
On the Use of Multi-dimensional Dynamic Logic
Programming to Represent Societal Agents’

Viewpoints

João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

Centro de Inteligência Artificial - CENTRIA
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

{jleite|jja|lmp}@di.fct.unl.pt

Abstract. This paper explores the applicability of the new paradigm of
Multi-dimensional Dynamic Logic Programming to represent an agent’s
view of the combination of societal knowledge dynamics. The represen-
tation of a dynamic society of agents is the core of MINERVA [11], an
agent architecture and system designed with the intention of providing
a common agent framework based on the unique strengths of Logic Pro-
gramming, hat allows the combination of several non-monotonic knowl-
edge representation and reasoning mechanisms developed in recent years.

1 Introduction

Over recent years, the notion of agency has claimed a major role in defining
the trends of modern research. Influencing a broad spectrum of disciplines such
as Sociology, Psychology, among others, the agent paradigm virtually invaded
every sub-field of Computer Science [3,8,16]. Although commonly implemented
by means of imperative languages, mainly for reasons of efficiency, the agent
concept has recently increased its influence in the research and development
of computational logic based systems. Since efficiency is not always the crucial
issue, but clear specification and correctness is, Logic Programming and Non-
monotonic Reasoning have been brought back into the spotlight.

The Logic Programming paradigm provides a well-defined, general, integra-
tive, encompassing, and rigorous framework for systematically studying com-
putation, be it syntax, semantics, procedures, or attending implementations,
environments, tools, and standards. LP approaches problems, and provides so-
lutions, at a sufficient level of abstraction so that they generalize from problem
domain to problem domain. This is afforded by the nature of its very foundation
in logic, both in substance and method, and constitutes one of its major assets.
To this accrues the recent significant improvements in the efficiency of Logic
Programming implementations for Non-monotonic Reasoning (e.g. [14,18]). Be-
sides allowing for a unified declarative and procedural semantics, eliminating the
traditional wide gap between theory and practice, the use of several and quite
powerful results in the field of non-monotonic extensions to Logic Programming

P. Brazdil and A. Jorge (Eds.): EPIA 2001, LNAI 2258, pp. 276–289, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

On the Use of Multi-dimensional Dynamic Logic Programming 277

(LP), such as belief revision, inductive learning, argumentation, preferences, ab-
duction, etc.[16] can represent an important composite added value to the design
of rational agents.

Until recently, Logic Programming could be seen as a good representation
language for static knowledge. If we are to move to a more open and dynamic
environment, typical of the agency paradigm, we need to consider ways of rep-
resenting and integrating knowledge from different sources which may evolve in
time. Moreover, an agent not only comprises knowledge about states, but also
some form of knowledge about the transitions between states. This knowledge
about state transitions can represent the agent’s knowledge about the environ-
ment’s evolution, as well as its own behaviour and evolution. Since logic programs
describe knowledge states, it’s only fit that logic programs describe transitions
of knowledge states as well. It is natural to associate with each state a set of
transition rules to obtain the next state. Recent developments have opened Logic
Programming to these otherwise unreachable dynamic worlds [1,4,6,17,19].

In [1], the authors, with others, introduced Dynamic Logic Programming.
There, they studied and defined the declarative and operational semantics of
sequences of logic programs (or dynamic logic programs). Each program in the
sequence contains knowledge about some given state, where different states may,
for example, represent different time periods or different sets of priorities. The
introduction of Dynamic Logic Programming has extended Logic Programming,
making possible for a logic program to undergo a sequence of modifications,
opening up the possibility of incremental design and evolution of logic pro-
grams, therefore significantly facilitating modularization of logic programming
and, thus, modularization of non-monotonic reasoning as a whole.

In [2], the authors, with others, introduced the language LUPS – “Language
for dynamic updates” – designed for specifying changes to logic programs. Given
an initial knowledge base (as a logic program) LUPS provides a way for sequen-
tially updating it, unifying states and state transitions into a single declarative
logic based framework.

