and given a rule r, let var (r) denote the set of all variables occurring in
r. Expression e ∈ T ∪A is ground if var (e) = ∅. The ground instantiation
of a program P is defined as grd (P) = {rθ | r ∈ P, θ : var (r) → U} where
U = {t ∈ T | var (t) = ∅}. Similarly, grd (A) = {a ∈ A | var (a) = ∅}.

A set M ⊆ grd (A) is an answer set [11,1] of a program P over A if M
is the ⊆-smallest model of {head (r) ← body (r)+ | r ∈ grd (P) , body (r)− ∩
M = ∅}. The set of answer-sets of P is denoted by AS (P). The semantics
of integrity constraints is given through a program transformation where an
integrity constraint of the form ← a1, ..., am,not am+1, ...,not an is a shorthand
for the rule a� ← a1, ..., am,not am+1, ...,not an,not a� where a� is a new atom.

2.1 iClingo

Real-world applications such as planning or model checking include a parameter
encoding the size of a solution. In Answer Set Programming (ASP), essentially a
propositional formalism, this is dealt with by considering one problem instance
after another by gradually increasing the bound on the solution size. In most
cases, Answer-Set Programming systems simply produce a ground set of rules
for each problem instance, incurring in a high efficiency cost.

iClingo1[9] is an incremental ASP (iASP) system where both the grounder
as well as the solver are implemented in a stateful way, interleaving grounding
and solving within incremental computations. Both the grounder and the solver
maintain their previous states while increasing an incremental parameter. At
each incremental step, the grounder just produces ground rules generated from
the current program slice, i.e. generated by instantiating the incremental param-
eter with the current value. Such ground program slices are gradually passed to
the solver that accumulates ground rules and computes answer sets for them.

In the context of iClingo, the concept of a (parametrized) domain description
is introduced, as being a triple �B,S [κ] , Q [κ]� of logic programs where S [κ]
and Q [κ] contain a (single) parameter κ ranging over the natural numbers.
The base program B describes static knowledge, independent of parameter κ.
Program S [κ] contains knowledge that accumulates with increasing values of
κ. Program Q [κ] contains knowledge that is specific for each value of κ. Given
a domain description Π = �B,S [κ] , Q [κ]� and an integer i ≥ 1, let P [i] =

B ∪
��

1≤j≤iS [j]
�
∪ Q [i], and AS (Πi) denote AS (P [i]), min (Π) denote the

minimum integer such that AS (Πi) �= ∅, and AS (Π) denote AS
�
Πmin(Π)

�
. The

goal is then to determine AS (Π). iClingo accepts domain descriptions Π2 and
computes AS (Π) by incrementally constructing and solving for P [i]. Detailed
information regarding the implementation of iClingo can be found in [9].

1 iClingo is part of Potassco, a set of tools for Answer Set Programming developed at
the University of Potsdam, and available at http://potassco.sourceforge.net

2 Function symbols with non-zero arity may lead to logic programs over an infinite
Herbrand base. To maintain decidability at each iteration, it is important to restrict
the language to fragments for which finite equivalent ground programs are guaran-
teed to exist. Level-restricted (or λ-restricted) logic programs [10] constitute such a
fragment, where finiteness is guaranteed by the requirement that any variable in a
rule be bound to a finite set of ground terms via a predicate not subject to positive
recursion through that rule.

http://potassco.sourceforge.net

3 Fact bases, states, conditions and rules

In this Section we synthetically overview some of the main concepts of the Pro-
duction Rule dialect of RIF [6] and provide a mapping of RIF-PRD initial states
(fact base) and rule sets into iASP which is sound and complete wrt. the possible
traces of execution of the rules on the initial state. For now, we do not consider
the inclusion of a conflict resolution strategy – it will be dealt with in Sect. 4.

RIF-PRD defines rules with action heads for performing changes over a set
of facts (i.e. an extensional logic database) dependent on logical conditions over
a logical state derived from this set of facts. The underlying logical language is
constructed from a first-order alphabet.

3.1 Atomic formulas and conditions
RIF-PRD defines the notion of term as in ASP, except for the introduction of
the special list term which, for all purposes in the rest of this paper, can be seen
as an ordinary complex term. Terms are used to construct atomic formulas.

Definition 1 (RIF-PRD term and atomic formulas). A term is either an
arbitrary constant c, an arbitrary variable ?V, a lists of ground terms List(g1

...gn), or a (complex) positional terms f(t1 ...tn) formed from a constant f
and a sequence of arbitrary term arguments t1 . . .tn with n ≥ 1.

