
Logic Programming for Evolving Agents

J. J. Alferes1, A. Brogi2, J. A. Leite1, and L. M. Pereira1

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Logic programming has often been considered less than ade-
quate for modelling the dynamics of knowledge changing over time. In this
paper we describe Evolving Logic Programs (EVOLP), a simple though quite
powerful extension of logic programming, which allows for modelling the dy-
namics of knowledge bases expressed by programs, and illustrate its usage
in modelling agents whose specifications may dynamically change. From the
syntactical point of view, evolving programs are just generalized logic pro-
grams (i.e. normal LPs plus default negation in rule heads too), extended
with (possibly nested) assertions, whether in heads or bodies of rules. From
the semantical point of view, a model-theoretic characterization is offered of
the possible evolutions of such programs. These evolutions arise both from
self (i.e. internal to the agent) updating, and from concomitant external
updating originating in the environment. To illustrate the usage and power
of EVOLP, and its ability to model agents’ specifications, we elaborate on
variations in the modelling of a Personal Assistant Agent for e-mail man-
agement.

1 Introduction

The agent paradigm, commonly implemented by means of imperative languages
mainly for reasons of efficiency, has recently increased its influence in the research
and development of computational logic based systems (see e.g. [15]).

Since efficiency is not always the crucial issue, but clear specification and cor-
rectness are, Logic Programming and Non-monotonic Reasoning have been brought
back into the spotlight. Indeed, the Logic Programming (LP) paradigm provides
a well-defined, general, integrative, encompassing, and rigorous framework for sys-
tematically studying computation, be it syntax, semantics, procedures, or attending
implementations, environments, tools, and standards. Furthermore, LP approaches
problems, and provides solutions, at a sufficient level of abstraction so that they
generalize from problem domain to problem domain. This is afforded by the very
nature of its foundations in logic, both in substance and method, and constitutes
one of its major assets. To this accrues the recent significant improvements in the ef-
ficiency of Logic Programming implementations for Non-monotonic Reasoning [12,
13, 16].

While LP can be seen as a good representation language for static knowledge,
if we are to move to a more open and dynamic environment, typical of the agency
paradigm, we must consider ways and means of representing and integrating knowl-
edge updates from external sources, but also inner source knowledge updates (or
self updates). In fact, an agent not only comprises knowledge about each state, but

also knowledge about the transitions between states. The latter may represent the
agent’s knowledge about the environment’s evolution, coupled to its own behaviour
and evolution.

To address this concern, the authors, with others, first introduced Dynamic Logic
Programming (DLP) [2]. There, they studied and defined the declarative and oper-
ational semantics of sequences of logic programs (or dynamic logic programs). [6]
addressed similar concerns. According to DLP, knowledge is conveyed by a sequence
of theories (encoded as generalized logic programs) representing different states of
the world. Each of the states may contain mutually contradictory and overlapping
information. The role of DLP is to take into account the mutual relationships extant
between different states to precisely determine the declarative and the procedural
semantics of the combined theory comprised of all individual theories and the way
they relate.

Now, since logic programs can describe well knowledge states and, we have just
mentioned above, also sequences of updating knowledge states, it’s only fit that logic
programs be utilized to describe the transitions between knowledge states as well.
This can be achieved by associating with each state a set of transition rules to obtain
the next state. However, till recently, LP had sometimes been considered less than
adequate for modelling the dynamics of knowledge change over time. To overcome
this limitation, languages like LUPS [3], EPI [5] and KABUL [9] were defined. But
both these languages, a bit against the spirit of LP (whose pure programs have
no keywords), are too verbose, and that makes them complex and difficult to prove
properties of their programs. Moreover, each keyword encodes a high-level behaviour
for the addition of rules, this constituting a problem in case one wants to describe
a different, unforeseen, high-level behaviour.

In a previous work [1] we took the opposite approach towards the design of a
new language, EVOLP. There, we analyze what was basic in the aforementioned
languages, what they did offer that was new compared to classical LP, and then
opted to start anew, and only minimally add constructs to LP so as to account
for the newly required abilities needed for evolution through external updating
and internal self updating. EVOLP provides a simpler and at once more general
formulation of logic program updating, and runs closer to traditional LP doctrine.
And it does so in a precise way, with a well-defined semantics of possible program
evolutions through updates. We now move to show how EVOLP can be utilized to
model the specification of evolving agents.

Indeed, EVOLP generalizes LP to allow specification of a program’s own evo-
lution, in a single unified way, by permitting rules to indicate assertive conclusions
in the form of program rules. Such assertions, whenever they belong to a model of
the program P , can be employed to generate an updated version of P . This pro-
cess can then be iterated on the basis of the new program. Whenever the program
semantics affords several possible program models, evolution branching will occur,
and several evolution sequences are made possible. This branching can be used to
specify incomplete information about a situation. Moreover, the ability of EVOLP
to nest rule assertions within assertions allows rule updates to be themselves up-
dated down the line, conditional on each evolution strand. The ability to include
assertive literals in rule bodies allows for looking ahead on some program changes
and acting on that knowledge before the changes occur.

In all, EVOLP can adequately express the semantics resulting from successive
updates to logic programs, considered as incremental specifications of agents, and
whose effect can be contextual. In contradistinction to other approaches, it automat-
ically and appropriately deals, via its update semantics, with the possible contra-
dictions arising from successive specification changes and refinements. Furthermore,
the EVOLP language can express self-modifications triggered by the evolution con-
text itself, present or future. Additionally, foreseen updates not yet executed can
automatically trigger other updates, and moreover updates can be nested, so as
to determine change both in the next state and in other states further down an
evolution strand.