Even though the main motivation behind the introduction of Dynamic Logic
Programming was to represent the evolution of knowledge in time, the rela-
tionship between the different states can encode other aspects of a system, as
explored in [1,9,5,15,12]. Although Dynamic Logic Programming can represent
several states in one evolving dimension or aspect of a system, no more than
one such aspectual evolution can be encoded and combined simultaneously. This
is so because Dynamic Logic Programming is defined only for linear sequences
of states. Multi-dimensional Dynamic Logic Programming (MDLP) [10] was
introduced to generalize DLP to allow for collections of states represented by
arbitrary acyclic digraphs (DAG), not just sequences of states. MDLP assigns
semantics to sets and subsets of logic programs, depending on how they stand
in relation to one another, as defined by the DAG that represents the states and
their configuration. By dint of such natural generalization, MDLP affords extra
expressiveness, thereby enlarging the latitude of logic programming applications
unifiable under a single framework. The flexibility provided by a DAG ensures a

278 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

wide scope and variety of new possibilities. By virtue of the newly added charac-
teristics of multiplicity and composition, MDLP provides a “societal” viewpoint
in Logic Programming, important in these web and agent days, for combining
knowledge in general.

In this paper we explore the application of the new paradigm of Multi-
dimensional Dynamic Logic Programming to represent an agent’s view of the
combination of societal knowledge dynamics, i.e. the agent’s view of the evolu-
tion of its knowledge as a result of knowledge evolution in the community of
agents.

We begin with a brief overview of DLP in Section 2. In Section 3, we present
MDLP. In Section 4 we explore the application of MDLP to represent inter
and intra-agent relationships and their views of a multi-agent system. We then
conclude in Section 6.

2 Background

We start with an overview of the syntax and semantics of generalized logic pro-
grams, followed by a short recap of the paradigm of Dynamic Logic Programming.

2.1 Generalized Logic Programs and Their Stable Models

To represent negative information in logic programs and in their updates, since
we need to allow default negation not A not only in premises of their clauses
but also in their heads, we use generalized logic programs as defined in [1]1. By
a generalized logic program P in a language L we mean a finite or infinite set
of propositional clauses of the form L0 ← L1, . . . , Ln where each Li is a lit-
eral (i.e. an atom A or the default negation of an atom not A). If r is a clause
(or rule), by H(r) we mean L, and by B(r) we mean L1, . . . , Ln. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). By a (2-
valued) interpretation M of L we mean any set of literals from L that satisfies
the condition that for any A, precisely one of the literals A or not A belongs
to M . Given an interpretation M we define M+ = {A : A is an atom, A ∈ M}
and M− = {not A : A is an atom, not A ∈ M}. Following established tradition,
wherever convenient we omit the default (negative) atoms when describing in-
terpretations and models. We say that a (2-valued) interpretation M of L is a
stable model of a generalized logic program P if r(M) = least (r(P) ∪ r(M−)),
where r(.) univocally renames every default literal not A in a program or model
into new atoms, say not A. The class of generalized logic programs can be viewed
as a special case of yet broader classes of programs, introduced earlier in [13],
and, for the special case of normal programs, their semantics coincides with the
stable models semantics [7].
1 In [2] the reader can find the motivation for the usage of generalized logic programs,

instead of using simple denials as a result of freely moving the head not s into the
body.

On the Use of Multi-dimensional Dynamic Logic Programming 279

2.2 Dynamic Logic Programming

Next we recall the semantics of dynamic logic programming [1]. A dynamic logic
program is a sequence P0 ⊕ ... ⊕ Pn ⊕ ... (also denoted by

⊕
P, where P =

{Ps : s ∈ S} is a finite or infinite sequence of LPs, indexed by the finite or infinite
set S = {1, 2, . . . , n, . . .}. Such sequence may be viewed as the outcome of
updating P0 with P1, ..., updating it with Pn,... As we will see in the following
sections, each Pi is determined by the ith state transition. The role of dynamic
logic programming is to ensure that these newly added rules are in force, and that
previous rules are still valid (by inertia) for as long as they do not conflict with
more recent ones, whenever the latter remain in force themselves. The notion of
dynamic logic program at state s, denoted by