Given arbitrary terms t, s, and pi, ti where 1 ≤ i ≤ n, atomic formulas
are ordinary atoms (i.e. positional terms), equality of terms (t=s), membership
of object t in class s (t#s), subclass relation (t##s), frames (t[p1->t1 ...

pn->tn]), or externally defined terms (External(t)).

In RIF-PRD, there is no syntactical distinction between positional terms and
ordinary atoms. Equality is used to check if two terms are identical, while mem-
bership atomic formulas t#s are used to represent that the object denoted by
term t belongs to the class denoted by s. A subclass atomic formula t##s ex-
presses that t is a subclass of s. A frame term t[p1->t1 ... pn->tn] roughly
states that the object denoted by term t has for each property pi the value ti.
Externally defined terms are used for representing built-in functions, e.g. to per-
form numerical operations. Condition formulas are to be used in the antecedents
of production rules to define conditions for their applicability, corresponding
syntactically to a fragment of first-order logic without universal quantifiers.

Definition 2 (RIF-PRD condition formulas). Condition formulas are in-
ductively defined from atomic formulas, conjunction And(φ1 ...φn) and dis-
junction Or(φ1 ...φn) of conditional formulas, negation Not(φ) or existential
quantification Exists ?v1 ...?vm (φ), where φ, φ1 . . .φn are condition for-
mulas and ?v1 ...?vm are variables.

3.2 Fact bases and states
The knowledge dynamics is captured by a set of ground atomic formulas – the
fact base – which changes through the addition and removal of atomic formulas.
The execution of a RIF-PRD production rule system starts with an initial fact

base, and proceeds by updating it step by step. At a given step of the execution
κ a fact base will be encoded in iASP by a set of facts of the form fact(ϕ�

, κ)
where ϕ� is the translation of the RIF-PRD ground atomic formula ϕ.

Definition 3 (Translation of atomic formulas). An atomic RIF-PRD for-
mula ϕ is translated into the iASP term ϕ� as follows:
– A positional atom, an equality or an externally defined term ϕ is mapped

into itself;
– A membership atomic formula t#s is mapped into term isa(t, s);
– A subclass atomic formula t##s is mapped into term sub(t, s);
– A frame atomic formula s[p->o] is mapped into term frame(s, p, o).

This representation assumes that a ground frame t[p1->t1 ... pn->tn] is rep-
resented by the set of facts frame(t, p1, t1), . . . , frame(t, pn, tn). For simplicity
of presentation, externally defined formulas are mapped into themselves. How-
ever, a concrete implementation should implement these resorting to their own
built-ins; this is ignored in the translation.

Definition 4 (Fact bases translation). Consider an initial fact base Φ.
– Program πINIT(Φ) is formed by fact(ϕ, 0), for each ϕ ∈ Φ.
– Program πFLUENT(Φ) is formed by fluent(ϕ), for each formula ϕ that may

occur in a fact base.
– Program πCHANGE[κ] is formed by the rules:

fact(F,κ) ← fluent(F), fact(F,κ− 1),not retract(F,κ− 1).
fact(F,κ) ← fluent(F), assert(F,κ− 1).

πINIT collects the initial fact base which will be updated using the rules in
πCHANGE[κ]. The first rule states that fluents which are not retracted in the previous
step remain in the fact base (inertia), while the second states that fluents asserted
in the previous step will be added. Notice that the things which can be added or
deleted are collected in program πFLUENT. For simplicity, the definition of predicate
fluent/1 is extensional but could also be defined intensionally by rules. Also
note that by RIF-Core strong safeness at each step there may exist only a finite
number of alternatives which can be dealt with in practice. Another essential use
of predicate fluent/1 is to ground variables in the final iASP domain description.

Definition 5 (States translation). Program πSTATES[κ] is formed by the rules:
state(F,κ) ← fact(F,κ).
state(F,κ) ← fact(F, 0),not fluent(F).

state(isa(O1, C2),κ) ← fluent(isa(O1, C1)), f luent(sub(C1, C2)),
state(isa(O1, C1),κ), state(sub(C1, C2),κ).

state(sub(C1, C3),κ) ← fluent(sub(C1, C2)), f luent(sub(C2, C3)),
state(sub(C1, C2),κ), state(sub(C2, C3),κ).

The first rule includes in the state of step κ the fact base of κ. The second
states that any non-fluent (static) fact holding at the initial fact base also holds at
step κ. According to RIF-PRD semantics the set of initial facts can be arbitrarily
ground atomic formula but actions are syntactically limited to specific types of

formula (e.g. it is impossible to change subclass atomic formulas). The third rule
captures class inheritance while the last one expresses transitivity of the subclass
relationship, imposed to any state by the semantics of RIF-PRD.

