
- A Dynamic Logic Programming Agent
Architecture

João Alexandre Leite, José Júlio Alferes and Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa, 2825-114 Caparica, Portugal

jleite jja lmp @di.fct.unl.pt

Abstract. The agent paradigm, commonly implemented by means of imperative
languages mainly for reasons of efficiency, has recently increased its influence
in the research and development of computational logic based systems. Since
efficiency is not always the crucial issue, but clear specification and correctness is,
Logic Programming and Non-monotonic Reasoning have been brought back into
the spotlight. To this accrues the recent significant improvements in the efficiency
of Logic Programming implementations for Non-monotonic Reasoning.
This paper presents an overall description of , an agent architecture
and system designed with the intention of providing a common agent framework
based on the unique strengths of Logic Programming, to allow for the combina-
tion of several non-monotonic knowledge representation and reasoning mecha-
nisms developed in recent years. In [7], the semantics of the multi-dimensional
structure and combination of the evolving societal knowledge of agents in de-
scribed and discussed in detail.

1 Introduction

The Logic Programming (LP) paradigm provides a well-defined, general, integrative,
encompassing, and rigorous framework for systematically studying computation, be it
syntax, semantics, procedures, or attending implementations, environments, tools, and
standards. LP approaches problems, and provides solutions, at a sufficient level of ab-
straction so that they generalize from problem domain to problem domain. This is af-
forded by the nature of its very foundation in logic, both in substance and method, and
constitutes one of its major assets. To this accrues the recent significant improvements
in the efficiency of Logic Programming implementations forNon-monotonic Reasoning
[11, 8, 12]. Besides allowing for a unified declarative and procedural semantics, elimi-
nating the traditional wide gap between theory and practice, the use of several and quite
powerful results in the field of non-monotonic extensions to LP, such as belief revision,
inductive learning, argumentation, preferences, abduction, etc.[10, 9] can represent an
important composite added value to the design of rational agents. These results, together
with the improvement in efficiency, allow the referredmustering of Logic Programming
and Non-monotonic Reasoning to accomplish a feliticious combination between reac-
tive and rational behaviours of agents, the Holy Grail of modern Artificial Intelligence,
whilst preserving clear and precise specification enjoyed by declarative languages.

Until recently, LP could be seen as a good representation language for static knowl-
edge. If we are to move to a more open and dynamic environment, typical of the agency
paradigm, we need to consider ways of representing and integrating knowledge from
different sources which may evolve in time. To solve this limitation, the authors, with
others, first introducedDynamic Logic Programming (DLP) [1]. There, they studied and
defined the declarative and operational semantics of sequences of logic programs (or dy-
namic logic programs). Each program in the sequence contains knowledge about some
given state, where different states may, for example, represent different time periods or
different sets of priorities. In [6] the DLP paradigm was then generalized in order to
allow, not only for sequences of logic programs, but for collections of programs struc-
tured by acyclic digraphs (DAGs). By dint of such generalization, Multi-dimensional
Dynamic Logic Programming () affords extra expressiveness, thereby enlarg-
ing the latitude of logic programming applications unifiable under a single framework.
The generality and flexibility provided by a DAG ensures a wide scope and variety of
new possibilities. By virtue of the newly added characteristics of multiplicity and com-
position, provides a “societal” viewpoint in Logic Programming, important
in these web and agent days, for combining knowledge in general. In [7] these new
possibilities are explored.

Moreover, an agent not only comprises knowledge about each state, but also knowl-
edge about the transitions between states. The latter can represent the agent’s knowl-
edge about the environment’s evolution, and its own behaviour and evolution. Since
logic programs describe knowledge states, it’s only fit that logic programs be utilized
to describe transitions of knowledge states as well, by associating with each state a set
of transition rules to obtain the next one. In [3], the authors, with others, introduce the
language LUPS – “Language for dynamic updates” – designed for specifying changes
to logic programs. Given an initial knowledge base (as a logic program) LUPS provides
a way for sequentially updating it. The declarative meaning of a sequence of sets of
update commands in LUPS is defined by the semantics of the dynamic logic program
generated by those commands.

