
A Logic Programming System for Evolving
Programs with Temporal Operators

José Júlio Alferes1, Alfredo Gabaldon1, and João Leite1

CENTRIA, Universidade Nova de Lisboa, Portugal

Abstract. Logic Programming Update Languages were proposed as an
extension of logic programming that allows modeling the dynamics of
knowledge bases where both extensional (facts) and intentional knowl-
edge (rules) may change over time due to updates. Despite their gen-
erality, these languages do not provide a means to directly access past
states of the evolving knowledge. They are limited to so-called Markovian
change, i.e. changes entirely determined by the current state.

We remedy this limitation by extending the Logic Programming Update
Language EVOLP with LTL-like temporal operators that allow referring
to the history of the evolving knowledge base, and show how this can be
implemented in a Logic Programming framework.

1 Introduction

While belief update in the context of classical knowledge bases (KBs) has tra-
ditionally received significant devotion [1], only in the last decade have we wit-
nessed increasing attention to this topic in the context of non-monotonic KBs,
notably using logic programming (LP) [2–12]. Chief among the results of such
efforts are several semantics for sequences of logic programs (dynamic logic pro-
grams) with different properties, and the so-called LP Update Languages: LUPS
[11], EPI [4], KABUL [3] and EVOLP [10].

LP Update Languages are extensions of LP designed for modeling dynamic,
non-monotonic KBs represented by logic programs. In these KBs, both the ex-
tensional part (a set of facts) and the intentional part (a set of deductive rules)
may change over time due to updates. In these languages, special types of rules
are used to specify updates to the current KB leading to a subsequent KB. LUPS,
EPI and KABUL offer a very diverse set of update commands, each specific for
one particular kind of update (assertion, retraction, etc). On the other hand,
EVOLP follows a simpler approach, staying closer to traditional LP.

A generalization of EVOLP with temporal operators, called EVOLPT , was
introduced in [13] and its usage illustrated in the context of multi-agent sys-
tems. In this paper we present a simplified reformulation of the definition of
the semantics (Sec. 2) and introduce an implementation of EVOLPT programs1

(Sec. 3).

1 Freely available from http://centria.di.fct.unl.pt/˜ jja/updates/

1.1 Intuitions and Motivating Example

EVOLP (Evolving Logic Programming) generalizes Answer Set Programming
[14] by allowing the specification of a program’s own evolution, arising both
from self (i.e. internal to the program) updating and from external updating
originating in the environment. From a syntactical point of view, evolving pro-
grams are just generalized logic programs extended with (possibly nested) as-
sertions appearing in the heads and bodies of rules. From a semantic point of
view, a model-theoretic characterization is offered of the possible evolutions of
such programs by means of the so-called evolving stable models, which are se-
quences of interpretations. Each interpretation in the sequence describes, at the
corresponding evolution step, what is true and the possible next-step evolutions.

Despite their generality, none of the update languages available provides
means to directly access past states of an evolving KB. These languages were
designed for domains where updates are Markovian, that is, entirely determined
by the current state. There are many scenarios, however, where the update dy-
namics are non-Markovian and EVOLPT was proposed for such cases where
non-Markovian control is required. The following example illustrates this.

Consider a KB of user access policies for a number of computers at different
locations. A login policy may say, e.g., that after the first failed login a user is
warned by sms and if there is another failed login the account is blocked. This
policy could be expressed by the following two rules:

sms(User)← �(not sms(User)), fLogin(User, IP).
block(User)← ♦(sms(User)), fLogin(User, IP).

where fLogin(User, IP) represents an external event of a failed login. The abil-
ity to represent such external influence on the contents of a KB is one of the
features of EVOLP (and of EVOLPT). The symbols ♦ and � represent Past
Linear Temporal Logic (Past LTL) like operators. ♦ϕ means that there is a past
state where ϕ was true and �ϕ means that ϕ was true in all past states.