It is the goal of this paper to show that the attending formulation of EVOLP
provides a good firm formal basis in which to express, implement, and reason about
dynamic knowledge bases of evolving agents, and to show that it goes beyond some
of the limitations of other approaches. To do this, in the ensuing section we present,
with motivating examples, the formal syntax and semantics of EVOLP. Immediately
afterwards we make our case by presenting a detailed and protracted application
example of EVOLP usage, employing it to define an e-mail Personal Assistant Agent,
whose executable specification evolves by means of external and of internal dynamic
updates, both of which can be made contingent on the evolution context in which
they occur. We end with a section comprising discussion, comparisons with related
application work, open issues, and themes of future developments.

2 Evolving logic programs

2.1 Language

As mentioned in the Introduction, we are interested in a logic programming lan-
guage, EVOLP, that caters for the evolution of an agent’s knowledge, be it caused
by external events, or by internal requirements for change. Above all, we desire to
do so by adding as few new constructs to traditional logic programming as possible.

What is required to let logic programs evolve? For a start, one needs some
mechanism for letting older rules be supervened by more recent ones. That is, we
must include a mechanism for deletion of previous knowledge along the agent’s
knowledge evolution. This can be achieved by permitting negation not just in rule
bodies, as in normal logic programming, but in rule heads as well1.

Moreover, one needs a means to state that, under some conditions, some new rule
or other is to be added to the program. We do so in EVOLP simply by augmenting
the language with a reserved predicate assert/1, whose sole argument is itself a full-
blown rule, so that arbitrary nesting becomes possible. This predicate can appear
both as rule head (to impose internal assertions of rules) as well as in rule bodies
(to test for assertion of rules). Formally:

Definition 1. Let L be any propositional language (not containing the predicate
assert/1). The extended language Lassert is defined inductively as follows: – All
propositional atoms in L are propositional atoms in Lassert; – If each of L0, . . . , Ln

1 A well known extension to normal logic programs [10].

is a literal in Lassert (i.e. a propositional atom A or its default negation notA),
then L0 ← L1, . . . , Ln is a generalized logic program rule over Lassert; – If R is a
rule over Lassert then assert(R) is a propositional atom of Lassert; – Nothing else
is a propositional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of gen-
eralized logic program rules over Lassert.

Example 1. Examples of EVOLP rules are:

assert(not a ← b) ← not c. a ← assert(b ←).
assert(assert(a ←) ← assert(b ← not c), d) ← not e.

Intuitively, the first rule states that, if c is false, then the rule not a ← b must
be asserted in the agent’s knowledge base; the 2nd that, if the fact b ← is going to
be asserted in the agent’s knowledge base, then a is true; the last states that, if e is
false, then a rule must be asserted stating that, if d is true and the rule b ← not c
is going to be asserted then the fact a ← must be asserted.

This language alone is enough to model the agent’s knowledge base, and to
cater within it for internal updating actions changing it. But self-evolution of a
knowledge base is not enough for our purposes. We also want the agent to be aware
of events that happen outside itself, and desire the possibility too of giving the
agent update “commands” for changing its specification. In other words, we wish
a language that allows for influence from the outside, where this influence may be:
observation of facts (or rules) that are perceived at some state; assertion commands
directly imparting the assertion of new rules on the evolving program. Both can be
represented as EVOLP rules: the former by rules without the assert predicate in
the head, and the latter by rules with it. Consequently, we shall represent outside
influence as a sequence of EVOLP rules:
Definition 2. Let P be an evolving program over the language L. An event se-
quence over P is a sequence of evolving programs over L.

2.2 Semantics

In general, we have an EVOLP program describing an agent’s initial knowledge
base. This knowledge base may already contain rules (with asserts in heads) that
describe some forms of its own evolution. Besides this, we consider sequences of
events representing observation and commands arising from the outside. Each of
these events in the sequence are themselves sets of EVOLP rules, i.e. EVOLP pro-
grams. The semantics issue is thus that of, given an initial EVOLP program and
a sequence of EVOLP programs as events, to determine what is true and what is
false after each of those events.

More precisely, the meaning of a sequence of EVOLP programs is given by a set
of evolution stable models, each of which is a sequence of interpretations or states.
The basic idea is that each evolution stable model describes some possible evolution
of one initial program after a given number n of evolution steps, given the events
in the sequence. Each evolution is represented by a sequence of programs, each
program corresponding to a knowledg state.

The primordial intuitions for the construction of these program sequences are
as follows: regarding head asserts, whenever the atom assert(Rule) belongs to an
interpretation in a sequence, i.e. belongs to a model according to the stable model
semantics of the current program, then Rule must belong to the program in the
next state; asserts in bodies are treated as any other predicate literals.