Based on the strengths of as a framework capable of simultaneously rep-
resenting several aspects of a system in a dynamic fashion, and on those of LUPS as a
powerful language to specify the evolution of such representations via state transitions,
we have launched into the design of an agent architecture, . Named after
the Goddess of Wisdom, this architecture is conceived with the intention of providing,
on a sound theoretical basis, a common agent framework based on the strengths of Logic
Programming, so as to allow the combination of several non-monotonic knowledge rep-
resentation and reasoning mechanisms developed in recent years. Rational agents, in
our opinion, will require an admixture of any number of those reasoning mechanisms
to carrying out their tasks. To this end, a agent hinges on a modular de-
sign, whereby a common knowledge base, containing all knowledge shared by more
that one sub-agent, is concurrently manipulated by specialized sub-agents.

Its description here is by no means exhaustive, a task that would be impossible to ac-
complish within this article alone. Rather, it aims at providing an overview highlighting
the role of computational logic in its several components.

2 Dynamic Logic Programming

In this section we briefly review Dynamic Logic Programming [1], its generalization
[6], and the update command language LUPS [3].

The idea of dynamic updates is simple and quite fundamental. Suppose that we are
given a set of generalized logic program modules (possibly with negation in rule
heads), structured by a DAG (or simply index by a sequence number, in [1]). Each pro-
gram contains some knowledge that is supposed to be true at the state . Different
states may represent different time periods or different sets of priorities or perhaps even
different viewpoints. Consequently, the individual programmodules may contain mutu-
ally contradictory as well as overlapping information. The role of the dynamic program
update is to use the mutual relationships existing between different states (and specified
by the relation in the DAG) to precisely determine, at any given state , the declarative
as well as the procedural semantics of the combined program, composed of all mod-
ules. The declarative semantics at some state is determined by the stable models of the
program that consists in all those rules that are “valid” in that state. Intuitively a rule
is “valid” in a state if either it belong to the state or it belong to some previous state
in the DAG and is not rejected (i.e. it is inherited by a form of inertia). A rule is re-
jected from a less prioritary state is rejected if there is another conflicting rule in a more
prioritary state with a true body. A transformational semantics, that directly provides
a means for implementation, has also been defined1. For details on Dynamic
Logic Programming and the reader is referred to [1, 6]. The paper [7], contains
a more detailed review of this subject, as well as an explanation of how can be
employed to model the combination of inter- and intra-agent societal viewpoints.

LUPS [3] is a logic programming command language for specifying updates. In can
be viewed as a language that declaratively specifies how to construct a sequence of logic
programs. A sentence in LUPS is a set of simultaneous update commands (or actions)
that, given a pre-existing sequence of logic programs (or a), whose semantics
corresponds to our knowledge at a given state (or program), produces a new
with one more program, corresponding to the knowledge that results from the previous
sequence after performing all the simultaneous commands. Different possibilities on
how to connect the newly produced program with the previously extant ones give rise
to different ways of combining the knowledge of the various agents. In [7] these possi-
bilities are examined, and it is shown how to attain: equal role among agents, time pre-
vailing and hierarchy prevailing representations. In this paper, if not otherwise stated,
simply assume that the new program is concatenated immediately after the program
where the command is evaluated.

A program in LUPS is a sequence of such sentences, and its semantics is defined
by means of a dynamic logic program generated by the sequence of commands. In [3],
a translation of a LUPS program into a generalized logic program is presented, where
stable models exactly correspond to the semantics of the original LUPS program. This
translation directly provides an implementation of LUPS (available at the URL given
above).

1 The implementation can be found in centria.di.fct.unl.pt/ j̃ja/updates/

LUPS update commands specify assertions or retractions to the current program (a
predefined in the , usually the one resulting from the last update performed).
In LUPS a simple assertion is represented as the command:

(1)

meaning that if holds in the current program, the rule is
added to the new program (and persists by inertia, until possibly retracted or overridden
by some future update command). To represent rules and facts that do not persist by
inertia, i.e. that are one-state events, LUPS includes the modified form of assertion:

(2)

The retraction of rules is performed with the two update commands:

(3)
(4)

meaning that, subject to precondition (verified at the current program)
rule is either retracted from its successor state onwards, or just tem-
porarily retracted in the successor state (if governed by event).

Normally assertions represent newly incoming information. Although its effects re-
main by inertia (until contravened or retracted), the assert command itself does not per-
sist. However, some update commands may desirably persist in the successive consec-
utive updates. This is especially the case of laws which, subject to some preconditions,
are always valid, or of rules describing the effects of an action. In the former case, the
update commandmust be added to all sets of updates, to guarantee that the rule remains
indeed valid. In the latter case, the specification of the effects must be added to all sets
of updates, to guarantee that, whenever the action takes place, its effects are enforced.
To specify such persistent update commands, LUPS introduces:

(5)
(6)
(7)

The first two statements signify that, in addition to any new set of arriving update com-
mands, the persistent update command keeps executing along with them too. The first
case without, and the second case with the event keyword. The third statement cancels
execution of this persistent update, once the conditions for cancellation are met.