⊕
s P, characterizes the meaning

of the dynamic logic program when queried at state s, by means of its stable
models, defined as follows:

Definition 1 (Stable Models of DLP). Let
⊕

P =
⊕

{ Ps : s ∈ S} be a
dynamic logic program, let s ∈ S. An interpretation Ms is a stable model of⊕

P at state s iff Ms = least(Ps − Reject(s, Ms) ∪ Default(Ms)) where:

Ps =
⋃

i≤s Pi

Reject(s, Ms) = {r ∈ Pi : ∃r′ ∈ Pj , i < j ≤ s, H(r) = not H(r′) ∧ Ms ! B(r′)}
Default(Ps, Ms) = {not A :) ∃r ∈ Ps, H(r) = A ∧ Ms ! B(r)}

and where A is an atom.

3 Multi-dimensional Dynamic Logic Programming

Even though the main motivation behind the introduction of DLP was to rep-
resent the evolution of knowledge in time, the relationship between the different
states can encode other aspects of a system, as pointed out in [1]. In fact, since
its introduction, DLP (and LUPS) has been employed to represent a stock of
features of a system, namely as a means to: represent and reason about the evo-
lution of knowledge in time [1]; combine rules learnt by a diversity of agents [9];
reason about updates of agents’ beliefs [5]; model agent interaction [15]; model
and reason about actions [1]; resolve inconsistencies in metaphorical reasoning
[12].

The common feature among these applications of DLP is that the states
associated with the given set of theories encode only one of several possible
representational dimensions (e.g. time, hierarchies, domains,...), inasmuch DLP
is defined for linear sequences of states alone. For example, DLP can be used
to model the relationship of a strict hierarchy group of agents, and DLP can be
used to model the evolution of a single agent over time. But DLP, as it stands,
cannot deal with both settings at once, and model the evolution of one such
group of agents over time.

In effect, knowledge updating is not to be simply envisaged as taking place in
the time dimension alone. Several updating dimensions may combine simultane-
ously, with or without the temporal one, such as specificity (as in taxonomies),

280 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

strength of the updating instance (as in the legislative domain), hierarchical po-
sition of knowledge source (as in organizations), credibility of the source (as in
uncertain, mined, or learnt knowledge), or opinion precedence (as in a society of
agents). For this to be possible, DLP needs to be extended to allow for a more
general structure of states.

In this section we present the notion of Multi-dimensional Dynamic Logic
Programming (MDLP) (introduced in [10]) which generalizes DLP to allow for
collections of states represented by arbitrary acyclic digraphs. In this setting,
MDLP assigns semantics to sets and subsets of logic programs, depending on
how they relate to one another, these relations being defined by the acyclic
digraph representing the states.

3.1 Graphs

A directed graph, or digraph, D = (V, E) is a pair of two finite or infinite sets V =
VD of vertices and E = ED of pairs of vertices or (directed) edges. A directed edge
sequence from v0 to vn in a digraph is a sequence of edges e1, e2, ..., en ∈ ED such
that ei = (vi−1, vi) for i = 1, ..., n. A directed path is a directed edge sequence
in which all the edges are distinct. A directed acyclic graph, or acyclic digraph
(DAG), is a digraph D such that there are no directed edge sequences from v to
v, for all vertices v of D. A source is a vertex with in-valency 0 (number of edges
for which it is a final vertex) and a sink is a vertex with out-valency 0 (number
of edges for which it is an initial vertex). We say that v < w if there is a directed
path from v to w and that v ≤ w if v < w or v = w. The relevancy DAG of a DAG
D wrt a vertex v of D is Dv = (Vv, Ev) where Vv = {vi : vi ∈ V and vi ≤ v} and
Ev = {(vi, vj) : (vi, vj) ∈ E and vi, vj ∈ Vv }. The relevancy DAG of a DAG
D wrt a set of vertices S of D is DS = (VS , ES) where VS =

⋃
v∈S Vv and

ES =
⋃

v∈S Ev, where Dv = (Vv, Ev) is the relevancy DAG of D wrt v.