Now suppose that we want to model some updates made by the system
administrator. For example, adding a new policy consisting in blocking a user
after the first failed login attempt if the user has an IP address from a “bad
domain”, and that an sms is not sent him. This is captured by the rules:

block(User)← fLogin(User, IP), domain(IP,BadDom).
not sms(User)← fLogin(User, IP), domain(IP,BadDom).

with BadDom instantiated to the domain in question. Whether a domain is
bad or not, however, depends on the particular machine. In this case, the sys
admin may want to send an update to all machines so that the above rules are
added to each machine’s policy only for domains which are bad according to the
machines’ current history. The sys admin issues the following update to every
machine, saying that the above new rules are to be asserted if the domain has

been considered a bad one since the last failed attempt:

assert(block(User)← fLogin(User, IP), domain(IP,Dom))←
S(badDomain(Dom), fLogin(Usr2, IP2)),
domain(IP2, Dom).

assert(not sms(User)← fLogin(User, IP), domain(IP,BadDom))←
S(badDomain(Dom), fLogin(Usr2, IP2)),
domain(IP2, Dom).

where badDomain(Dom) is machine specific. The symbol S represents an oper-
ator similar to the Past LTL operator “since”. The intuitive meaning of S(ψ,ϕ)
is: at some point in the past ϕ was true, and ψ has always been true since then.
The assert construct is one of the main features of EVOLP. It allows one to
specify updates to a KB, leaving to its semantics the task of dealing with con-
tradictory rules such as the one that specifies that an sms should be sent if it is
the first failure, and the one that specifies otherwise if the domain is bad.

2 Evolving Logic Programs with Temporal Operators

EVOLP [10] is a logic programming language for specifying dynamic KBs. Change
is specified through two constructs: a special predicate assert/1 for adding new
rules to the KB, and negated rule heads which have the effect of invalidating
previously added rules in the KB. EVOLPT extends EVOLP with Past LTL like
operators ©(G), ♦(G) �(G), and S(G1, G2), which intuitively mean, respec-
tively: G is true in the previous state; there is a state in the past in which G is
true; G is always true in the past; and G2 is true at some state in the past, and
since then until the current state G1 is true.

Arbitrary nesting of these operators as well as negation-as-failure in front
of their arguments is allowed. On the other hand, unlike not , the temporal
operators are not allowed to appear in the head of rules. The only restriction
on the body of rules is that negation is allowed to appear in front of atoms and
temporal operators only. The formal definition of the language and programs in
EVOLPT is as follows.

Definition 1 (EVOLPT). Let L be any propositional language not containing
symbols assert, ©, ♦, S and �. The EVOLPT b-literals, t-formulae2 and rules
are inductively defined as follows:

1. Propositional atoms in L are (atomic) b-literals.
2. If G1 and G2 are b-literals then so are©(G1), ♦(G1), S(G1, G2) and �(G1).

These b-literals are the t-formulae.
3. If G is a t-formula or an atomic b-literal, then notG is a b-literal.
4. If G1 and G2 are b-literals, then (G1, G2) is a (conjunctive) b-literal.

2 b-literal stands for “body literal” and t-formula for “temporal-formula”.

5. If L0 is an atomic b-literal, A, or its negation, notA, and G1, . . . , Gn are
b-literals, then L0 ← G1, . . . , Gn is a rule.

6. If R is a rule, then assert(R) is an atomic b-literal.
7. Nothing else is a b-literal, t-formula, or rule.

Atomic b-literals will simply be called atoms. A b-literal is called objective if not
does not appear in it. An EVOLPT program is a (possibly infinite) set of rules.

The following is a ‘legal’ EVOLPT rule:

assert(a← not♦(b))← not�(not♦(b, not assert(c← d))).

Notice the nesting of temporal operators and the appearance of negation, con-
junction and assert under the scope of the temporal operators.
The following are not ‘legal’ EVOLPT rules:

assert(�(b)← a)← b. a← ♦(not (a, b)). a← not not b.