3 Overall Architecture

In the agent architecture, an agent consists of several specialized, pos-
sibly concurrent, sub-agents performing various tasks while reading and manipulating
a common knowledge base. A schematic view of the architecture is de-
picted in Fig. 1. The common knowledge base contains knowledge about the self and
the agent community, and is conceptually divided into the following components: Ca-
pabilities, Intentions, Goals, Plans, Reactions, Object Knowledge Base and Internal

Behaviour Rules. There is also an internal clock. Although conceptually divided in such
components, all these modules will share a common representation mechanism based
on and LUPS, the former to represent knowledge at each state and LUPS to
represent the state transitions, i.e. the common part of the agent’s behaviour. Every
agent is composed of specialized function related subagents, that execute their vari-
ous specialized tasks. Examples of such subagents are those implementing the reactive,
planning, scheduling, belief revision, goal management, learning, dialogue manage-
ment, information gathering, preference evaluation, strategy, and diagnosis function-
alities. These sub-agents contain a LUPS program encoding its behaviour, interfacing
with the Common Knowledge Base. Whilst some of those sub-agent’s functionalities
are fully specifiable in LUPS, others will require private specialized procedures where
LUPS serves as an interface language.

In all LUPS commands, both in the common knowledge base and in the sub-agents,
by default the when-clauses are evaluated in the Object Knowledge Base, and the rules
are added to the Object Knowledge Base also. More precisely, the when-condition of
a sub-agent LUPS command is evaluated at a special sink program of the Object
Knowledge Base2. If the condition is verified, the rule is asserted (resp. retracted), by
default, at the state , i.e. the sub-agent’s state corresponding to the next time
state. In effect, at each time state , each sub-agent’s LUPS interpreter evaluates its
commands at state (dynamically and therefore differently at each time state) and
produces its corresponding next state, . Whenever some literal in a when-
condition is to be evaluated in a program different from the default one, we denote
that by . This notation will also be used to denote addition of
rules to programs other than the default one.

4 Common Knowledge Base

Object Knowledge Base The Object Knowledge Base is the main component contain-
ing knowledge about the world, i.e. knowledge at the object level and info about the
society where the agent is situated.

It is represented by an evolving MDLP. In it there is a sequence of nodes for each
sub-agent of the agent , representing its evolution in time. There is also a sequence
of nodes for every other agent in the multi-agent system, representing ’s view of the
evolution of those agents in time. As will be seen in the following Section, at each time
state each sub-agent manipulates its corresponding state node. There is a Dialoguer
sub-agent dealing with the interactions with other agents, and manipulating the state
nodes corresponding to the agents it communicates with. Several methods are possible
for combining these several sequences to form theMDLP’s DAG. Each corresponds to
a different way of combining inter- and intra-agent social viewpoints. In [7] we show
how this can be done.

Capabilities This block contains a description of the actions, and their effects, capa-
ble of being performed by the agent. LUPS, by allowing to declaratively specify both
2 This special program is a sink of the DAG, and its semantics corresponds to the semantics of
all the Object Knowledge Base, cf. [7, 6].

{
}

{
}

{
}

{
}

'

Fig. 1. The agent architecture

knowledge states and their transitions, can be used as a powerful representation lan-
guage for specifying actions and their effects. Its diversity of update commands can
model from the simplest condition-effect action to parallel actions and their coupled
indirect effects. Typically, for every action , there will be one (or more) LUPS com-
mands, where the action name appears in the ‘ ’ clause. For example, in

we have, intuitively, that is an action whose preconditions are and
whose effect is an update that, according to its type, canmodel different kinds of actions,
all in one unified framework. Examples of kinds of actions are:

– actions of the form , where are fluents
(such as in the language of [5]) translates into the update command

– actions whose epistemic effect is a rule update of the form
translates into the update command

– actions that, when performed in parallel, have different outcomes, of the form
cause and

translate into the three update commands:

Other types of actions (e.g. action with non-deterministic effects) can also be trans-
lated into LUPS commands. For lack of space these are not shown here.