The sequences of programs are then treated as in DLP, where the most recent
rules are set in force, and previous rules are valid (by inertia) insofar as possible,
i.e. they are kept for as long as they do not conflict with more recent ones. In
DLP, default negation is treated as in stable models of normal [7] and generalized
programs [10]. Formally, a dynamic logic program is a sequence P1 ⊕ · · ·⊕ Pn (also
denoted

⊕
P, where P is a set of generalized logic programs indexed by 1, . . . , n),

and its semantic is determined by2:

Definition 3. Let
⊕

{Pi : i ∈ S} be a dynamic logic program over language L, let
s ∈ S, and let M be a set of propositional atoms of L. Then:

Defaults(M)= {notA ← . |$ ∃A ← Body ∈ Pi(1 ≤ i ≤ s) : M |= Body}
Rejects(M) = {L0 ← Body ∈ Pi | ∃ notL0 ← Body′ ∈ Pj , i < j ≤ s ∧ M |= Body′}

where A is an atom, notL0 denotes the complement w.r.t. default negation of the
literal L0, and both Body and Body′ are conjunctions of literals.

Definition 4. Let P =
⊕

{Pi : i ∈ S} be a dynamic logic program over language
L. A set M of propositional atoms of L is a stable model of P at state s ∈ S iff:

M ′ = least
([⋃

i≤s
Pi − Rejects(M)

]
∪ Defaults(M)

)

where M ′ = M ∪ {not A | A $∈ M}, and least(.) denotes the least model of the
definite program obtained from the argument program by replacing every default
negated literal notA by a new atom not A.

Before presenting the definitions that formalize the above intuitions, let us show
some illustrative examples.

Example 2. Consider an initial program P , and that all the events are empty
EVOLP programs:

a. assert(b ← a) ← not c. c ← assert(not a ←). assert(not a ←) ← b.

The (only) stable model of P is I = {a, assert(b ← a)} and it conveys the
information that program P is ready to evolve into a new program P ⊕ P2 by
adding rule (b ← a) at the next step, i.e. in P2. In the only stable model I2 of
the new program P ⊕ P2, atom b is true as well as atom assert(not a ←) and also
c, meaning that P ⊕ P2 is ready to evolve into a new program P ⊕ P2 ⊕ P3 by
adding rule (not a ←) at the next step, i.e. in P3. Now, the (negative) fact in P3

conflicts with the fact in P , and so this older fact is rejected. The rule added in P2

remains valid, but is no longer useful to conclude b, since a is no longer valid. So,
assert(not a ←) and c are also no longer true. In the only stable model of the last
sequence both a, b, and c are false.
2 For more details, the reader is referred to [2].

This examples simplifies the problem of defining the semantics in that it does
not consider the influence of events from the outside. In fact, as stated above, all
those events are empty. How to treat outside events? The idea is very simple: add
the rules that came in the i-th event to the program of state i, and calculate as in
the example above.

Example 3. In the example above, suppose that at state 2 there is an event from
the outside with the rules, r1 and r2, assert(d ← b) ← a and e ←. Since the only
stable model of P is I = {a, assert(b ← a)} and there is an outside event at state
2 with r1 and r2, the program should evolve into the new program obtained by
updating P not only with the rule b ← a but also with those rules, i.e. P ⊕ {b ←
a; assert(d ← b) ← a; e ←}. The only stable model I2 of this program is now
{b, assert(not a ←), assert(d ← b), e}.

If we keep with the evolution of this program (e.g. via some additional subsequent
empty events), in the definition of the semantics we will have to decide what we want
to do, in these subsequent states, about the event received at state 2. Intuitively, we
want the rules coming from the outside, be they observations or assertion commands,
to be understood as events given at a state, but which are not to persist by inertia.
I.e. if R belongs to some set Si of an event sequence, this means that R was perceived
or given after i − 1 evolution steps of the program, and that this perception event
is not to be assumed by inertia from then onward. In the example, it means that if
we have perceived e at state 2, then e and all its possible consequences should be
true at that state. But the truth of e should not persist into the subsequent state
(unless e is yet again perceived from the outside, of course). In other words, when
constructing subsequent states, the rules coming from events in state 2 should no
longer be available and considered.
Definition 5. An evolution interpretation of length n of an evolving program P
over L is a finite sequence I = 〈I1, I2, . . . , In〉 of sets of propositional atoms of
Lassert. The evolution trace associated with an evolution interpretation I is the
sequence of programs 〈P1, P2, . . . , Pn〉 where:

P1=P and Pi={R | assert(R) ∈ Ii−1} for each 2 ≤ i ≤ n.

Definition 6. An evolution interpretation of length n, 〈I1, I2, . . . , In〉, with evolu-
tion trace 〈P1, P2, . . . , Pn〉, is an evolution stable model of P given 〈E1, E2, . . . , Ek〉,
with n ≤ k, iff for every i (1 ≤ i ≤ n), Ii is a stable model at state i of P1⊕P2 · · ·⊕
(Pi ∪ Ei).

Notice that the rules coming from the outside indeed do not persist by inertia. At
any given step i, the rules from Ei are added and the (possibly various) Ii obtained.
This determines the programs Pi+1 of the trace, which are then added to Ei+1 to
determine the models Ii+1.

The definition assumes the whole sequence of events given a priori. In fact this
need not be so because the events at any given step n only influence the models in
the evolution interpretation from n onward:

Proposition 1. Let M = 〈I1, . . . , In〉 be an evolution stable model of P given
an event sequence 〈E1, . . . , En〉. Then, for any m > n and any sets of events

En+1, . . . , Em, M is also an evolution stable model of P given an event sequence
〈E1, . . . , En, En+1, . . . , Em〉.

Being based on stable models, it is clear that EVOLP programs may have various
evolution models of a given length, as well as no evolution stable models at all:

Example 4. Consider P , and 3 empty events:

assert(a ←) ← not assert(b ←), not b. assert(b ←) ← not assert(a ←), not a.