In the first rule, �(b) appears in the argument rule �(b) ← a, but temporal
operators are not allowed in the head of rules. The second rule applies negation
to a conjunctive b-literal, and the third rule has double negation. But negation
is only allowed in front of atomic b-literals and t-formulae.

The definition of the semantics of EVOLPT is based on sequences of in-
terpretations (sets of atoms), 〈I1, . . . , In〉, called evolution interpretation. Each
interpretation Ii contains the atoms that hold at state i of the evolution, and a
sequence represents a possible evolution of an initial program after the given n
evolution steps.

Satisfaction of b-literals by an evolution interpretation is defined as follows.

Definition 2 (Satisfaction of b-literals). Let I = 〈I1, . . . , In〉 be an evolu-
tion interpretation of a program P and let G and G′ be b-literals. Then

〈I1, . . . , In〉 |= A iff A ∈ In and A is an atom.
〈I1, . . . , In〉 |= notG iff 〈I1, . . . , In〉 6|= G.
〈I1, . . . , In〉 |= G,G′ iff 〈I1, . . . , In〉 |= G and 〈I1, . . . , In〉 |= G′.
〈I1, . . . , In〉 |=©(G) iff n ≥ 2 and 〈I1, . . . , In−1〉 |= G.
〈I1, . . . , In〉 |= ♦(G) iff n ≥ 2 and ∃i < n : 〈I1, . . . , Ii〉 |= G.
〈I1, . . . , In〉 |= S(G,G′) iff n > 2, ∃i < n : 〈I1, . . . , Ii〉 |= G′ and

∀i < j < n : 〈I1, . . . , Ij〉 |= G.
〈I1, . . . , In〉 |= �(G) iff ∀i < n : 〈I1, . . . , Ii〉 |= G.

Given an evolution interpretation, an evolution trace represents one of the
possible evolutions of the KB.

Definition 3. The evolution trace associated with an evolution interpretation
I of a program P is the sequence of programs 〈P1, P2, . . . , Pn〉 where:

P1=P and Pi={R | assert(R) ∈ Ii−1} for each 2 ≤ i ≤ n.

Our first step towards defining the semantics of EVOLPT programs consists
in defining an operator that eliminates t-formulae from a program by evaluating
them against an evolution interpretation.

Definition 4 (Elimination of Temporal Operators). Let I = 〈I1, . . . , In〉
be an evolution interpretation and L0 ← G1, . . . , Gn a rule. The rule resulting
from the elimination of temporal operators given I,

El(I, L0 ← G1, . . . , Gn)

is obtained by replacing by true every t-formula Gt in the body such I |= Gt

and by replacing all remaining t-formulae by false, where constants true and
false are defined, as usual, such that the former is true in every interpretation
and the latter is not true in any interpretation.

The program resulting from the elimination of temporal operators given I,
El(I, P) is obtained by applying El to each of the program’s rules.

Before we define the models of a program, we need to introduce some no-
tation. Let P = 〈P1, ..., Pn〉 be a sequence of programs. For 1 ≤ s ≤ n, ρs(P)
denotes the multiset of all the rules appearing in the subsequence P1, ..., Ps. For
a set atoms I, Î = I ∪ {not A | A 6∈ I}. If r is a rule L0 ← L1, . . . , Ln, then
H(r) = L0 (dubbed the head of the rule) and B(r) = L1, . . . , Ln (dubbed the
body of the rule). We say r and r′ are conflicting rules, denoted by r 1 r′, iff
H(r) = A and H(r′) = notA or H(r) = notA and H(r′) = A. Let P be a
program, I an interpretation, and 1 ≤ s ≤ n. The following sets originate form
the semantics of Dynamic Logic Programs [2].

Defs(P, I) = {notA | A is an objective atom,
@r ∈ ρs(P), H(r) = A, I � B(r)}.

Rejs(P, I) = {r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j ≤ s, r 1 r′, I � B(r′)} .