Internal Behaviour Rules The Internal Behaviour Rules are LUPS commands that
specify the agent’s reactive internal epistemic state transitions. They are of the form:

whose effect is the immediate asserting of rule in the Object Knowl-
edge Base if holds now. These commands will be executed by one of the
sub-agents (the Reactor), and they are quite common since they may be used by more
than one of the sub-agents. E.g. the Planner sub-agent must be aware of these rules
when planning for goals. An example of internal behaviour rules would be:

stating that whenever the government is republican, an abortion implies going to jail,
and whenever the government is democrat, an abortion does not imply going to jail.

Goals The Goals structure is a DLP where at each state the program contains facts
of the form representing the goals that are to be
achieved by the agent. is a conjunction of literals, refers to a time state,

represents the origin of the goal and contains the priority of the goal.
Goals is a dynamic structure in the sense that new goals can be asserted onto this struc-
ture by any sub-agent, some of them originating in another one. They will be manipu-
lated by a Goal Manager sub-agent that can assert, retract and change a goal’s priority.

Plans As shown in [2], LUPS, together with abduction, can be used to represent and
solve planning problems. There, the notion of action update, , is defined as a set of
update commands of the form where is an action name.
Intuitively, each command of the form represents the performing
of action . Note that performing an action itself is something that does not persist by
inertia. Thus, according to the description of LUPS, the assertion must be of an event.
By asserting , the effect of the action will be enforced if the preconditions
are met. Each action update represents a set of simultaneous actions. Plans are LUPS
programs composed of action updates. An example of a plan to achieve a at time
would be:

meaning that in order to achieve at time , the agent must execute actions and
at time and actions and at time . Also, associated with each plan,

there is a set of preconditions () that must be met at the beginning of the
plan. Each plan () for goal () is generated by a planner sub-agent, which as-
serts them into theCommonKnowledge Base in the form
where they are kept for future reuse.

By permiting plans to be represented in the LUPS language, we allow the use of
more complex planners, namely conditional planners. Conditional action updates are to
be represented by LUPS commands of the form:

An example of such a conditional plan, for would be:

meaning that in order to achieve at time , the agent must execute, at time ,
the command if holds at time , otherwise, if holds, it
must execute the command . Then, it should execute the commands

and at time . These conditions, in the
statement of these commands, can also be employed to include the verification of the
success of previous actions.

The plans stored in the common knowledge are going to be processed, together
with the reactions, by a specialized Scheduler sub-agent that will avail itself of them to
determine the intentions of the agent.

Reactions The Reactions block at the Common Knowledge Base is represented by a
very simple MDLP whose object rules are just facts denoting actions or negation
of actions names . The MDLP contains a sequence of nodes for every sub-agent
capable of reacting, and a set of edges representing a possible hierarchy of reactions.
Those sub-agents will contain a set of LUPS commands of the form

Whenever is true, action should be reactively executed. This corre-
sponds to the assertion of in the corresponding node of the Reactionsmodule. These,
together with the plans, will be processed by the Scheduler sub-agent to transform them
into intentions. The richness of the LUPS language enables us to express action block-
age, i.e. under some conditions, preventing some action to be executed by the agent,
possibly proposed by another sub-agent. This can be expressed by the command:

whose effect would be the assertion of . This assertion would block any pro-
posed by a lower ranked reactive sub-agent. By admitting the buffering of reactions, i.e.
they are first proposed and then scheduled, this architecture allows for some conceptual
control over them, namely by preventing some undesirable reactions being performed.

Intentions Intentions are the actions the agent has committed to. A Scheduler sub-
agent compiles the plans and reactions to be executed into the intentions, according to
the resources of the agent. Control over the level of reactivity and deliberation can be
achieved by this process. The Intentions structure is a DLP where the object language
rules are simply facts of the form:

where , is a conjunction of literals from , and .
They can be interpreted as: execute , at time , if is true. It is left
to the Actuator sub-agent to execute the intentions. For example, to achieve and

, the two plans previously exemplified can be compiled into the set of intentions
(where is the current time state):

Although typically intentions are internal commitments, nothing prevents us from
having a specialized sub-agent manage (and possibly retract from) the set of intentions.

5 Sub-Agents

The sub-agents constitute the labour part of the architecture. Their tasks
reside in the evaluation and manipulation of the Common Knowledge Base and, in some
cases, in the interface with the environment in which the agent is situated. They differ
essentially in their specialities, inasmuch as there are planners, reactors, schedulers,
learners, dialoguers, etc. Conceiving the architecture based on the notion of, to some

extent, independent sub-agents attain a degree of modularity, appropriate in what con-
cerns the adaptability of the architecture to different situations.