Conditions are matched to a given state. However, the case of non-atomic
formulas introduces extra complexity:

Definition 6 (Conditions translation). Let Φ be an arbitrary condition for-
mula and κ an execution step. Define condition iASP formula Φ� and program
πΦ
COND[κ] inductively as follows:
– If Φ is an atomic formula ϕ then Φ�[κ] = state(ϕ�,κ) and πΦ

COND[κ] = {};
– If Φ = And(φ1 ...φn) then Φ�[κ] = (φ�

1, . . . ,φ
�
n) and πΦ

COND[κ] =
�

1≤i≤n π
φi
COND[κ];

– If Φ = Or(φ1 ...φn) then Φ�[κ] = orΦ(X1, . . . , Xm,κ) where ?X1, . . . ?Xm,
are the free variables of Φ and orΦ is a new predicate symbol, and πΦ

COND[κ] =�
1≤i≤n

�
πφi
COND[κ] ∪ {orΦ(X1, . . . , Xm,κ) ← φ�

i[κ]}
�
;

– If Φ = Exists ?V1 ...?Vn (φ) then Φ�[κ] = existsΦ(X1, . . . , Xm,κ) where
?X1, . . . ?Xm, are the free variables of Φ and existsΦ is a new predicate
symbol, and πΦ

COND[κ] = πφ
COND[κ] ∪ {existsΦ(X1, . . . , Xm,κ) ← φ�[κ]};

– If Φ = Not(φ) then Φ�[κ] = not argΦ(X1, . . . , Xm,κ) where ?X1, . . . ?Xm,
are the free variables of Φ and argΦ is a new predicate symbol, and πΦ

COND[κ] =
πφ
COND[κ] ∪ {argΦ(X1, . . . , Xm,κ) ← φ�[κ]};

Basically, this transformation applies Lloyd-Topor’s transformation [12] to
obtain the corresponding normal rules capturing the conditional formula, taking
into account what is true in the current step. Mark that both a (conjunctive)
goal Φ�[κ] and a program πΦ

COND[κ] is returned for each condition formula Φ.
Additional details and justification of this process can be found in [1].

3.3 Actions and rules
The RIF-PRD language defines several atomic actions for updating the fact base,
and these will be used to define the effects of RIF-PRD production rules.

Definition 7 (RIF-PRD atomic actions). An atomic action is a simple con-
struct that represents an atomic transaction.

1. Assert fact: If Φ is a positional atom, a frame or a membership atomic
formula in the RIF-PRD condition language, then Assert(Φ) is an atomic
action.

2. Retract fact: If Φ is a positional atom or a frame in the RIF-PRD condition
language, then Retract(Φ) is an atomic action.

3. Retract all slot values: If o and s are terms in the RIF-PRD condition lan-
guage, then Retract(o s) is an atomic action.

4. Retract object: If t is a term in the RIF-PRD condition language, then
Retract(t) is an atomic action.

5. Execute: if Φ is a positional atom in the RIF-PRD condition language, then
Execute(Φ) is an atomic action.

The arguments of the action are dubbed the target of the action.

The effects of RIF-PRD atomic actions are captured by our translation using
the following iASP rules.

Definition 8 (Effects of actions). Program πACTIONS[κ] is:
assert(F,κ) ← action(assert(F),κ).
retract(F,κ) ← action(retract(F),κ).

retract(isa(O,C),κ) ← action(retract object(O),κ), fact(isa(O,C),κ).
retract(frame(O,S, V),κ) ← action(retract object(O),κ), fact(frame(O,S, V),κ).

retract(frame(O,S, V),κ) ← action(retract slots(O,S),κ), fact(frame(O,S, V),κ).

Note that the execute actions do not have an effect in the fact base and should
be interpreted externally. The first two rules of program πACTIONS[κ] apply when
an assert (resp. retract) action occurs at step κ, whose effects in the fact base
have been defined previously in program πCHANGE. The next two rules translate a
retract object action into a set of simultaneous retracts, while the last one takes
care of the retract all slots action. The interaction of rules with the fact base is
performed via the action/2 predicate to be defined subsequently.

Actions are combined sequentially into action blocks, allowing binding pat-
terns for binding variables occurring in the actions. Additionally, RIF-PRD de-
fines a compound Modify frame action which can be substituted by a sequence
of a retract all slot values followed by an assert; it is assumed that such a re-
placement has been performed.