3.2 Declarative Semantics

We start by defining the framework consisting of the generalized logic programs
indexed by a DAG. Throughout this paper, we will restrict ourselves to DAG’s
such that for every vertex v of the DAG, any path ending in v is finite.

Definition 2 (Multi-dimensional Dynamic Logic Program). Let L be a
propositional language. A Multi-dimensional Dynamic Logic Program (MDLP),
P, is a pair (PD, D) where D = (V, E) is a DAG and PD = {Pv : v ∈ V } is a set
of generalized logic programs in the language L, indexed by the vertices v ∈ V of
D. We call states such vertices of D. For simplicity, we often leave the language
L implicit.

To characterize the models of P at any given state we will keep to the basic
intuition of logic program updates, whereby an interpretation is a stable model
of the update of a program P by a program U iff it is a stable model of a program
consisting of the rules of U together with a subset of the rules of P comprised

On the Use of Multi-dimensional Dynamic Logic Programming 281

by those that are not rejected (do not carry over by inertia) due to their being
overridden by program U . With the introduction of a DAG to index programs,
a program may have more than a single ancestor. This has to be dealt with,
the desired intuition being that a program Pv ∈ PD can be used to reject rules
of any program Pu ∈ PD if there is a directed path from u to v. Moreover, if
some atom is not defined in the update nor in any of its ancestor, its negation
is assumed by default. Formally, the stable models of the MDLP are:

Definition 3 (Stable Models at state s). Let P = (PD, D) be a MDLP,
where PD ={Pv : v ∈ V }, D = (V, E) and s ∈ V . An interpretation Ms is a sta-
ble model of P at state s iff Ms = least ([Ps − Reject(s, Ms)] ∪ Default (Ps, Ms))
where:

Ps =
⋃

i≤sPi

Reject(s, Ms) = {r ∈ Pi | ∃r′ ∈ Pj , i < j ≤ s, H(r) = not H(r′) ∧ Ms ! B(r′)}
Default (Ps, Ms) = {not A | !r ∈ Ps : (H(r) = A) ∧ Ms ! B(r)}

Intuitively, the set Reject(s, Ms) contains those rules belonging to a program
indexed by a state i that are overridden by the head of another rule with true
body in state j along a path to state s. Ps contains all rules of all programs that
are indexed by a state along all paths to state s, i.e. all rules that are potentially
relevant to determine the semantics at state s. The set Default (Ps, Ms) contains
default negations not A of all unsupported atoms A, i.e., those atoms A for which
there is no rule in Ps whose body is true in Ms.

According to [10], to determine the models of a MDLP at state s, we need
only consider the part of the MDLP corresponding to the relevancy graph wrt
state s.

We might have a situation where we desire to determine the semantics jointly
at more than one state. If all these states belong to the relevancy graph of one
of them, we simply determine the models at that state. But this might not be
the case. Formally, the semantics of a MDLP at an arbitrary set of its states is
determined by the definition:

Definition 4 (Stable Models at a set of states S). Let P = (PD, D) be a
MDLP, where PD = {Pv : v ∈ V } and D = (V, E). Let S be a set of states such
that S ⊆ V . An interpretation MS is a stable model of P at the set of states S
iff MS = least ([PS − Reject(S, MS)] ∪ Default (PS , MS)) where:

PS =
⋃

s∈S

(⋃
i≤sPi

)

Reject(S, MS) =
{

r ∈ Pi | ∃s ∈ S, ∃r′ ∈ Pj , i < j ≤ s,
H(r) = not H(r′) ∧ MS ! B(r′)

}

Default (PS , MS) = {not A | !r ∈ PS : (H(r) = A) ∧ MS ! B(r)}

This is equivalent to the addition of a new vertex α to the DAG, and con-
necting to α, by addition of edges, all states we wish to consider. Furthermore,
the program indexed by α is empty. We then determine the stable models of