The reader can check that there are 2 evolution stable models of length 3, each
representing one possible evolution of the program after those empty events:

〈{assert(a ←)}, {a, assert(a ←)}, {a, assert(a ←)}〉
〈{assert(b ←)}, {b, assert(b ←)}, {b, assert(b ←)}〉

Since various evolutions may exist for a given length, evolution stable models
alone do not determine a truth relation. But one such truth relation can be defined,
as usual, based on the intersection of models:

Definition 7. Let P be an EVOLP program and E be an event sequence of length
n, both over the language L. A set of propositional atoms M over Lassert is a Stable
Model of P given E iff there exists an evolution stable model of P given E with length
n, where the last interpretation is M .

We say that propositional atom A of L is: true given E iff all stable models of
P given E have A; false given E iff no stable model of P given E has A; unknown
given E otherwise.

With this definition of stable models given event sequences, we can now state
that the semantics of EVOLP is, in fact, a proper generalization of the stable models
semantics of normal and generalized logic programs, in the following sense:

Proposition 2. Let P be a generalized logic program (without predicate assert/1)
over a language L, and E be any sequence with n ≥ 0 of empty EVOLP programs.
Then, M is a stable model of P given E iff the restriction of M to L is a stable
model of P (in the sense of [7, 10]).

The possibility of having various stable models after an event sequence is of
special interest for using EVOLP as a language for reasoning about possible evo-
lutions of an agent’s knowledge base. However, as we shall better discuss later, to
implement agents that execute actions it might be important to guarantee that, for
any given event sequence, no “branching” occurs, i.e. a single stable model exists.

Definition 8. An EVOLP program P is deterministic given event sequence E iff
there exists only one stable model of P given E.

The definition of conditions over programs and sequences to guarantee deter-
minism is beyond the scope of this paper. Also beyond the scope is the issue of how
to implement EVOLP, though an implementation already exists, available from
http://centria.fct.unl.pt/˜jja/updates/

3 E-mail Agent

Forthwith,EVOLP is employed to specify several features of a Personal Assistant
agent for e-mail management, able to perform a few basic actions such as send-
ing, receiving, and deleting messages, as well as moving them between folders, and
to perform tasks such as filtering spam messages, storing messages in the appro-
priate folders, sending automatic replies, notifying the user and/or automatically
forwarding specific messages, all of which dependant on user specified criteria. Some
existing commercial systems already provide basic mechanisms to specify such tasks
(e.g.[14, 8, 11]). If we expect the user to specify once and for all a consistent set of
policies that trigger those actions then, such commercial systems would be all that
is needed. But reality tells us otherwise: one observes that the user, every now
and then, will discover new conditions under which incoming messages should be
deleted, and under which messages now being deleted should not. If we allow the
user to specify both the positive instances of such policies (e.g. should be deleted)
and negative ones (e.g. should not be deleted), soon the union of all such rules be-
comes inconsistent, and we cannot expect the user to debug the set of rules so as to
invalidate all the old rules that should no longer be used due to more recent ones
that countervene them. We should allow the user to simply state whatever new is
to be done, and let the agent automatically determine which of the old rules may
persist and which not. We are not presupposing the user is contradictory, but just
that he has updated his profile, something reasonable. For example, suppose he is
tired of receiving spam messages advertising credit and tells the agent to delete
all incoming messages whose subject contains the word credit. Later he finds out
that important messages from his accountant are being deleted because the sub-
ject mentions credit. He should simply tell the agent not to delete such incoming
messages from his accountant, and the agent should automatically determine that
such messages are not to be deleted, in spite of the previous rule. But if we just
evaluate the union of all specified policies, we obtain a contradiction. Next we show
how EVOLP deals with these contradictions and automatically solves them with
clear and precise semantics.

It would be important for the personal e-mail assistant agent to allow the user
to specify tasks not as simple as just performing actions whenever some conditions
are met. Suppose one is organizing a conference and wants to automate part of
the communication with referees and authors. Basic tasks include automatic replies
to authors whenever abstracts are submitted, etc. But more complex tasks can be
conceived that we wish the agent to take care of, such as: waiting for messages from
referees accepting to review a paper and, once the message arrives, forwarding to
him a message with the paper if it has arrived, otherwise waiting till it arrives and
forwarding it then; having different policies to deal with papers before and after
the deadline; permitting the specification of extensions to the deadline on a case by
case manner, and dealing with each of those papers differently; updating the initial
specification for those policies; etc.

Throughout the remainder of this Section, we illustrate some features of EVOLP
for these tasks. Instead of exploring all the basic features of the agent, many of
which can be found in agents of the kind in the literature, we concentrate on those
features directly concerned with the evolving specification of the agent, namely the

representation of the dynamic user profile, and of the dynamic specification of its
actions and their effects. The way to specify other common simple tasks can easily
be inferred from the exposition. We also abstract from the way actions are actually
executed. Often we address some of the issues in what does not seem like the most
natural way, solely with the purpose of illustrating features of EVOLP, because it
is difficult to show all of its capabilities in a single example. For lack of space, we do
not show wholly the stable models, but rather single out their main characteristics
for our purposes.

