
Argumentation-based Proof for an Argument in a
Paraconsistent Setting !

Iara Carnevale de Almeida2 and José Júlio Alferes1

1 CENTRIA, Universidade Nova de Lisboa
2829-516 Caparica, Portugal
jja@di.fct.unl.pt

2 CITI, Departamento de Informática, Universidade de Évora
Colégio Luis Verney; 7000-671 Évora, Portugal

ica@di.uevora.pt

Abstract. The paradigm of argumentation has been used in the literature to as-
sign meaning to knowledge bases in general, and logic programs in particular.
With this paradigm, rules of logic program are viewed as encoding arguments of
an agent, and the meaning of the program is determined by those arguments that
somehow (depending on the specific semantics) can defend themselves from the
attacks of others arguments, named acceptable arguments. In previous work we
presented an argumentation based declarative semantics allowing paraconsistent
reasoning and also dealing with sets of logic programs that argue and cooperate
among each other. In this paper we focus on the properties of this semantics in
what regards paraconsistency and propose a procedure for proving an argument
according to that semantics.

1 Introduction

In logic programming, several ways to formalise argumentation-based semantics have
been studied for logic programs. Intuitively, argumentation-based semantics treat the
evaluation of a logic program as an argumentation process, i.e. a goal G is true if at
least one argument for G cannot be successfully attacked. The ability to view logic
programming as a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining clear
declarative semantics for logic programs, for which proof procedures (and attending
implementations) are then defined (e.g. [8, 9, 15, 2, 20, 12, 18, 7, 14, 10]).

In [5] we proposed an argumentation based semantics for sets of logic programs
that are able to cooperate and argue with each other. In it each program relies on a set
of other programs with which it has to agree in order to accept an argument, and a set
of programs with which it can cooperate to build arguments. Besides this distributed
nature, the semantics in [5] also allows for paraconsistent forms of argumentation. In
fact, it was also a goal of that work to be able to deal with mutually inconsistent, and
even inconsistent, knowledge bases. Moreover, when in presence of contradiction we
! The work was partially supported by the Brazilian CAPES, and by the European Commission
within the 6th Framework Programme project REWERSE, number 506779.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 65

wanted to obtain ways of agent reasoning, ranging from consistent (in which inconsis-
tencies lead to no result) to paraconsistent. For achieving this, we considered strong and
weak arguments.

The paraconsistency in the argumentation also yield a refinement of the possible
status of arguments: besides the justified, overruled and defensible arguments as in
[16], justified arguments may now be contradictory, based on contradiction or non-
contradictory. Moreover, in some applications it might be interesting to change easily
from a paraconsistent to a consistent way of reasoning (or vice-verse).

In this paper we focus on the properties of that semantics in what regards para-
consistency which are interesting by themselves, and independent from its distributed
nature. With this purpose, we restrict our attention to the special case of the semantics in
[5], where only a single logic programs is in the set of programs. Moreover, we provide
a notion of proof for an argument for that semantics in that class.

In the next section we present a version of the proposed declarative semantics sim-
plified for the case of a single program, study some of its most significant properties
regarding paraconsistency, and illustrate it in one example. We then define the proof
method for it, and end with some conclusions. Due to lack of space all proofs have
been removed from this version of the paper, and they can be found in a longer version
available as a technical report from the first author.

2 Paraconsistent Argumentation Semantics

As motivated in the introduction, in our framework [5] the knowledge base of an agent
is modelled by a logic program. More precisely, we use Extended Logic Program with
denials (ELPd), itself an extension of Extended Logic Programs [11] for modelling
the knowledge bases. Besides default and explicit negation, as usual in extended logic
programs, we allow a program to have denials of the form

⊥ ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

where each of the Lis is an objective literal (i.e. an atom A in the language of the
program, or an explicitly negated atom ¬A). In other words, denial are simply rules
where the head is the special, reserved, symbol ⊥.

An argument for some objective literal L is a complete well-defined sequence con-
cluding L over a set of rules of the knowledge base Kb. By complete here we mean
that all rules required for concluding L are in the sequence. By well-defined sequence
we mean a (minimal) sequence of rules concluding L as follows: the head of the last
rule in the sequence is an objective literal L; furthermore, if some atom L′ (ignoring
default literals) appears in the body of a rule then there must be a rule before this one
with L′ in the head; moreover, the sequence must not be circular and only use rules that
are strictly necessary.