Intuitively, Defs(P, I) is the set of ‘default’ b-literals, notA, such that A has
never held at any state up to s. Rejs(P, I) is the set of rules that are ‘rejected’
(i.e. disabled) at state s because a conflicting rule whose body is satisfied was
added in a more recent or the same state than the state where the rejected rule
was added.

Finally, least(P) denotes the least model of the definite program obtained
from a program P without t-formulae by replacing every b-literal notA, where
A is an atom, by a new atom not A.

Definition 5 (Dynamic Stable Models). Let P = 〈P1, . . . , Pn〉 be a se-
quence of EVOLPT programs and I an interpretation. I is a dynamic stable
model of P at state s, 1 ≤ s ≤ n iff

Î = least ([ρs(P)−Rejs(P, I)] ∪Defs(P, I)) .

Definition 6 (Evolution Stable Models). Let I = 〈I1, . . . , In〉 be an evo-
lution interpretation of an EVOLPT program P and P be the corresponding
evolution trace. Then I is an evolution stable model of P iff for every 1 ≤ s ≤ n,
Is is a dynamic stable model of El(I,P) at s.

In addition to allowing the specification of updates in the KB itself, EVOLPT

also allows, as does its predecessor EVOLP, incorporating changes caused by
external events. These events may be facts/rules representing observations made
at some stage of the evolution or assertion commands specifying new update
directives to be added to the KB. Both types of event can be represented as
EVOLPT rules: the former by rules without the assert predicate in the head,
and the latter by rules with it. Formally, a sequence of such events is just a
sequence of programs over the same language:

Definition 7. Let L be the language of an evolving program P . An event se-
quence over P is a sequence of evolving programs over L.

Definition 8 (Evolution Stable Models with Events). Let I = 〈I1, . . . , In〉
be an evolution interpretation of an EVOLPT program P and 〈P1, . . . , Pn〉 be
the corresponding evolution trace. Then I is an evolution stable model of P given
event sequence 〈E1, E2, . . . , En〉 iff for every s, 1 ≤ s ≤ n, Is is a dynamic stable
model of El(I, 〈P1, P2, . . . , (Ps ∪ Es)〉) at s.

Since multiple different evolutions of the same length may exist, evolution
stable models alone do not determine a truth relation. But one such truth relation
can be defined, in the usual way, based on the intersection of models:

Definition 9 (Stable Models after n Steps given Events). Let P be an
EVOLPT program. We say that a set of atoms M is a stable model of P af-
ter n steps given the sequence of events E iff there exist I1, . . . , In−1 such that
〈I1, . . . , In−1,M〉 is an evolution stable model of P given E .
We say that an atom A is:

– true after n steps given E iff all stable models after n steps contain A;
– false after n steps given E iff no stable model after n steps contains A;
– unknown after n steps given E otherwise.

It is worth noting that basic properties of Past LTL operators carry over to
EVOLPT . In particular, in EVOLPT , as in LTL, some of the operators are not
strictly needed, since they can be rewritten in terms of the others:

Proposition 1. Let I = 〈I1, . . . , In〉 be an evolution stable model over a set L
of b-literals. Then, for every G ∈ L:

– I |= �(G) iff I |= not♦(notG),
– I |= ♦(G) iff I |= S(true,G).

Moreover, it should also be noted that EVOLPT is a generalization of EVOLP
in the sense that when no temporal operators appear in the program and in the
sequence of events, then evolution stable models coincide with those of EVOLP.
A further, immediate consequence of this fact is that if the sequence of events is
empty and predicate assert/1 does not occur in the program, evolution stable
models as defined for EVOLPT coincide with answer-sets.

3 EVOLPT Implementations

We have developed two implementations of EVOLPT . One follows the evolution
stable models semantics defined above, while the second one computes answers
to existential queries under the well-founded semantics [15]. The implementa-
tions rely on two consecutive program transformations: the first transforms an
EVOLPT program into an EVOLP one, i.e. temporal operators are eliminated.
The second transformation, which is based on previous work [16], takes the result
of the first and generates a normal logic program.