282 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

this new MDLP at state α. Note the addition of state α does not affect the
stable models at other states. Indeed, α and the newly introduced edges do
not belong to the relevancy DAG wrt any other state. A particular case of the
above definition is when S = V , corresponding to the semantics of the whole
MDLP . In [10], we have presented an alternative definition, based on a purely
syntactical transformation that, given a MDLP, produces a generalized logic
program whose stable models are in a one-to-one equivalence relation with the
stable models of the MDLP previously characterized. The computation of the
stable models at some state s reduces to the computation of the transformation
followed by the computation of the stable models of the transformed program.
This directly provides for an implementation of MDLP, publicly available at
centria.di.fct.unl.pt/˜jja/updates.

4 Inter- and Intra-Agent Social Viewpoints

The previous section contains the definition of the notion of Multi-dimensional
Dynamic Logic Programming, MDLP, as an extension of DLP to allow for states
to be related by an arbitrary DAG. The stable models of MDLP have been
characterized but nothing has been yet explained as how to use such DAGs to
represent real problems. In particular, we have not shown how DAGs allow for the
combination of more than one representational dimension, the very motivation
to introduce MDLP. Here, we explore some particular classes of DAGs suitable
in the context of multi-agent systems.

Agents are situated and therefore need to represent and reason about infor-
mation they obtain directly by sensing the environment or communicated by
other agents. These agents, as well as the environment, evolve in time, i.e. the
incoming information is to be used as an update over existing knowledge. More-
over these agents do not have the same credibility, this being represented via a
hierarchy of predominance. In this section we explore DAGs that provide a way
to represent the evolution in time of knowledge with provenance in a community
of hierarchically related agents.

We start with an agent α, situated in a community of agents represented
by the greek letters β, γ, µ, ν. The multi-agent system is A = {α,β, γ, µ, ν}.
According to agent α’s hierarchical view of the world, and its position within
the community, all agents are related according to the DAG Dh = (A, Eh) where
Eh = {(ν, µ) , (β, µ) , (µ, γ) , (µ,α) , (γ,α)}, depicted in Fig. 1 a).

According to this DAG, agent α’s opinions prevail over those of every other
agent. However this need not be so. If, for example, one of these agent’s role was
to coordinate the community, it would be natural to exist an edge connecting α
to this agent.

In a static environment, this representation would be sufficient to determine
the semantics of α’s view of the community. In such a situation, the rules asserted
by each agent would constitute programs indexed by the DAG of Fig. 1 a), i.e.
Pβ , Pγ , Pµ, ...

On the Use of Multi-dimensional Dynamic Logic Programming 283

Fig. 1. a) Hierarchical Dimension b) Temporal Dimension

In a realistic scenario, where the dynamics of the system cannot be ignored,
there is no single program representing each agent. Rather, there is a sequence of
programs representing the knowledge of each agent at each time point. Suppose
these time points were represented by the set T = {0, 1, ..., c} (where by c we
mean the current time state), then, for example, the knowledge of agent β would
be represented by the set of programs {Pβ0 , Pβ1 , ..., Pβc}, indexed according to
the DAG Dβt = (Bt, Et) where Bt = {βt : t ∈ T} and Et = {(0, 1) , ..., (c − 1, c)}
as depicted in Fig. 1 b).

The full dynamic hierarchical scenario, comprising all agents, is then repre-
sented by the set of programs PD = {Pat : a ∈ A, t ∈ T} indexed by the DAG
D = (AT , E) where AT = {at : a ∈ A, t ∈ T}.

There still remains to be defined the relationships between all these programs,
i.e. the edges belonging to E. To this purpose, we will propose three basic ways
to systematically relate these programs.