Definition 1 (Complete Well-defined Sequence). Let P be an ELPd, and L an objec-
tive literal in the language of P . A well-defined sequence for L over a set of rules S is
a finite sequence [r1; . . . ; rm] of rules ri from S of the form Li ← Bodyi such that

– L is the head of the rule rm, and



66 I. Carnevale de Almeida and J.J. Alferes

– an objective literal L′ is the head of a rule ri (1 ≤ i < m) only if L′ is not in the
body of any rk (1 ≤ k ≤ i) and L′ is in the body of some rule rj (i < j ≤ m).

We say that a well-defined sequence for L is complete if for each objective literal
L′ in the body of the rules ri (1 ≤ i ≤ m) there is a rule rk (k < i) such that L′ is the
head of rk.

By the conclusions of a sequence we mean the set of all objective literals in the head
of some rule of the sequence, and by the assumptions we mean the set of all default
literal in bodies.

For dealing with consistent and paraconsistent reasoning, we define strong and weak
arguments, based on strong and weak sets of rules, the former being simply the rules in
the Kb . A weak set of rules results from adding to all rule bodies the default negation
of the head’s complement, and of ⊥, thus making the rules weaker (more susceptible
to being contradicted/attacked). Intuitively, if there is a potential inconsistency, be it
by proving the explicit complement of a rules head or by proving ⊥ then the weak
argument is attacked, whereas the strong is not.

Definition 2 (Strong and Weak Arguments). Let P be an ELPd, and L a literal in its
language. Let the weak set of rules of P be defined as

Rw
P = { L ← Body, not ¬L, not ⊥ | L ← Body ∈ P }

A strong (resp. weak) argument of P for L, As
L (resp. Aw

L), is a complete well-
defined sequence for L over P (resp. Rw

P ).
Let Aw

L and As
L be two arguments of P . Aw

L is the weak argument corresponding to
As

L, and vice-verse, if both use exactly the same rules of the original program P (the
former by having rules Rw

P and the latter from P alone).
We say that AL is an argument of P for L if it is either a strong argument or a weak

one of P for L. We also say that Ak
L is a k-argument of P for L (where k is either s, for

strong arguments, or w, for weak ones).

After defining how arguments are built, we now move on to defining the attacking
relation between these arguments. By using two kinds of arguments, strong and weak
arguments as just exposed, we may rely on a single kind of attack. Indeed the different
kinds of attacks usually considered in argumentation semantics for extended logic pro-
grams, undercuts and rebuts as in [15], can be captured by a single notion of attack. If
an argument for an objective literal L (denoted by AL) has a default negation not L′

in it, any argument for L′ attacks (by undercut) AL. The rebut attacking relation states
that an argument also attacks another one when both arguments have complementary
conclusions (i.e. one concludes L and the other ¬L). It is easy to see that with strong
and weak arguments, rebut can be reduced to undercut: rebutting reduces to undercut
attacks to weak arguments.

In our definition of attacks care must be taken in what regards arguments for ⊥.
By simply using undercut attacks any argument for ⊥ attacks every weak argument.
However, it does not make sense to attack arguments for objective literals if they do not



Argumentation-based Proof for an Argument in a Paraconsistent Setting 67

lead to falsity. Informally, an objective L literal leads to falsityif there is an argument
AL such that A⊥ is built based on such an argument, e.g.

As
⊥ : As

L + [⊥ ← L, not L′]

We only consider objective literals that are in the body of the rule for ⊥ because these
literals immediately lead to falsity. We assume that the involvement of other objective
literals are not as strong as those in the body of the denial3. Then objective literals are
directly conflicting with A⊥ if the following holds:

Definition 3 (Directly Conflict withA⊥). LetA⊥ be an argument for⊥, ‘⊥ ← Body’
be the rule in A⊥ and {L1, . . . , Ln} be the set of all objective literals in Body. The set
of objective literals directly conflicting with A⊥ is

DC(A⊥) = {⊥} ∪ {L1, . . . , Ln}.

Definition 4 (Attack). Let P be an ELPd. An argument AL of P for L attacks an
argument AL′ of P for L′ iff

– L is the symbol ⊥, not ⊥ belong to the body of some rule in AL′ , and L′ ∈
DC(AL); or

– L is an objective literal different from ⊥, and not L belongs to the body of some
rule in AL′ .