We start with a program that contains the initial specification of our agent. It
consists of the rules r1 through r10, i.e. P = {〈r1〉 , 〈r2〉 , . . . , 〈r10〉}.

r1 : time (1) ← r2 : assert (time (T + 1)) ← time (T)
r3 : assert (not time (T)) ← time (T)
r4 : assert (msg (M, F, S, B, T)) ← newmsg (M, F, S, B) , time (T) ,not delete (M)
r5 : assert (in (M, inbox)) ← newmsg (M, , ,) ,not move (M, F) ,not delete (M)
r6 : assert (in (M, Fto)) ← newmsg (M, , ,) , move (M, Fto)
r7 : assert (in (M, Fto)) ← move (M, Ffrom, Fto) , in (M, Ffrom)
r8 : assert (not in (M, Ffrom)) ← move (M, Ffrom, Fto) ,not in (M, Fto)
r9 : assert (not in (M, F)) ← delete (M) , in (M, F)
r10 : assert (sent (To, S, B, T)) ← send (To, S, B) , time(T)

The first three encode a clock which for now will be used to time-stamp all incom-
ing messages. Note such time-stamping is not really required, but we thought it use-
ful to show how a clock can be encoded in EVOLP. Rule r4 specifies that all incom-
ing messages, represented by atom newmsg (MsgId, From, Subject, Body), if not
specified to be deleted, represented by literal not delete (MsgId), should be time-
stamped and asserted as a fact of the form msg (MsgId, From, Subject, Body, T ime).
Rule r5 specifies that all incoming messages, if not specified to be deleted, and not
specified to be moved to a specific folder represented by not move (MsgId, Folder),
should be stored in the folder inbox. We use in (MsgId, Folder) to represent that
the message MsgId is in folder Folder. Rule r6 specifies the effect of moving an in-
coming message to a specific folder. Rule r7 and r8 encode the effect of moving
a message between folders, represented by move (MsgId, Folderfrom, Folderto).
Note no problem exists with specifying that a message is to be moved between
the same folder. Rule r9 specifies the effect of the action delete, represented by
delete (MsgId). This action causes the message to be removed from its current
folder. Finally, rule r10 encodes that sending a message, represented by the atom
send (To, Sbject, Body), causes the message to be sent, hereby represented by the
assertion of the fact sent (To, Subject, Body, T ime).

At this initial state, the stable model only contains time (1). With this initial
specification, since we do not yet have any rules to specify which incoming messages
are to be deleted and which are to be moved, every message received is moved to
folder inbox. Also, at every state transition, the clock increases its value. Suppose
we receive an update containing three messages i.e. an event E1 with the facts:

newmsg (1, “a@a”, “credit”, “some spam text”)
newmsg (2, “accountant@c”, “hello”, “some text”)
newmsg (3, “b@d”, “free credit”, “more spam”)

After this update, the stable model contains:

assert (msg (1, “a@a”, “credit”, “some spam text”, 1)) , assert (in (1, inbox))
assert (msg (2, “accountant@c”, “hello”, “some text”, 1)) , assert (in (2, inbox))
assert (msg (3, “b@d”, “free credit”, “more spam”, 1)) , assert (in (3, inbox))
time (1) , assert (not time (1)) , assert (time (2))

With this, we construct P2 containing the facts:

msg (1, “a@a”, “credit”, “some spam text”, 1) , in (1, inbox) ,not time (1)
msg (2, “accountant@c”, “hello”, “some text”, 1) , in (2, inbox)
msg (3, “b@d”, “free credit”, “more spam”, 1) , in (3, inbox) , time (2)

indicating that the agent’s knowledge base has been updated so as to store all
messages, properly time-stamped, in folder inbox. Moreover the clock was updated
to its new value.

At this point, the user becomes upset with all the spam messages being received
and decides to start deleting them on arrival. For this he updates the agent by
asserting a general rule specifying that spam messages should be deleted, encoded
as the assertion of rule r11, and he also updates the agent with a definition of what
should be considered a spam message, in this case those whose subject contains the
word “credit”, encoded by the assertion of rule r12.

r11 : delete (M) ← newmsg (M,F, S,B) , spam (F, S,B)
r12 : spam (F, S,B) ← contains (S, “credit”)

Throughout, consider the literal contains (S, T) true whenever T is contained in S,
whose specification we omit for brevity. The assertion of these two rules, together
with an update so as to delete messages 1 and 3, constitutes event E2:

E2 = {assert (〈r11〉) , assert (〈r12〉) , delete (1) , delete (3)}

After this update, the stable model contains:
assert (〈r11〉) , assert (〈r12〉) , delete (1) , delete (3) , assert (not in (1, inbox))
assert (not in (3, inbox)) , assert (time (3)) , assert (not time (2))

together with those propositions of the form msg/5, time/1, in/2, representing the
existing messages, their locations, and the current internal time3.

From this model we construct program P3, which contains r11, r12, together
with the facts time (3), not time (2), not in (1, inbox) and not in (3, inbox).

Suppose we receive an update containing three messages, i.e. an event E3 with
the facts:

newmsg (4, “d@a”, “free credit card”, “spam spam spam”)
newmsg (5, “accountant@c”, “credit”, “got your credit”)
newmsg (6, “girlfriend@d”, “hi”, “theater tonight?”)

After this update, the stable model contains:

spam (F, “free credit card”, B) , assert (in (3, inbox)) , delete (4) , delete (5) ,
assert (msg (6, “girlfriend@d”, “hi”, “theater tonight?”, 3)) , spam (F, “credit”, B)
3 From now on, we omit all those propositions and assertions concerning the clock, unless

relevant for the presentation.