Each of these sub-agents contains a LUPS program encoding its behaviour, inter-
facing with the Common Knowledge Base and possibly with private specialized proce-
dures. Conceptually, each of these sub-agents also comprises a LUPS meta-interpreter
that executes its LUPS program and produces a sequence of states in the structures of
the Common Knowledge Base. The collection of all such sequences of states, produced
by all the sub-agents will come to constitute the states of the Object Knowledge Base.

To permit private procedure calls, we extend LUPS by allowing those to be called
in the when statement of a command:

In this case, if is true at state , then is
executed and, if successful, is instantiated and rule is asserted
into the sub-agent’s state corresponding to the next time state. These procedure calls
can read from the Common Knowledge Base, but cannot change it. All changes to the
Common Knowledge Base are performed via LUPS commands, ensuring a clear and
precise semantics of the overall system.

It is important to stress that LUPS constitutes a language to specify state transitions,
namely by determining the construction of the programs that define each state, whose
meaning is assigned by the semantics of . Some of the tasks to be performed
by the sub-agents need to resort to procedure calls, but others are fully specifiable with
LUPS commands that simply consult the Common Knowledge Base.

Sensor The Sensor sub-agent receives input from the environment through procedure
calls of the form . The information, in the form of logic program
rules, is asserted in the object knowledge base. This behaviour is accomplished with
LUPS commands of the form:

The when statement can also be used as a filter, possibly specifying conditions for
the acceptance of the input. Mark that since there is no explicit reference as where to
execute the command, the assertions are, by default, performed at the Sensor’s node at
the Object Knowledge Base.

Dialoguer The Dialoguer sub-agent is similar to the Sensor one in what concerns re-
ceiving input from the environment. It differs in that it processes incoming messages
from the other agents in the multi-agent system (), and the LUPS commands
are then executed by asserting the information into the corresponding agent’s node.
Moreover, it is this sub-agent’s charge, according to the message, to generate new goals,
issue replies, etc. Examples of LUPS commands typical of this sub-agent would be:

These commands specify a behaviour for the acceptance of goals and beliefs from
another agent, and for dealing with the request. The first command insists that a goal
should be asserted into the Goals of the Common Knowledge Basewhenever a message
from a cooperative agent requests it. The second asserts the rules communicated by an-
other agent into its corresponding node of the Object Knowledge Base. The third issues
a communication action, by asserting it into the Reactions, to be scheduled, whenever
there is a request from another agent to solve a goal, and there is a plan for such a goal.

Actuator The Actuator sub-agent interfaces with the environment by executing ac-
tions on it. At each cycle, the Actuator extracts the actions to be executed from the
Intentions and performs them on the outside world. If successful, it event asserts the
action name, , in the Object Knowledge Base. At each cycle, the Actuator executes
LUPS commands of the form:

corresponding to the execution of the Intentions scheduled for the current time state.

Effector The Effector, at each cycle, evaluates and executes the LUPS commands in
the Capabilities and Common behaviour Rules. Note that, although the Capabilities and
Common Behaviour Rules constitute the LUPS program of the Effector sub-agent, they
belong to the Common Knowledge Base because they may be accessed by other sub-
agents, namely by the Planner. The Capabilities require the prior successful execution
of an action. This does not happen with the Common Behaviour Rules. These specify
state transitions solely based on the internal state of the agent.

Reactor The Reactor will contain reactive rules that, if executed, produce an action to
be performed. They are of the form:

An example of such a reaction would be

where is the name of an action. We can also reactively and temporarily block
actions by using LUPS commands of the form:

Planner In [2], it was shown how planning can be achieved by means of abduction in
LUPS specified scenarios. Such an abduction based planner uses theObject Knowledge
Base together with the Intentions (actions already set to be executed in the future), Ca-
pabilities, and the Common Behaviour Rules, to achieve a plan for a given goal, consis-
tent with the current set of intentions. A LUPS command for the Planner, with such an
abductive planner represented by the procedure call ,
would be:

Other planners, possibly more efficient and/or complex can be used, namely partial
planners, with the appropriate LUPS commands to interface them.