Since attacking arguments can in turn be attacked by other arguments, comparing
arguments is not enough to determine their acceptability w.r.t. the set of overall argu-
ments. What is also required is a definition that determines the acceptable arguments
on the basis of all the ways in which they interact, by proposing arguments and so
opposing them. A subset S of proposed arguments of P is acceptable only if the set
of all arguments of P does not have some valid opposing argument attacking the pro-
posed arguments in S. As in [8, 15], we demand acceptable sets to contain all such
arguments. Two questions remain open: how to obtain opposing arguments and, among
these, which are valid?

An opposing argument for a proposed argument which makes an assumption, say
not L, is simply an argument for a conclusion L. For an opposing argument Ao to be
valid for attacking a proposed argument Ap in S, S should not have another argument
that, in turn, attacks Ao (i.e. another argument that reinstates4 Ap). In this case, we
say that S cannot defend itself against Ao. This motivation points to a definition of
acceptable sets of arguments Si in P such as a set S is acceptable if it can attack all
opposing arguments. So, we can say that a proposed argument Ap is acceptable w.r.t. a
set S of acceptable arguments if and only if each opposing argument Ao attacking Ap

is (counter-)attacked by an argument in S.
3 We further assume they can be detected in a process of “belief revision”, e.g. [3]. However, a
discussion of this issue is beyond the scope of this proposal.

4 The key observation is that an argument A that is attacked by another argument B can only
be acceptable if it is reinstated by a third argument C, i.e by an acceptable argument C that
attacks B.



68 I. Carnevale de Almeida and J.J. Alferes

However, it is still necessary to determine how strong arguments and weak argu-
ments should interact w.r.t. such a set S of arguments. Based on the idea of reinstate-
ment, both attacked and counter-attacking arguments should be of the same kind. For in-
stance, if a proposing argument is strong (resp. weak) then every counter-attack against
its opposing argument should be strong (resp. weak). A similar reason can be applied
for opposing arguments. Therefore, proposed (resp. opposing) arguments should be of
the same kind.

In the remainder of this paper we will use the notation p and o to distinguish the pro-
posed argument from the opponent one, i.e. p (resp. o) is a (strong or weak) proposed
(resp. opponent) argument. Since there are four possibilities of interaction between a
proposed argument,Ap, and an opposing argument,Ao, the definition of arguments’ ac-
ceptability (and the corresponding characteristic function) is generalised by parametris-
ing the possible kinds of arguments, viz. strong arguments and weak arguments.

Definition 5 (Acceptable Argument). Let P be an ELPd, p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argument, Argsp(P ) (Argso(P ))
be the set of all arguments in P of kind p (resp. o) , and S ⊆ Argsp(P ). An argu-
ment AL ∈ Argsp(P ) is an acceptablep,o argument w.r.t. S iff each argument AL′ ∈
Argso(P ) attacking AL is attacked by an argument AL′′ ∈ S.

Note that this proposal is in accordance with the ‘Compositional Principle’ of [20]:
“If an argument SA is a sub-argument of argument A, and SA is not acceptable w.r.t.
a set of arguments S, then A is also not acceptable w.r.t. S”. We now formalise the
concept of acceptable arguments with a fixpoint characteristic function p o of P :

Definition 6 (Characteristic Function). Let P be an ELPd, and p (resp. o) be the kind
(strong or weak) of the proposed (resp. opposing) argument of P , and S ⊆ Argsp(P ).
The characteristic function p o of P and over S is:

F p,o
P : 2Args(P ) → 2Args(P )

F p,o
P (S) = {Arg ∈ Args(P ) | Arg is acceptablep,o w.r.t. S}.

It can be proven that this function is monotonic, and so it has a least fixpoint that
can be obtained iteratively as usual:
Proposition 1. Define for any P the following transfinite sequence of sets of argu-
ments:

– S0 = ∅
– Si+1 = F p,o

P (Si)
– Sδ =

⋃

α<δ

Sα for limit ordinal δ

Given that F p,o
P is monotonic, there must exist a smallest λ such that Sλ is a fixpoint of

F p,o
P , and Sλ = lfp(F p,o

P ).

Note that lfp(F p,o
P ) is well-behaved, i.e. arguments in it are acceptablep,o w.r.t.

the set of all argument of P . By definition lfp(F p,o
P ) is minimal, which guarantees

that it does not contain any argument of which acceptance is not required. Moreover,
when F p,o

P is finitary the iterative process above is guaranteed to terminate after an
enumerable number of steps.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 69

Proposition 2. F p,o
P is finitary if each argument in S is attacked by at most a finite

number of arguments in S.