We start by defining the first program transformation, then give some in-
tuitions on the second transformation. That is followed by a description of the
actual implementation and its usage and then some details about the other im-
plementation.

3.1 Program transformations

The transformation of EVOLPT programs and sequences of events into EVOLP
mainly consists in eliminating the t-formulae by introducing new propositional
atoms and rules that encode the dynamics of the temporal operators. We start
by defining the target language of the resulting EVOLP programs.

Let P be an EVOLPT program and E a sequence of events in a proposi-
tional language L. The target language is obtained from L by adding a new
propositional variable for every non-atomic b-literal that appears in P and E .
Recall that atomic b-literals are the propositional atoms and atoms of the form
assert(R). Formally:

Definition 10 (EVOLP Target language). Let P and E be an EVOLPT

program and a sequence of events, respectively, in a propositional language L.
Let G(P, E) be the set of all non-atomic b-literals that appear in P or E .

The EVOLP target language is LE(L, P, E) = L∪{′L′ | L ∈ G(P, E)}, where
by ′L′ we mean a propositional variable whose name is the (atomic) string of
characters that compose the formula L (which is assumed not to occur in L).

The transformation takes the rules in both program and events, and replaces
all occurrences of t-formulas and conjunctions in their bodies by the correspond-
ing new propositional variables in the target language. Moreover, extra rules are
added to the program for encoding the behaviour of the operators.

Definition 11 (Transformed EVOLP program). Let P be an EVOLPT

program and E = 〈E1, E2, . . . , En〉 be a sequence of events in a propositional
language L. Then TrE(P, E) = (TP , 〈TE1 , . . . , TEn〉) is a pair consisting of an
EVOLP program (i.e., without temporal operators) and a sequence of events,
both in language LE(L, P, E), defined as follows:

1. Rewritten program rules. For every rule r in P (resp. each of the Ei),
TP (resp. TEi) contains a rule obtained from r by replacing every t-formula
G in its body by the new propositional variable ′G′;

2. Previous-operator rules. For every propositional variable of the form ′©
(G)′, appearing in LE(L, P, E), TP contains:
assert(′©(G)′)←′ G′. assert(not ′© (G)′)← not ′G′.

3. Sometimes-operator rule. For every propositional variable of the form
′♦(G)′, appearing in LE(L, P, E), TP contains:
assert(′♦(G)′)←′ G′.

4. Since-operator rules. For every propositional variable of the form ′S(G1, G2)′,
appearing in LE(L, P, E), TP contains:
assert(′S(G1, G2)′)←′ G′1,′©(G2)′.
assert(assert(not′S(G1, G2)′)← not ′G′1)← assert(′S(G1, G2)′).

5. Always-operator rules. For every propositional variable of the form ′�(G)′,
appearing in LE(L, P, E), TP contains:
′�(G)′ ←′ G′, not © true. assert(not ′�(G)′)← not ′G′.

6. Conjunction and negation rules. For every propositional variables of the
form ′notG′, or of the form ′G1, G

′
2 appearing in LE(L, P, E), TP contains,

respectively:
′notG′ ← not ′G′
′G1, G

′
2 ←′ G′1,′G′2. ′G1, G

′
2 ←′ G′2,′G′1.

The correctness of this transformation is established by the theorem:

Theorem 1 (Correctness of the EVOLP transformation). Let P and
E = 〈E1, . . . , Ek〉 be, respectively, an EVOLPT program and a sequence of events
in a propositional language L, and let TrE(P, E) = (TP , 〈TE1 , . . . , TEk

〉). Then
M = 〈I1, . . . , In〉 is an evolution stable model of P given E iff there exists
an evolution stable model M ′ = 〈I ′1, . . . , I ′n〉 of TP given E such that I1 =
(I ′1∩L), . . . , In = (I ′n∩L).