4.1 Equal Role Representation

The first approach to combining the hierarchical and temporal dimensions is
accomplished by assigning equal roles to both precedence relations. In this sce-
nario, we maintain the temporal precedence relation within each agent, and the
hierarchical one within each time state, and we do not relate any two programs
that fall outside this scope, i.e. there is no precedence between a higher ranked
older program and a lower ranked newer one. Accordingly, the set of edges E, of
the DAG D contains the union of the following two sets of edges:

Time Dependence Edges (TDE) : {(at1 , at2) : a ∈ A, t1, t2 ∈ T, t1 < t2}.
Hierarchy Dependence Edges (HDE) : {(at, bt) : a, b ∈ A, t ∈ T, a < b}.

Intuitively, each rule can be used to reject any rule of a lower ranked agent
indexed by a time state equal or lower than its own. This situation is depicted
in Fig. 2.

Remark 1. Throughout this section, we have chosen a simplified representation
of the DAGs to make their interpretation easier. For this purpose, we introduce

284 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

Fig. 2. Equal Role Representation

new nodes (meta-nodes) encapsulating part of the DAG (detail). To obtain the
complete DAG from this simplification one needs to replace the meta-node with
the detail while replacing the edges entering the meta-node with a set of edges
entering each source node of the detail. Similarly, one needs to replace each node
departing from the meta-node with a set of edges departing from each sink of
the detail. In every DAG, we have added a new node labelled α′, which becomes
its single sink, and an empty program associated with it, indicating where the
semantics corresponding to agent α′s view of the overall system at time state
c can be determined. Also, since the semantics of MDLP is invariant wrt the
transitive closure of the DAG, we will often be omitting some edges that do not
affect such transitive closure.

Such a scenario can be found in legal reasoning, where the legislative agency
is divided conforming to a hierarchy of power, governed by the principle Lex
Superior (Lex Superior Derogat Legi Inferiori) according to which the rule issued
by a higher hierarchical authority overrides the one issued by a lower one, and
the evolution of law in time is governed by the principle Lex Posterior (Lex
Posterior Derogat Legi Priori) according to which the rule enacted at a later
point in time overrides the earlier one. Lex Superior is encoded by the Hierarchy
Dependence Edges and Lex Posterior is encoded the Time Dependence Edges.

Allowing rejection governed by time and hierarchy alone, potentiates contra-
diction inasmuch as there are many pairs of programs not related according to
this graph. If the purpose of our agency system were to perform some sort of
paraconsistent reasoning, such as in an agent based negotiation system trying to
reach an agreement, this would be the ideal scenario: contradiction would gen-
erate messages to the responsible agents to possibly review their positions. But
often this is not the case and we may want to reduce the amount of contradiction,
namely by establishing a skewed relation between the temporal and hierarchical
dimensions. Two approaches will be explored in the following subsections.

On the Use of Multi-dimensional Dynamic Logic Programming 285

Fig. 3. Time Prevailing Representation

4.2 Time Prevailing Representation

According to this representation, the DAG D contains, besides the Time and
Hierarchy Dependence Edges, the following edges:

Time Prevailing Edges (TPE) : {(at1 , bt2) : a, b ∈ A, t1, t2 ∈ T, t1 < t2}.

The intuitive reading is that any rule indexed by a more recent time state
overrides any older rule, independently of which agents these rules belong to.
This situation is depicted in Fig. 3.

This representation is particularly useful in very dynamic situations where
competence is distributed, i.e. when knowledge changes rapidly and different
agents will typically provide rules about different literals. This is so mainly
because any newer rule always overrides any older one. It means that if a situation
is completely defined by the rules issued by the community at a given time state,
one can simply ignore older rules.

The main drawback of this representation relates to the trustfulness of agents
in the community. It requires all agents to be fully trusted because, in allowing
all new rules to override all old ones, irrespective of their hierarchical position,
any untrustworthy lower ranked agent can override any higher ranked agent just
by issuing a rule at a later time state. This leads us to the next, alternative,
representation.

4.3 Hierarchy Prevailing Representation

According to this representation, the DAG D contains, besides the Time and
Hierarchy Dependence Edges, the following edges:

Hierarchy Prevailing Edges (HPE) : {(at1 , bt2) : a, b ∈ A, t1, t2 ∈ T, a < b}.