Definition 9 (Action variable declaration and action blocks). An action
variable declaration is a pair (?V b) where ?V is a variable and b is binding hav-
ing one of the forms: New() for generating a new identifier, or a frame o[s->?V]
where o and s are ground terms. If (?V1 b1), ..., (?Vn bn), n ≥ 0, are ac-
tion variable declarations, and if a1, ..., am, m ≥ 1, are simple actions, then
Do((?V1 b1) ...(?Vn bn) a1 ...am) denotes an action block.

Finally, the RIF Production Rules are captured by the following definition.
Mark that well-formedness conditions are imposed to rules and conditions, which
we are ignoring in this summary presentation.

Definition 10 (RIF production rule). A rule can be one of:
– An (unconditional) action block Do((?V1 b1)...(?Vn bn) a1. . .am).
– A conditional action block If Φ Then Do((?V1 b1)...(?Vn bn) a1. . .am),

where Φ is a condition formula and the conclusion is an action block.
– A quantified rule Forall ?V1. . .?Vn such that (p1. . .pm) (r), where each

pi is a conditional formula (a pattern) and r is a RIF Production rule.

Without loss of generality we assume that quantified rules have only one level
of universal quantification, i.e. the rule r is limited to be a conditional action
block since it is always possible to write quantified rules in this way, by variable
renaming and appending patterns.

Definition 11 (Translation of a RIF production rule). Let ri be a RIF
production rule and let id be a unique identifier assigned to that rule (i.e. its
“name”). Program πri

RULE[κ] is constructed as follows:

– If ri is Do((?V1 b1)...(?Vn bn) a1...am) then include in πri
RULE[κ] the

fact fireable(rule(id, subs),κ).
– If ri is If Φ Then Do((?V1 b1) ...(?Vn bn) a1 ...am) then include

πΦ
COND[κ] in πri

RULE[κ], and the following rule where ?X1, . . . , ?Xl are the free
variables of ri: fireable(rule(id, subs(X1, . . . , Xl),κ)) ← Φ�.

– If ri is Forall ?V1. . .?Vn such that (p1. . .pm) (If Φ Then Do(B)) then
treat this as the conditional action block If And(p1. . .pm Φ) Then Do(B).

Additionally, from the action block Do((?V1 b1)...(?Vn bn) a1...am) in the
conclusion of ri add to program πri

RULE[κ], for each 1 ≤ j ≤ m, the rule:

action(a�
j ,κ+ j) ← instance(id, subs(V1, . . . , Vn, X1, . . . , Xl),κ).

Finally, include in πri
RULE[κ] the rule below, where bindvi is state(frame(o, s, Vi),κ)

if bi = o[s->?Vi]. Otherwise bi = New(), and let bindvi be Vi = obj(id, i,κ) with
obj an arbitrary but fixed constant symbol.

instance(id, subs(V1, . . . , Vn, X1, . . . , Xl),κ) ← picked(rule(id, subs(X1, . . . , Xl)),κ),
bindV1 , . . . , bindVn .

Predicate fireable(rule(id, subs(. . .)),κ) holds in step κ whenever the rule
identified by id has a condition true, and thus may be applied. The complex term
sub(. . .) keeps the substitution of variables for which the condition matches state
κ, and is also used to distinguish between different matching instances of the
same rule. If the rule is picked for execution then picked(rule(id, subs(. . .)),κ)
will hold and consequently action aj will be executed in step k + j with the
action instance (i.e. substitution of variables) collected in auxiliary predicate
instance/3.

Example 1. Consider the rule presented in the introduction of this paper. Its
encoding into iASP as constructed by πRULE transformation is shown below, fol-
lowing the usual answer-set convention of variables beginning with upper-case
and, to simplify the presentation, the constants belonging to namespace ex1 are
represented using CURIE notation:

fireable(rule(widget, subs(Cust)),κ) ← state(isa(Cust,ex1:Customer),κ),
state(frame(Cust,status,“New”),κ), exists1(Cust,κ).

exists1(Cust,κ) ← state(frame(Cust,shoppingCart, Cart),κ),
state(frame(Cart,containsItem, Item),κ), state(isa(Item,ex1:Widget),κ).

action(retract(frame(Cust,voucher, V oucher)),κ+ 1) ←
instance(widget, subs(Cust, S, V al, V oucher),κ).

action(retract object(V oucher)),κ+ 2) ←
instance(widget, subs(Cust, S, V al, V oucher),κ).

action(retract slots(S,value),κ+ 3) ←
instance(widget, subs(Cust, S, V al, V oucher),κ).

action(assert(frame(S,value, V al ∗ 90/100)),κ+ 4) ←
instance(widget, subs(Cust, S, V al, V oucher),κ).

instance(widget, subs(Cust, S, V al, V oucher),κ) ←
picked(rule(widget, subs(Cust),κ), state(frame(Cust,shoppingCart, S),κ),

state(frame(S,value, V al),κ), state(frame(Cust,voucher, V oucher),κ).