Proof. (Sketch) The proof, that can only be sketched here due to lack of space,
proceeds by induction on the length of the sequence of interpretations, showing
that the transformed atoms corresponding to t-formulae satisfied in each state,
and some additional assert-literals guarantying the assertion of t-formulae, be-
long to the interpretation state.

For the induction step, the rules of the transformation are used to guarantee
that the new propositional variables belong to the interpretation of the trans-
formed program whenever the corresponding temporal b-literals belong to the
interpretation of the original EVOLPT program. For example, if some G ∈ Ii
then, according to the EVOLPT semantics, for every j > i ♦(G) ∈ Ij ; by in-
duction hypothesis, ′G′ ∈ I ′i and the “sometime-operator rule” guarantees that
′♦(G)′ is added to the subsequent program and so, since no rule for not ′♦(G)′

is added in the transformation, for every j > i ′♦(G′) ∈ I ′j . As another example,
note that the first “previous-operator” rule is similar to the “sometime-operator
rule” and the second adds the fact not ′© (G)′ in case not ′G′ is true; so, as in

the EVOLPT semantics, ′© (G)′ ∈ I ′i+i. A similar reasoning is applied also for
the since-operator and always-operator rules.

To account for the nesting of temporal operators first note that the transfor-
mation adds the above rules for all possible nestings. Since this nesting can be
combined with conjunction and negation, as per the definition of the syntax of
EVOLPT (Def. 1), care must be taken with the new propositional variables that
stand for those conjunctions and negations. This is taken care the the conjunc-
tion and negation rules, which guarantee that a new atom with a conjunction is
true in case the b-literals in the conjunction are true, and that a new atom with
the negation of a b-literal is true in case the negation of the b-literal is true. ut

As explained above, the implementation proceeds by transforming the re-
sulting EVOLP program into a normal logic program. This is done by using
the results of [16]. In a nutshell3, for a program P and a sequence of events
〈E1, . . . , En〉 in L, the language is first extended with, for every proposition
A ∈ L, new propositional variables Aj and Aj

neg for every j ≤ n, and rej(Aj , i)
and rej(Aj

neg, i) for every j ≤ n and i ≤ j. Intuitively, these new variables stand
for, respectively: the truth (resp. falsity) of A in Pj , and the rejection of rules
with head A at Ij due to the existence of a rule in Pi.

All rules L ← Body in P and in each Ei are transformed in this extended
language into, resp., Lj ← Bodyj , not rej(Lj , 1) for every j ≤ n, and Li ←
Bodyi, not rej(Lj , i). Further rules are added to account for the semantics of
EVOLP. For example, for every rule r = (L ← Body) and all 1 < i ≤ j s.t.
(assert(r))i−1 is the head of some transformed rule, add also the rule

Lj ← Bodyj , (assert(r))i−1, not rej(Lj , i)

As another example, to account for default negation, for every j ≤ n and for
every A, add Aj

neg ← not rej(Aj
neg, 0). Other rules are added (see [16]) to account

for rejection, and for guaranteeing that in every interpretation Ij either Aj or
Aj

neg belong to it (and not both).
Given the results of [16], proving a one to one relation between the stable

models of the so transformed normal program and the stable models of the
original EVOLP program, and the result of Theorem 1, it is clear that the
composition of these two transformation is correct, i.e. the stable models of the
obtained normal logic program correspond to the stable models of the original
EVOLPT program plus events.

3.2 Implementations and usage

Our implementation relies on the above described composed transformation.
More precisely, the basic implementation takes an EVOLPT program and a
sequence of events and preprocesses it into a normal logic program.

The preprocessor that is available at http://centria.di.fct.unl.pt/˜ jja/updates/
is implemented in Prolog. It takes a file that starts with an EVOLPT program,
3 For details see [16].

where the syntax is just as described in Def. 1, except that the rule symbol is <-
and the temporal operators are previous/1, sometime/1, since/2, always/1
standing for the temporal operators ©(G), ♦(G), S(G1, G2) and �(G), respec-
tively. The EVOLPT program is ended by a fact newEvents. The rules after this
fact constitute the first set of events, and is again ended by a fact newEvents,
after which the rules for the second set of events follow, etc.