286 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

Fig. 4. Hierarchy Prevailing Representation

The intuitive reading is that any rule indexed by a higher ranked agent
overrides any lower ranked agent’s rule, independently of the time state it is
indexed by. This situation is depicted in Fig. 4.

This situation is useful, in contrast with the previous one, when some of the
agents are untrustworthy because a lower ranked agent rule, to be used, may
not be contradicted by any (even if older) higher ranked agent rule. The main
drawback is that one has to consider the entire history of all higher ranked agents
in order to accept/reject a rule provided by a lower ranked agent. However, a
number of techniques to reduce the size of a dynamic logic program are being
developed, useful for simplifying the time sequence of programs of each individual
agent. These are outside the scope of this paper.

Again in the context of Legal Reasoning, this scenario corresponds to the
one used in many Legislatures, where collisions between rules are governed by
the principle Lex Superior Priori Derogat Legi Inferiori Posterior, i.e. the rule
issued by a higher hierarchical authority at an earlier point overrides the one
issued by a lower hierarchical authority at a later point.

4.4 Representing Inter- and Intra-Agent Relationships

The representations set forth in the previous sub-sections refer to a community
of agents. Nevertheless, they can be used at different levels of abstraction to
represent macro and micro aspects of a multi-agent system, in a unified manner.
Let us suppose that agent α is composed of several sub-agents concurrently
performing dedicated tasks while reading and writing onto a common knowledge
structure. According to this view, agent α can now be seen as a community of
sub-agents Aα = {αa,αb,αd,αe}, related, for example, according to the DAG
Dα = (Aα, Eα) where Eα = {(αa,αb) , (αa,αe) , (αb,αd) , (αe,αd)} as in Fig.
5. The overall dynamic system, comprising all agents and sub-agents, is now
represented by the set of programs PD = {Pat : at ∈ AT } indexed by the DAG
D = (AT , E) where AT = {at : a ∈ A"{α}, t ∈ T} ∪ {at : a ∈ Aα, t ∈ T}.

On the Use of Multi-dimensional Dynamic Logic Programming 287

Fig. 5. Sub-agent Hierarchy

As for the relations between the programs, we propose a combination of the
time and hierarchy prevailing representations to relate the sub-agents and agents
respectively. As mentioned before, the time prevailing representation is the most
efficient but requires all agents to be trusted. One would expect an agent to
trust its component sub-agents. As for the representation of other agents, we
will opt for the hierarchy prevailing relation. Formally, the set of edges in the
DAG contains:

Time Prevailing Edges (TPE) : {(at1 , bt2) : a, b ∈ Aα, t1, t2 ∈ T, t1 < t2}, to
model the relationships between the sub-agents of α.

Hierarchy Prevailing Edges (HPE) : {(at1 , bt2) : a, b ∈ A, t1, t2 ∈ T, a < b},
to model the relationships between the agents of the system. Note that each
edge entering (resp. departing from) αt should be interpreted as a set of
edges entering (resp. departing from) each of {αat ,αbt ,αdt ,αet}.

This situation is depicted in Fig. 6. Note however that this is just one proposal
of the many possible existing combinations to represent such relations.

5 Conclusions

In this paper we have explored Multi-dimensional Dynamic Logic Programming
as a means to combine knowledge provenient from different agents, into a single
knowledge base point of view, with a precise declarative semantics. Depending
on the situation and the relations amongst the agents, we have envisaged several
classes of acyclic digraphs suitable for its encoding.

Based on the strengths of MDLP as a framework capable of simultane-
ously represent several aspects of a system in a dynamic fashion, and of LUPS
[2] as a powerful language to specify the evolution of such representations by
means of transitions, we have launched into the design of an agent architecture,
MINERVA [11]. It aims at providing, on a sound theoretical basis, a common
agent framework based on the strengths of Logic Programming, to allow the
combination of several non-monotonic knowledge representation and reasoning
mechanisms developed in recent years.