It is clear from the example that the fireable conditions are not yet connected
to the rules performing the actions, which will be tackled next. First, it is nec-
essary to pick one rule for execution from the pickable ones (i.e. the ones which
fire and can be executed). This is straightforward to encode:

Definition 12 (Pick rule). Program πPICK[κ] is formed by:
picked(Rule,κ) ← pickable(Rule,κ),not picked other(Rule,κ),not transitional(k).
picked other(Rule,κ) ← pickable(Other,κ), pickable(Rule,κ), Rule! = Other,

picked(Other,κ).
picked(κ) ← picked(Rule,κ). transitional(κ) ← action(A,κ).

The execution of RIF-PRD proceeds by first picking one rule, then performing
its actions sequentially, then picking another rule, performing its actions, etc. . . .
The steps in which the fact base is being updated are dubbed “transitional” in
the RIF-PRD recommendation. The first two rules in πPICK[κ] choose exactly one
alternative (i.e. a rule) from the pickable rules, when κ is not a transitional step.
If no strategy is defined, the general operational semantics prescribes that all
fireable rules are pickable, which can be captured by the program πONE[κ] with
the single rule pickable(Rule,κ) ← fireable(Rule,κ). Computation terminates
in a non-transitional step where no rule is picked. This is captured by πHALT[κ],
which ends our translation of a RIF-PRD rule set, summarized in Def. 14.

Definition 13 (Termination). Program πHALT[κ] is defined by:
← not final(κ).
final(κ) ← not transitional(κ),not picked(κ).

Definition 14 (Rule set translation). The translation of a RIF-PRD rule set
RS with initial fact base w and set of fluents F is the iASP domain specification
ΠRULESET(RS,w) = �BRS(w), SRS(RS) [κ] , QRS [κ]� where:

BRS(w) = πINIT(w) ∪ πFLUENT(F)
SRS(RS)[κ] = πCHANGE[κ] ∪ πSTATES[κ] ∪ πACTION[κ] ∪ πPICK[κ] ∪ πONE[κ] ∪

�
ri∈RS πri

RULE[κ]
QRS [κ] = πHALT[κ]

An advantage of this encoding is that all possible “traces” of execution can
be generated by the iASP system, where each different trace corresponds to an
answer set. Formally3:

Theorem 1 (Correctness of translation). Let RS be a rule set and w an
initial fact base. Then4:
Soundness: If M ∈ AS (ΠRULESET(RS,w)n) and (c1, . . . , cm) is the increasing
sequence of integers such that transitional(cj) �∈ M, 1 ≤ j ≤ m, then, for
every i : 1 ≤ i ≤ m − 1 (Statei(M), P ickedi(M), Statei+1(M)) ∈→PRD,

3 Lack of space prevents us from presenting the proofs of theorems.
4 →PRD stands for the transition system which serves as the basis for defining the
semantics of RIF-PRD, ConflictSet(RS, si) the set of all applicable rules in state
si. Lack of space prevents us from presenting the semantics of RIF-PRD, which is
available in [6].

where Statei(M) denotes the set of formulae Φ such that state(Φ�, ci) ∈ M
and Pickedi(M) the name of the (only) rule R such that picked(R, ci) ∈ M .
Completeness: If (s1, . . . , sm) is a sequence of non-transitional states such that
w = s1, and for each pair (si, si+1) there exists a rule r ∈ ConflictSet(RS, si)
such that (si, r, si+1) ∈→PRD, then, there exists M ∈ AS (ΠRULESET(RS,w)n) for
some n ≥ m such that the sequence of integers (c1, . . . , cm), constructed from M
as above, is such that Statei(M) = si, for all 1 ≤ i ≤ m.

4 Conflict resolution strategies

For selecting (ideally one) among these possible executions (or traces), as men-
tioned in the Introduction RIF-PRD foresees the existence of conflict resolution
strategies. Each of the strategies is denoted by a keyword (of type rif:IRI),
that is attached to the rule set. The current version of RIF-PRD prescribes a
normative strategy, forward chaining, denoted by rif:forwardChaining, and
anticipates the specification of additional keywords, each corresponding to an
additional strategy for selecting rules in conflict. Furthermore, it also allows
for the inclusion of other keywords, not specified in the RIF-PRD specification,
in which case it is the responsibility of the producers and consumers of those
documents to agree on the strategy denoted by the keywords.