Since messages 4 and 5 are considered spam messages, they are both set for dele-
tion and thus are not asserted. Only message 6 is asserted. From this model we
construct the program P4 which contains facts not time (3), in (6, inbox), time (4),
and msg (6, “girlfriend@d”, “hi”, “theater tonight?”, 3).

Next we receive an update containing a single message i.e. an event E4 with the
fact4:

newmsg (7, “accountant@c”, “are you there?”, “...”)

This message made the user aware that previous messages from his accountant
had been deleted as spam. The user then decides to update the definition of spam,
stating that messages from his accountant are not spam. He does this by asserting
rule r13 (below). Note this rule is contradictory with rule r12, for messages from the
accountant with subject containing the word “credit”. But EVOLP automatically
detects such contradictions and removes them by taking the newer rule to be an
update of any previously existing ones, and we thus expect such messages not to be
deleted. Now the user is appointed conference chair and decides to program the agent
to perform some attending tasks. Henceforth, messages with the subject “abstract”
should be moved to folder abstracts, encoded by rule r14, those containing the word
“cfp” in their subjects should be moved to folder cfp (r15). Furthermore, as the user
is accustomed to only looking at his inbox folder, he wishes to be notified whenever
an incoming message is immediately stored at a folder other than inbox. This is
accomplished with rule r16, which renders notify (M) true in such cases. Mark
that notify/1 represents an action with no internal effect on the agent’s knowledge
base. The agent must also send a message acknowledging receipt of every abstract
(r17). And since the user will be away from his computer, he decides to forward
urgent mail to his new temporary address. This could be accomplished by simply
stating that those messages should be sent to his new address. But he decides to
create a new internal action, represented by forward (MsgId, To), whose effect is
to forward the newly incoming message MsgId to the address To, thus making
it easier to specify future forwarding options. The specification of this action is
achieved by asserting rule r18. Then, based on this action, he can specify that all
urgent messages be forwarded to his new address, by asserting rule r29. Finally,
the user realizes that the messages that have been deleted are not being effectively
deleted, but rather only removed from their folders, i.e. msg (M,F, S,B, T) is still
true, except that there is no in (M,) that is true. He then decides to create another
internal action, purge, whose effect is that of making false all those messages that
have been previously removed from all folders by the action delete. The specification
of this action is obtained by asserting rule r20.
r13 : not spam (F, S, B) ← contains (F, “accountant”)
r14 : move (M, abstracts) ← newmsg (M, F, S, B) , contains (S, “abstract”)
r15 : move (M, cfp) ← newmsg (M, F, S, B) , contains (S, “cfp”)
r16 : notify (M) ← newmsg (M, F, S, B) ,not assert (in (M, inbox)) , assert (in (M, Fldr))
r17 : send (From, S, “Thanks”) ← newmsg (M, F, S, B) , contains (S, “abstract”)
r18 : send (To, S, B) ← forward (M, To) , newmsg (M, F, S, B)
r19 : forward (M, “b@domain”) ← newmsg (M, , “urgent”,)
r20 : assert (not msg (M, F, S, B, T)) ← purge, msg (M, F, S, B, T) ,not in (M,)

4 At this state we omit the model and update.

The assertion of all these rules constitutes event E5 = {assert (〈r13〉), assert (〈r14〉),
assert (〈r15〉), assert (〈r16〉), assert (〈r17〉), assert (〈r18〉), assert (〈r19〉), assert (〈r20〉)}

At the subsequent update the agent receives more messages, performs a purge,
moves message 6 to the private folder, and deletes message 6, encoded by the fol-
lowing facts belonging to E6:

newmsg (9, “a2@e”, “abstract”, “abs...”) , newmsg (10, “a3@e”, “abstract”, “abs...”)
newmsg (13, “accountant@c”, “fwd:credit”, “...”) , newmsg (11, “x@d”, “urgent”, “...”)
move (6, inbox, private) , delete (6) , purge, newmsg (8, “a1@e”, “abstract”, “abs...”)
newmsg (12, “accountant@c”, “fwd:credit”, “...”)

After this update, the stable model contains, for messages 1 and 3, as a result
of the purge, assert (not msg (M,F, S,B, T)); assert (in (M,abstracts)) for mes-
sages 8, 9 and 10, forward (11, “b@domain”) and the corresponding send action,
i.e. send (“b@domain”, “urgent”, “...”), and, concerning message 6, the stable model
contains assert (in (6, private)) and delete (6). There are also notifications for mes-
sages 8, 9, 10 and 14. Next the user decides that whenever a message is both deleted
and moved, the deletion action prevails, i.e. it should not be asserted into the folder
specified by the move action. This is encoded by the assertion of rule r21 (below).
Furthermore, the user decides to update his spam rules to avoid all the spam his
accountant has been forwarding to him (r22). Finally, because he wants the agent
to deal with communication with the referees, he sets up the assignments between
referees and submitted papers (r23 − r28). The rules and event E7 are:

r21 : not assert (in (M, Fto)) ← move (M, Ffrom, Fto) , delete (M)
r22 : spam (F, S, B) ← contains (S, “credit”) , contains (S, “Fwd”)
r23 : assign (“paper1”, “ref2@b”) r24 : assign (“paper2”, “ref2@b”)
r25 : assign (“paper2”, “ref3@c”) r26 : assign (“paper3”, “ref3@c”)
r27 : assign (“paper3”, “ref1@a”) r28 : assign (“paper1”, “ref1@a”)