The preprocessing is done by combining the two transformation in a single
step, rather than having them in sequence as described in the previous sub-
section. This is done for efficiency of the preprocessors, and the combination
simply combines in sequences each of the rules in both transformations. More-
over, instead of creating new atomic names, as done in both transformations,
the preprocessor uses Prolog terms for the new propositions accounting for the
b-literal (e.g. it uses a term sometime(a) instead of ′♦(p)′ or ′sometime(p)′),
which eases the processing of nested temporal operators; it adds new arguments
to predicates A(j), instead of creating new propositions of the form Aj , as in
the second transformation.

The programs obtained by the Prolog preprocessor can then run in any
answer-set solver to obtain the set of the stable models of the original EVOLPT

program and events. We have tested the implementation using the lparse grounder
and the smodels solver(http://www.tcs.hut.fi/Software/smodels/). The imple-
mentation can also take advantage of the implementation of EVOLP and in-
terface described in [17]. For this, we provide a version that one performs the
first transformation, that is to be fed to the (java-based) implementation of [17]
which, in turn, performs the second transformation and computes the stable
models (using smodels).

Instead of computing the stable models of the resulting normal program,
one may compute its well-founded model [15]. This provides a (3-valued) model
which is sound, though not complete, w.r.t. the intersection of all stable models.
I.e. if an atom A(n) belongs to the wf-model then A is true in all stable models
of the program and events after n steps; if notA(n) belongs to the wf-model
then A belongs to no stable models after n steps; if neither A(n) nor notA(n)
belong to the wf-model, then nothing can be concluded.

Despite the incompleteness, the wf-model has the advantage of having poly-
nomial complexity and allowing for (top-down) query-driven procedures. With
this in mind, we have done another implementation, also available online, that
besides the preprocessor also includes a meta-interpreter that answers existential
queries under the well founded semantics. The meta-interpreter is implemented
in XSB-Prolog, and relies on its tabling mechanisms for computing the wf-model.
For top-down querying we provide a top goal predicate G after I in (N1,N2)
which, given a goal G and two integers N1 and N2, returns in I all integers be-
tween N1 and N2 such that in all stable models after I steps, G is true. This
XSB-Prolog implementation also allows for a more interactive usage, e.g. allow-
ing to add events as they occur (and adjusting the transformation on the fly),
separately from the initial programs, and querying the current program (after
as many steps as the number of events given).

4 Related Work and Conclusions

The language EVOLPT generalizes its predecessor EVOLP by providing rules
that, via Past LTL like modalities, may refer to past states in the evolution
of a KB. Here, in addition to a simplified reformulation of its semantics, we
have presented a provably correct transformation of EVOLPT programs and
two implementations based on it.

The use of temporal logic in computer science is widespread. Here we would
like to mention some of the most closely related work. Eiter et al. [5] present a
very general framework for reasoning about evolving knowledge bases. This ab-
stract framework allows the study of different approaches to logic programming
knowledge base update, including those specified in LUPS, EPI, and KABUL.
For the purpose of verifying properties of evolving knowledge bases in this lan-
guage, they define a syntax and semantics for Computational Tree Logic (CTL),
a branching temporal logic, modalities. While in [5] temporal logic is only used
for verifying meta-level properties, in EVOLPT temporal operators are used in
the object language to specify the behavior of an evolving knowledge base.