Goal Manager Goals can be asserted by other sub-agents, some of them originating in
other agents. These goals may conflict with one another. The task of the Goal Manager
is to deal with such issues. It manipulates theGoals structure, being able to merge goals,
set priorities, delete goals, etc. An example of a command for this sub-agent, specifying
that if two goals are incompatible, the one with lower priority should be removed, is:

Scheduler The Scheduler determines the Intentions of the agent, based on the current
state of the agent. The Scheduler acts whenever there are pending reactions or goals and
plans. More than one specialized scheduling procedure may exist. For example, if there
were three procedures, depending on the need to combine reactions and plans or just to
schedule one of them, the following LUPS commands would select their execution:

Other Sub-agents Other sub-agents can concurrently exist in the archi-
tecture. Fig. 1 mentions a Contradiction Remover and a Learner sub-agent, but many
others can be specified. Either fully specified by means of LUPS commands or with
LUPS serving simply as an interface to procedure calls or legacy code, a great variety
of sub-agents can be fully integrated into this architecture. If tight control is needed,
LUPS also encompasses the specification of control sub-agents. For examples of the
application of LUPS in several domains the reader is referred to [4].

6 Conclusions

We began this article by extolling the virtue and the promise of Computational Logic,
most adeptly in the guise of Logic Programming, for adumbrating the issues of, and the
solutions for, an integrated multi-agent architecture with a precisely defined declarative
semantics. As we near the end of our proctrated exposition, we are confident to have
brought the point home. To wit, our architectural scaffolding rests on a sound and wide
basis, whose core are the evolving updatable agents and their attending, and multi-
dimensionally configured, knowledge bases.

The basic architecture affords us too, we purport to have shown, with the elastic-
ity and resilience to further support a spate of crucial ancillary functionalities, in the
form of additional specialized agents, via compositional, communication, and proce-
dural mechanisms. The circum-exploration of the territories under purview has hardly
started, but the means of locomotion appear to be already with us.

Logic Programming is, without a doubt, the privileged melting pot for the articulate
integration of functionalities and techniques, pertaining to the design andmechanization
of complex systems, addressing ever more demanding and sophisticated computational
abilities. For instance, consider again those reasoning abilities mentioned in previous
sections. Forthcoming rational agents, to be realistic, will require an admixture of any
number of them to carrying out their tasks. No other computational paradigm affords us
with the wherewithal for their coherent conceptual integration. And, all the while, the
very vehicle that enables testing its specification, when not outright its very implemen-
tation.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic
updates of non-monotonic knowledge bases. Journal of Logic Programming, 45(1-3):43–
70, 2000. A short version titled Dynamic Logic Programming appeared in A. Cohn and L.
Schubert (eds.), KR’98, Morgan Kaufmann.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, and P. Quaresma. Planning as abductive updating.
In D. Kitchin, editor, Proceedings of the AISB’00 Symposium on AI Planning and Intelligent
Agents, pages 1–8. AISB, 2000.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A language for
updating logic programs. Artificial Intelligence, 2001. To appear. A short version appeared
in M. Gelfond, N. Leone and G. Pfeifer (eds.), LPNMR-99, LNAI 1730, Springer.

4. J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma. An exercise
with dynamic logic programming. In L. Garcia and M. Chiara Meo, editors, Proceedings of
the 2000 Joint Conference on Declarative Programming (AGP-00), 2000.

5. M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles in Computer
and information Science, 3(16), 1998.

6. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic logic programming.
In F. Sadri and K. Satoh, editors, Proceedings of the CL-2000 Workshop on Computational
Logic in Multi-Agent Systems (CLIMA’00), pages 17–26, 2000.

7. J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA – combining societal agents knowl-
edge. Technical report, Dept. Informática, Universidade Nova de Lisboa, 2001. Available at
http://centria.di.fct.unl.pt/˜jleite/.

8. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In J. Dix, U. Furbach, and A. Nerode, editors, LPNMR-97, volume
1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

9. S. Rochefort, F. Sadri, and F. Toni, editors. Proceedings of the International Workshop on
Multi-Agent Systems in Logic Programming, Las Cruces, New Mexico, USA, 1999. Avail-
able from http://www.cs.sfu.ca/conf/MAS99.

10. F. Sadri and F. Toni. Computational logic and multiagent systems: A roadmap, 1999. Avail-
able from http://www.compulog.org.

11. D. De Schreye, M. Hermenegildo, and L. M. Pereira. Paving the
roadmaps: Enabling and integration technologies, 2000. Available from
http://www.compulog.org/net/Forum/Supportdocs.html.

12. XSB-Prolog. The XSB logic programming system, version 2.0, 1999. Available at
http://www.cs.sunysb.edu/ sbprolog.