E7 =
{

assert (〈r21〉) , assert (〈r22〉) , assert (〈r23〉) , assert (〈r24〉)
assert (〈r25〉) , assert (〈r26〉) , assert (〈r27〉) , assert (〈r28〉)

}

After all these rules have been asserted, and at the subsequent update, the
agent receives a spam message from the accountant, performs a move and a delete
of message 12 to test if the new rule is working, and sends messages to the referees
inviting them to review the corresponding papers, encoded by the following facts
and rules that belong to E8:

newmsg (15, “accountant@c”, “fwd:credit”, “...”) , move (12, inbox, folder1)
delete (12) send (R, PId, “invitation to review”) ← assign (PId, R)

At this point, we invite the reader to check that message 15 was rejected, and that
message 12 was indeed deleted. It is important to note that the messages to the
referees are only sent once. This is so because the rule belonging to E8 is not an
assertion and thus never becomes part of the agent’s knowledge base. It is only used
to determine the stable model at this state, and never used again.

Subsequently the user decides to specify the way the agent should deal with
communication with authors and reviewers. Forthwith, we show how some of these
tasks could be programmed. Upon receipt of a message from a reviewer accepting
to review a given paper, the paper should be sent to the referee once it arrives. This
could be specified by rule r29 (below) which specifies the assertion of a rule that

sends the paper to the referee, but this assertion should only take place after the
referee accepts the task. If the paper has already been received when the reviewer
accepts the task, then it should be sent immediately (r30). Of course, if papers are
received after some deadline, and unless some extension was given for a particular
paper, then they should be rejected and the author so notified. This is encoded by
rules r31 and r32 which are asserted when the deadline is reached, even though it
has not been set yet. Rule r31 sends a message to the author while rule r32 prevents
the paper from being sent to the referee. Finally, the user asserts two rules to deal
with deadline extensions on a paper by paper basis. Whenever the user includes an
event of the form dline (PId,Dur) in an update, he is giving an extension of the
deadline concerning paper PId and with duration Dur. This immediately causes
ext (PId) to be asserted, preventing the paper from being rejected. Concurrently,
by means of rule r34, a rule is asserted that will render ext (PId) false once the
deadline plus the extension is reached, after which the paper is rejected.
r29 : assert (send (R, S, B) ← newmsg (M, F, S, B) , contains (S, PId) , assign (PId, R)) ←

newmsg (M, R, PId, B) , contains (B, “accept”)
r30 : send (R, PId, B) ← newmsg (M, R, PId, B1) , contains (B1, “accept”) , msg (M1, F, PId, B, T)
r31 : assert (send (F, S, “too late”) ← newmsg (M, F, S, B) , contains (S, PId) ,not ext (PId)) ←

time (T) , deadline (T)
r32 : assert (not send (Referee, S, B) ← newmsg (M, F, S, B) , contains (S, PId) ,not ext (PId)) ←

time (T) , deadline (T)
r33 : assert (ext (PId)) ← dline (PId, Dur)
r34 : assert (assert (not ext (PId)) ← time (Dur + T) , deadline (T)) ← dline (PId, Dur)

The event that encodes this update is: E9 = {assert (〈r29〉), assert (〈r30〉),
assert (〈r31〉), assert (〈r32〉), assert (〈r33〉), assert (〈r34〉)}

Subsequently the user sets the deadline by asserting the fact deadline (14)5, i.e.
the event E10 contains the fact assert (deadline (14)).

The remainder of the story goes as follows: at event E11 the agent receives both
acceptance messages from referee 1; at event E12 it receives paper 2; the user grants
deadline extensions of two time units to papers 1 and 3, encoded in event E13; at
event E14 it receives the acceptance messages from referee 2; at event E15, i.e. after
the deadline but before the extension, it receives paper 1; at event E16 it receives
the acceptance messages from referee 3; at event E17, i.e. after the extension has
expired, it receives paper 3. Lack of space prevents us from elaborating further on
what happens after all these events, but we invite the reader to check that: after
event E14 paper 2 is sent to referee 2; after event E15 paper 1 is sent both to referees
1 and 2; after event E16 paper 2 is sent to referee 3; since paper 3 arrives after the
deadline extension it is rejected, a message is sent to the author, and the paper is
not sent to any referee.
E11 = {newmsg (16, “ref1@a”, “paper1”, “accept”) , newmsg (17, “ref1@a”, “paper3”, “accept”)}
E12 = {newmsg (18, “a2@e”, “paper2”, “the paper”)}E13 = {dline (“paper3”, 2) , dline (“paper1”, 2)}
E14 = {newmsg (19, “ref2@b”, “paper1”, “accept”) , newmsg (20, “ref2@b”, “paper2”, “accept”)}
E15 = {newmsg (21, “a1@e”, “paper1”, “the paper”)}E17 = {newmsg (24, “a3@e”, “paper3”, “the paper”)}
E16 = {newmsg (22, “ref3@c”, “paper2”, “accept”) , newmsg (23, “ref3@c”, “paper3”, “accept”)}
5 Dealing with the synchronisation of external and internal times is outside the scope of

this paper. Here, we set the deadline as a value that refers to the agent’s internal time.