In the area of reasoning about actions, [18] describes an extension of the
action language A with Past LTL operators, which allows formalizing actions
whose effects depend on the evolution of the described domain. On a similar
vein but in the more expressive situation calculus, [19] shows a generalization
of Reiter’s Basic Action Theories for systems with non-Markovian dynamics.
Both of these formalisms provide languages that can refer to past states in the
evolution of a dynamic system. However, the focus of these formalisms is on
solving the projection problem, i.e., reasoning about what will be true in the
resulting state after executing a sequence of actions. On the other hand, the
focus in the EVOLPT language is specifying updates to the system’s knowledge
base itself due to internal or external influence. For example, a system formalized
in EVOLPT would be able to modify the description of its own behavior, which
is not possible in A or in Basic Action Theories.

Also designed for specifying dynamic systems using temporal logic is MetateM
[20]. A program in this language consists of rules of the form P ⇒ F , where
P is a Past LTL formula and F is a Future LTL formula. Intuitively, such a
rule evaluated in a state specifies that if the evolution of the system up to this
state satisfies P , then the system must proceed in such a way that F be sat-
isfied. EVOLPT does not include Future LTL connectives (our future work) so
MetateM is more expressive in that sense. On the other hand, MetateM does
not have a construct for updates and it is monotonic, unlike EVOLPT . In [21]
the authors propose a non-monotonic extension of LTL with the purpose of spec-
ifying agent’s goals. Whereas [21] share with our work the use of LTL operators
and non-monotonicity, like MetateM it provides future operators, but the non-
monotonic character in [21] is given by limited explicit exceptions to rules, thus
appearing to be less general than EVOLPT .

References

1. Gabbay, D., Smets, P., eds.: Handbook of Defeasible Reasoning and Uncertainty
Management Systems, Volume 3: Belief Change. Kluwer (1998)

2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming
45(1-3) (September/October 2000) 43–70

3. Leite, J.A.: Evolving Knowledge Bases. IOS Press (2003)
4. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences

based on causal rejection. Theory and Practice of Logic Programming 2(6) (2002)
5. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: Reasoning about evolving non-

monotonic knowledge bases. ACM Trans. Comput. Log. 6(2) (2005) 389–440
6. Sefránek, J.: Irrelevant updates and nonmonotonic assumptions. In: Procs. of

JELIA’06. Volume 4160 of LNAI., Springer (2006) 426–438
7. Zhang, Y., Foo, N.Y.: Updating logic programs. In: Procs. ECAI. (1998)
8. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In:

Procs. of LPNMR’99. Volume 1730 of LNAI., Springer (1999)
9. Marek, V., Truszczynski, M.: Revision programming. Theor. Comput. Sci. 190(2)

(1998) 241–277
10. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In:

Procs. of JELIA’02. Volume 2424 of LNAI., Springer (2002) 50–61
11. Alferes, J.J., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: LUPS – a

language for updating logic programs. Artificial Intelligence 138(1&2) (June 2002)
12. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for

semantics of dynamic logic programming. Studia Logica 79(1) (2005) 7–32
13. Alferes, J.J., Gabaldon, A., Leite, J.A.: Evolving logic programming based agents

with temporal operators. In: IEEE/WIC/ACM Int’l Conf. on Intelligent Agent
Technology. (2008)

14. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Procs. of
ICLP’90. (1990) 579–597

15. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3) (1991) 620–650

16. Slota, M., Leite, J.: Evolp: Tranformation-based semantics. In Sadri, F., Satoh,
K., eds.: CLIMA VIII. Volume 5056 of LNCS., Springer (2008) 117–136

17. Slota, M., Leite, J.: Evolp: An implementation. In Sadri, F., Satoh, K., eds.:
CLIMA VIII. Volume 5056 of LNCS., Springer (2008) 288–298

18. Mendez, G., Lobo, J., Llopis, J., Baral, C.: Temporal logic and reasoning about
actions. In: 3rd Symp. Logical Formalizations of Commonsense Reasoning. (1996)

19. Gabaldon, A.: Non-markovian control in the situation calculus. In: Procs. AAAI,
AAAI Press (2002) 519–524

20. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: Metatem: An intro-
duction. Formal Aspects of Computing 7(5) (1995) 533–549

21. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In:
Procs. IJCAI. (2007) 236–242