Our stance is that any conflict resolution strategy should be defined by a
set of rules, including those normatively specified by RIF-PRD, which precisely
defines its meaning. In this case, the keyword for the strategy could be a URI for
the set of rules which precisely defines the strategy. In this section we show that
iASP, along with the translation defined in the previous section, is expressive
enough to specify conflict resolution strategies. In particular, we show how to
specify conflict resolution strategies, and illustrate by precisely characterizing
the rif:forwardChaining strategy.

4.1 General definition of strategies

A conflict resolution strategy is defined in [6] by an algorithm that, in a series
of steps, selects from the set of all fireable rules in some state, a subset of
(pickable) rules from which one is finally picked for execution. For example, the
rif:forwardChaining strategy can be summarized as the following algorithm:

Definition 15 (Forward chaining algorithm). Given a conflict set (i.e. a
set of fireable rules):

1. Remove all rules which where previously applied and, since their last applica-
tion, the conditions that made them applicable haven’t changed – refraction.

2. The remaining rules are ordered by decreasing priority, and only the rule
instances with the highest priority are kept. Recall that in RIF-PRD every
rule is assigned a priority which is a natural number.

3. The remaining rules are ordered by decreasing recency, and only the most
recent rule instances are kept. Here, a rule is more recent than another if it
is (consecutively) applicable for less prior states than the other.

Each of these steps applies one strategy element (refraction, priority and re-
cency). In [6], a fourth (tie-break) element is considered, to be applied after these
3, stating that one of the remaining rules should be picked in some “implemen-
tation specific way” [6]. Here we do not need to consider this last step. On the
one hand, the translation is such that each answer set is guaranteed to reflect
the application of a single rule at each state. On the other hand, the existence
of more than one answer set reflects the fact that there may be more than one
pickable rule at some state after the application of these 3 strategy elements.
As a result of the translation, each answer set encodes one possible sequence
of application of rules, and one can either consider all resulting answer-sets, or
arbitrarily pick one of them.

For encoding such a strategy in a set of iASP rules, to be added to the domain
description obtained from the translation of the previous section, we first need
to replace the rule of πONE[κ] which specified that all fireable rules are pickable,
by a set of general rules allowing for restrictions on pickable rules. Accordingly,
a rule is pickable if it is fireable and it is not rejected by one of the strategy
elements:

Definition 16 (Strategy). Program πSTRATEGY[κ] is formed by the rules

pickable(Rule,κ) ← fireable(Rule,κ),not rejected(Rule,κ).
rejected(Rule,κ) ← rejected(Rule,κ, S), st element(S).

Note that, without any defined strategy, πSTRATEGY[κ] has exactly the same ef-
fect as πONE[κ]. In fact, if there are no rules for neither rejected/3 nor st element/1,
rejected(Rule,κ) is false in all answer-sets for all rules and κ, and so pickable
is true for all fireable rules, as is the case in πONE[κ].

Strategy elements are identified by a name. Then, for each strategy, facts to
specify the order of application of the elements must be added. For example, for
rif:forwardChaining the specification of the order of elements is as follows:

st element(refraction, 1). st element(priority, 2). st element(recency, 3).

For referring to the element without its order of application, the following rule
is also needed st element(S) ← st element(S,).

In general, for the definition of conflict resolution strategies, a predicate is
needed to indicate whether a rule is active when a given strategy element is
being applied. For example, in rif:forwardChaining, if a rule is removed by
refraction, then that rule should no longer be available for consideration (i.e.
active) when considering the priority-element. The specification of this predicate
is quite straightforward: a rule is inactive if there is a strategy element prior in
the application order which rejected it, and active otherwise.

Definition 17 (Active Rules). Program πACTIVE[κ] is defined by

inactive(Rule,κ, N) ← st element(, N), st element(S,N1), N1 < N,
rejected(Rule,κ, S).

active(Rule,κ, N) ← not inactive(Rule,κ, N), st element(, N).

The iASP domain description associated with a RIF-PRD rule set becomes:

Definition 18 (RIF-PRD domain description). The RIF-PRD iASP do-
main description of a rule set RS with initial fact base w and fluents F is
ΠRS(RS,w) = �BRS(w), SRS(RS) [κ] , QRS [κ]� with BRS(w) and QRS as in Def. 14,
and

SRS(RS)[κ] = πCHANGE[κ] ∪ πSTATES[κ] ∪ πACTION[κ] ∪ πPICK[κ]∪
∪
�

ri∈RS πri
RULE[κ] ∪ πSTRATEGY[κ] ∪ πACTIVE[κ]

Theorem 2. Theorem 1 holds if we replace ΠRULESET(RS,w) with ΠRS(RS,w).