The use of Logic Programming for the overall endeavour is justified on the
ground of it providing a rigorous single encompassing theoretical basis for the

288 João Alexandre Leite, José Júlio Alferes, and Lúıs Moniz Pereira

Fig. 6. Inter- and Intra-Agent Relationship Representation

aforesaid topics, as well as an implementation vehicle for parallel and distributed
processing. Additionally, logic programming provides a formal high level flexible
instrument for the rigorous specification and experimentation with computa-
tional designs, making it extremely useful for prototyping, even when other,
possibly lower level, target implementation languages are envisaged.

Rational agents, in our opinion, will require an admixture of any number of
those reasoning mechanisms mentioned in the introduction, to carry out their
tasks. To this end, a MINERVA agent is based on a modular design where a
common knowledge base is concurrently manipulated by specialized sub-agents.
The common knowledge base contains all knowledge shared by more than one
sub-agent. It is conceptually divided in the following components: Capabilities,
Intentions, Goals, Plans, Reactions, Object Knowledge Base and Internal Be-
haviour Rules. Although conceptually divided in such components, all these mod-
ules share a common representation mechanism based on MDLP and LUPS,
the former to represent knowledge at each state and LUPS to represent the
state transitions, i.e. the common part of the agent’s behaviour. Every agent
is composed of specialized functionality related subagents, that execute various
specialized tasks. Examples of such subagents are those implementing the reac-
tive, planning, scheduling, belief revision, goal management, learning, dialogue
management, information gathering, preference evaluation, strategy, and diag-
nosis functionalities. These sub-agents contain a LUPS program encoding their
behaviour, and interfacing with the Common Knowledge Base. Whilst some of

On the Use of Multi-dimensional Dynamic Logic Programming 289

those sub-agent’s functionalities are fully specifiable in LUPS, others require
private specialized procedures where LUPS serves as an interface language.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000. Short version titled Dynamic Logic Programming appeared
in Procs. of KR-98.

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence, 2001. To appear.
Short version appeared in Procs of LPNMR-99, LNAI-1730.

3. M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic program-
ming and multi-agent system: A synergic combination for applications and seman-
tics. In The Logic Programming Paradigm - A 25-Year Perspective. Springer, 1999.

4. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In Procs. of ICLP-99. MIT Press, 1999.

5. P. Dell’Acqua and L. M. Pereira. Updating agents. In Procs of MAS-99, ICLP-99
Ws., 1999.

6. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates of
logic programs. In Procs. of JELIA-00, LNAI-1919. Springer, 2000.

7. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Procs.
of ICLP-88. MIT Press, 1988.

8. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

9. E. Lamma, F. Riguzzi, and L. M. Pereira. Strategies in combined learning via logic
programs. Machine Learning, 38(1/2):63–87, 2000.

10. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic logic
programming. In Procs. of CLIMA’00, pages 17–26, 2000.

11. J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA - a dynamic logic
programming agent architecture. In Procs. of ATAL’01, 2001.

12. J. A. Leite, F. C. Pereira, A. Cardoso, and L. M. Pereira. Metaphorical mapping
consistency via dynamic logic programming. In Procs. of AISB’00. AISB, 2000.

13. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In Procs. of KR-92. Morgan-Kaufmann, 1992.

14. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and
well-founded semantics for normal LP. In Procs. of LPNMR’97, volume 1265 of
LNAI. Springer, 1997.

15. P. Quaresma and I. P. Rodrigues. A collaborative legal information retrieval system
using dynamic logic programming. In Procs. of ICAIL-99. ACM Press, 1999.

16. F. Sadri and F. Toni. Computational logic and multiagent systems: A roadmap,
1999. Available from http://www.compulog.org.

17. C. Sakama and K. Inoue. Updating extended logic programs through abduction.
In Procs. of LPNMR-99. Springer, 1999.

18. XSB-Prolog. The XSB logic programming system, version 2.0, 1999. Available at
http://www.cs.sunysb.edu/ sbprolog.

19. Y. Zhang and N. Foo. Updating logic programs. In Procs. of ECAI’98. Morgan
Kaufmann, 1998.