4 Discussion and Conclusions

Though permitted by EVOLP, the example does not involve any branching of evo-
lutions, i.e. there is always a single stable model of the program, given any of the
example’s events. In fact, that program given those events is deterministic (in the
sense of Definition 8). Non-stratified rules for assertions (as in Example 4) can be
used to model alternative updates to the agent’s knowledge base, e.g. for stating
that, under certain conditions, either move a message to a folder or delete it, but not
both. Non-stratification can also be used to model uncertainty in the external ob-
servations. In both these cases, EVOLP semantics provides several evolution stable
models, upon which reasoning can be made, concerning what happens in case one or
other action is chosen. On the other hand, by having various models, EVOLP can no
longer be used to actually perform the actions, unless some mechanism for selecting
models is introduced. For (static) logic programs, this issue of selecting among sta-
ble models has already been extensively studied: either by defining more skeptical
semantic that always provide a unique model or by preferring among stable models
based on some priority ordering on rules. The introduction of such mechanisms in
EVOLP too is the subject of current and future work by the authors.

Another issue, not illustrated in the example, and not (yet) addressed by EVOLP,
is that of synchronisation of external and internal times. In the example, this prob-
lem does not even appear, until the moment where we want to set the deadline. For
expressing the deadline in terms of the internal time we can assume, for example,
that an event is given to the agent (albeit empty) after every fixed amount of ex-
ternal time (say 5 minutes). This way, we could express the external time and date
of the deadline as the time-stamp of an internal state. Another possibility would be
to assume that every event comes with a fact etime(T) stating at which moment
T (in term of external time) the event occurred, and then compare the last T with
the deadline. For this example, both these solutions would be enough, since syn-
chronisation is not a crucial issue. But in general, synchronisation is an issue that
deserves further attention, and is the subject of future work by the authors.

A large number of software products is nowadays available to perform email
monitoring and filtering. One example is Spam Agent [14], a recently deployed
email monitoring and filtering tool which features a comprehensive set of filters
(over 1500) to block spam and unwanted emails. Email monitoring and filtering rules
can be defined in terms of message sender, recipient, subject, body, and arbitrary
combinations of them. The SpreadMsg software email filtering and forwarding agent
[8] provides unattended data capture, scanning, and extraction from a wide variety
of data. User rule sets are applied to data and, when criteria are met, data are further
parsed and turned into messages that can be delivered to email addresses, text
pagers, digital cellular or GSM mobile phones, laptops, PDA’s etc.. The SuperScout
Email Filter [11], besides supporting similar capabilities to the previoulsy mentioned
agents, features a Virtual Learning Agent (VLA). The VLA is a content development
tool that can be trained to understand and recognise specific proprietary content
in order to protect confidential and business critical information from the security
risks arising from accidental or malicious leakage. Widely used commercial email
filtering systems provide SPAM filters and, in some cases, a more general set of email
handling rules. Outlook, Netscape, and Hotmail, for instance, all provide means to

define email filtering rules. Some systems require the user to write the filtering rules,
while others employ learning algorithms or try to extract patterns from examples.

An interesting, very recent proposal is the Personal Email Assistant (PEA) [4],
which is intended to provide a customizable, machine learning based environment to
support email processing. An aspect of PEA is that it relies on combining available
open source components for information retrieval, machine learning, and agents.

Lack of space prevents us from mentioning other (out of many) email monitoring
and filtering agents available. It is worth observing however that, to the best of our
knowledge, none of the available agents enjoys the ability of autonomously and
dynamically updating its own filtering policies in a way as general as the EVOLP
specifications illustrated in the present work.

We began this article by extolling the virtue and promise of Logic Programming,
for adumbrating the issues and solutions relative to the (internally and externally)
updatable executable specification of agents, and to the study of their evolution
by means of a precisely defined declarative semantics with well-defined properties.
We have shown, in an example, how EVOLP can be used, not only to specify the
agent’s policies, but also to dynamically change that specification, and make those
changes dependent on some external conditions or events.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In
JELIA’02, volume 2424 of LNAI. Springer, 2002.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3), 2000.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A language
for updating logic programs. Artificial Intelligence, 138(1-2), 2002.

4. R. Bergman, M. Griss, and C. Staelin. A personal email assistant. Technical Report
HPL-2002-236, HP Labs Palo Alto, 2002.

5. T. Eiter, M. Fink, G. Sabbatini, and H Tompits. A framework for declarative update
specifications in logic programs. In IJCAI’01. Morgan-Kaufmann, 2001.

6. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2002. to appear.

7. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In ICLP’88.
MIT Press, 1988.

8. Compuquest Inc. Spreadmsg. www.compuquestinc.com.
9. J. A. Leite. Evolving Knowledge Bases. IOS Press, 2003.

10. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary
report). In KR’92. Morgan-Kaufmann, 1992.

11. Caudex Services Ltd. Superscout email filter. www.caudexservices.co.uk.
12. I. Niemelä and P. Simons. Smodels: An implementation of the stable and well-founded

semantics for normal LP. In LPNMR’97, volume 1265 of LNAI. Springer, 1997.
13. D. De Schreye, M. Hermenegildo, and L. M. Pereira. Paving the roadmaps: Enabling

and integration technologies, 2000. Available from www.compulog.org.
14. Spam-Filtering-Software.com. Spam agent. www.spam-filtering-software.com.
15. V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma

Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press, 2000.
16. XSB-Prolog. The XSB logic programming system, version 2.0, 1999.

www.cs.sunysb.edu/ sbprolog.