4.2 Defining one specific strategy

To completely specify one conflict resolution strategy, we add facts defining the
strategy elements and their application order (as above for rif:forwardChaining)
and define, for each element, which rules are rejected. Below we show how this
can be done for each of the elements in the rif:forwardChaining algorithm.

Refraction Once a rule is picked at some state, then it is rejected by refraction
from that state onwards, for as long as the rule remains fireable. The test for the
rule being fireable is only done in states when the system is not being updated.

rejected(Rule,κ, refraction) ← fireable(Rule,κ), picked(Rule,κ− 1).
rejected(Rule,κ, refraction) ← rejected(Rule,κ− 1, refraction), transitional(κ).
rejected(Rule,κ, refraction) ← fireable(Rule,κ), rejected(Rule,κ− 1, refraction)

not transitional(κ).

Priority All rules for which there is another (different) active fireable rule with
a strictly higher priority should be rejected. We do not need to test that rejected
rules are active (i.e. not rejected by a previous strategy element), since according
to πSTRATEGY[κ] a rejected rule is never pickable.

rejected(rule(Id, V ar),κ, priority) ← fireable(rule(Id, V ar),κ),
fireable(rule(Id2, V ar2),κ), Id! = Id2, priority(Id, P), priority(Id2, P2),
P < P2, active(rule(Id2, V ar2),κ, N), strategy(priority,N).

Recency A rule is rejected if there is a more recent one also active and fireable.
We use an auxiliary predicate (recency/3) that, for each rule instance and state
κ, determines the number of consecutive states before κ that the instance has
been fireable. Then, a rule is rejected if there is another one which is more recent.
Predicate state(K) is just used for grounding, and is true for any state K.

rejected(rule(Id, V ar),κ, recency) ← fireable(Rule,κ), fireable(Other,κ),
Rule ! = Other, recency(Rule, TR,κ), recency(Other, TO,κ), TO < TR,
state(TR), state(TO), active(Other,κ, N), st element(recency,N).

recency(Rule,κ,κ) ← fireable(Rule,κ), not fireable(Rule,κ− 1).
recency(Rule,K,κ) ← recency(Rule,K,κ− 1), transitional(κ), state(K).
recency(Rule,K,κ) ← fireable(Rule,κ), recency(Rule,K,κ− 1),

not transitional(κ), state(K).

The set composed by all rules described in this subsection is meant to encode
the rif:forwardChaining, and we denote it by πrif:fC[κ].

The next theorem shows in which terms the encoding is correct with respect
to the RIF-PRD rif:forwardChaining as described in [6]:

Theorem 3 (Correctness for rif:forwardChaining). Let RS be a rule set,
w an initial fact base, and �BRS(w), SRS(RS) [κ] , QRS [κ]� the corresponding iASP
domain description as in Def. 18. Let LS be the rif:forwardChaining strategy
of definition 15, and H the halting test that halts whenever no rule is picked. Let
Πrif:fC(RS,w) = �BRS(w), SRS(RS) [κ] ∪ πrif:fC[κ], QRS [κ]�. Then5:
Soundness: if M ∈ AS (Πrif:fC(RS,w)), then there exists a state sf such that
Eval(RS,LS,H,w) →∗

PRD sf and where sf is the set of all formulae Φ such
that state(Φ�,min (Πrif:fC(RS,w))) ∈ M .
Completeness: if Eval(RS,LS,H,w) →∗

PRD sf , then there exists an M such that
M ∈ AS (Πrif:fC(RS,w)) and ∀Φ ∈ sf , state(Φ�,min (Πrif:fC(RS,w))) ∈ M .

One can impose other conflict resolution strategies, by specifying different re-
jection rules. For example, rif:forwardChaining behaves in a depth-first man-
ner, in that it always selects the rule that has been more recently applied. Impos-
ing a breadth-first strategy can be accomplished by simply changing “TO < TR”
into “TO > TR” in the rule defining the rejection by recency, thus obtaining
πst:breadth[κ]. Also note that rif:forwardChaining does not behave in a purely
depth-first manner since it only applies recency after removing rules with less
priority. For a strategy where a depth-first behavior is more important than
complying with the declared priority of rules, one can simply change the facts
that impose the order in the application of strategy elements, e.g. by including
the facts st element(priority, 3) and st element(recency, 2) instead.

5 Conclusions

In this paper, we presented a declarative logical characterization of RIF-PRD
through a sound and complete transformation into ASP, which can be seen as
an equivalent alternative to the transitional semantics proposed in [6], giving
further insights into RIF-PRD and providing for an immediate implementation
using iASP, which we have developed using iClingo[9]. This transformation con-
siders not only the RIF-PRD rule sets and their transitions, but also the conflict
resolution strategies which are essential to select among applicable rules. We
have illustrated how the default normative strategy – forward chaining – is en-
codable in ASP, and have shown that ASP provides an appropriate language in
which to precisely define alternative non-standard conflict resolution strategies,
which are also foreseen in [6], facilitating their development and unambiguous
sharing, due to the simple, expressive and well known semantics of ASP. The

5 Eval(RS,LS,H,w) is the input function of the RIF-PRD production rule system
that is responsible for choosing one among the rules in the conflict set and for the
halting conditions. →∗

PRD is the transitive closure of →PRD.

work in [2] uses the Situation Calculus, although without handling the idiosyn-
crasies of RIF-PRD. A Situation Calculus based approach like the one in [2]
could have been followed, although with extra complexity introduced by the sit-
uation terms which would not be easily handled by answer set solvers. A critique
of the Situation Calculus is made in [5], where it is shown how to capture the
semantics of rule production systems in µ-calculus and FPL. This work captures
a result equivalent to our Theorem 1, thus not handling other conflict resolu-
tion strategies. We expect to use the work of [5] to study the formal properties
of our translation. An implementation using an external DL reasoner is under-
way to assess the practicality of our approach, namely by comparing with more
traditional approaches like CLIPS or JESS.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

2. C. Baral and J. Lobo. Characterizing production systems using logic programming
and situation calculus. Available from http://www.public.asu.edu/?cbaral/
papers/char-prod-systems.ps.

3. H. Boley, G. Hallmark, M. Kifer, A. Paschke, A. Polleres, and D. Reynolds, editors.
RIF Core Dialect. W3C Recommendation, 22 June 2010. http://www.w3.org/TR/
2010/REC-rif-core-20100622/.

4. H. Boley and M. Kifer, editors. RIF Basic Logic Dialect. W3C Recommendation,
22 June 2010. http://www.w3.org/TR/2010/REC-rif-bld-20100622/.

5. Jos de Bruijn and Mart́ın Rezk. A logic based approach to the static analysis
of production systems. In Proc. of Web Reasoning and Rule Systems RR 2009,
volume 5837 of Lecture Notes in Computer Science, pages 254–268. Springer, 2009.

6. C. de Sainte Marie, G. Hallmark, and A. Paschke, editors. RIF Production Rule
Dialect. W3C Recommendation, 22 June 2010. http://www.w3.org/TR/2010/
REC-rif-prd-20100622/.

7. T. Eiter and G. Gottlob. Expressiveness of stable model semantics for disjunctive
logic programs with functions. Journal of Logic Programming, 33(2):167–178, 1997.

8. Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer,
and Hans Tompits. Combining answer set programming with description logics for
the semantic web. Artificial Intelligence, 172(12-13):1495 – 1539, 2008.

9. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
Engineering an incremental asp solver. In Procs. of ICLP 2008, volume 5366 of
LNCS, pages 190–205. Springer, 2008.

10. M. Gebser, T. Schaub, and S. Thiele. Gringo : A new grounder for answer set
programming. In Procs. of LPNMR 2007, volume 4483 of LNCS, pages 266–271.
Springer, 2007.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Procs. of
ICLP 1990, pages 579–597. MIT Press, 1990.

12. J. W. Lloyd and R. W. Topor. Making prolog more expressive. Journal of Logic
Programming, 1(3):225–240, 1984.

13. Boris Motik and Riccardo Rosati. Reconciling description logics and rules. J.
ACM, 57(5), 2010.

14. Gordon D. Plotkin. A structural approach to operational semantics. Journal of
Logic and ALgebraic Programming, 60-61:17–139, 2004.

http://www.public.asu.edu/?cbaral/papers/char-prod-systems.ps.
http://www.public.asu.edu/?cbaral/papers/char-prod-systems.ps.
http://www.w3.org/TR/2010/REC-rif-core-20100622/
http://www.w3.org/TR/2010/REC-rif-core-20100622/
http://www.w3.org/TR/2010/REC-rif-bld-20100622/
http://www.w3.org/TR/2010/REC-rif-prd-20100622/
http://www.w3.org/TR/2010/REC-rif-prd-20100622/

	Declarative Semantics for the Rule Interchange Format Production Rule Dialect
	Carlos Viegas Damásio, José Júlio Alferes, and João Leite