By knowing the set of all acceptablep,o arguments of P , we can split all arguments
from Args(P ) into three classes: justified arguments, overruled arguments and defen-
sible arguments. Our definition of overruled is different from [15]’s proposal. In its
proposal, the restriction applies that overruled arguments cannot be also justified and so
[15]’s argumentation semantics is always consistent. Since we aim to obtain a paracon-
sistent way of reasoning, the status of an argument is defined as follows:

Definition 7 (Justified, Overruled or Defensible Argument). Let P be an ELPd, p
(resp. o) be the kind (strong or weak) of an argument of P , and F p,o

P be the character-
istic function p o of P . An argument Ap

L is

– justifiedp,o
P iff it is in lfp(F p,o

P )
– overruledp,o

P iff the Ao
L corresponding to Ap

L is attacked by a justifiedp,o
P argument

– defensiblep,o
P iff it is neither a justifiedp,o

P nor an overruledp,o
P argument

We denote the lfp(F p,o
P ) by JustArgsp,o

P .

We may also iteratively obtain overruled arguments based on the greatest fixpoint
of the characteristic function which, by monotonicity of the characteristic function is
guaranteed to exist and can also be obtained iteratively as usual. In fact:

Lemma 1. gfp(F o,p
P ) = {Ao

L1
: ¬(∃Ap

L2
∈ lfp(F p,o

P ) | Ap
L2
attacks Ao

L1
)}

Lemma 2. lfp(F p,o
P ) = {Ap

L1
: ¬(∃Ao

L2
∈ gfp(F o,p

P ) | Ao
L2
attacks Ap

L1
)}

Then, the following holds:

Theorem 1. Ap
L is overruledp,o

P iff the Ao
L corresponding to Ap

L is not in gfp(F o,p
P ).

Due to space limitations we do not detail here general properties when some other
weaker restriction are imposed. Instead, we discuss some properties of JustArgsp,o

P

and comparisons. Since p (resp. o) denote the kind of a proposed (resp. an opposing)
argument, i.e. strong argument or weak argument, assume that p (resp. o) in {s, w}.
Both JustArgsw,w

P and JustArgsw,s
P are both conflict-free5 and non-contradictory6.

Thus, every argument in both JustArgsw,w
P and JustArgsw,s

P is non-contradictory,
i.e. it is not related to a contradiction at all. Furthermore, Fw,w

P has more defensible
arguments than Fw,s

P . Therefore, we obtain a consistent way of reasoning in Ag if we
apply Fw,w

P over Args(P ).
In contrast, JustArgss,s

P and JustArgss,w
P may be contradictory. However, to eval-

uate the acceptability of available arguments without considering the presence of fal-
sity or both arguments for L and ¬L, the proposed arguments should be strong ones,
and every opposing argument is a weak argument. Since F s,w

P respects the ‘Coherence
Principle’ of [13, 1], i.e. given that every opposing argument is a weak one, it can be
5 A set S of arguments is conflict-free if there is no argument in S attacking an argument in S.
6 A set S of arguments is non-contradictory if neither an argument for falsity nor both arguments
for L and ¬L are in S.



70 I. Carnevale de Almeida and J.J. Alferes

attacked by any proposed argument for its explicit negation. Therefore, we obtain a
paraconsistent way of reasoning if we apply F s,w

P over Args(P ).
Moreover, a justifieds,w

P argument of an agent can be related to a contradiction with
respect to JustArgss,w

P as follows. We first define that an argument that reinstate an-
other argument is its counter-attack:

Definition 8 (Counter-Attack). Let P be an ELPd, S a set of arguments from P , AL

be an argument in S, and AL′ be an argument of P attacking AL. A counter-attack for
AL against AL′ is an argument in S that attacks AL′ . CAAL

(AL′ , S) is the set of all
counter-attacks for AL against AL′ in S

Definition 9 (Relation to a Contradiction). Let P be an ELPd. A justifieds,w
P argu-

ment As
L is

– contradictorys,w
P if JustArgss,w

P is contradictory w.r.t. L, or there exists a contra-
dictorys,w

P argument As
⊥ and L ∈ DC(As

⊥); or
– based-on-contradictions,w

P if for all Aw
L′ attacking As

L there exists a contradic-
torys,w

P or based-on-contradictions,w
P argument in CAAL

(Aw
L′ , JustArgss,w

P ), or
there exists an L′ in the head of some rule in As

L, different from L and ⊥, such that
JustArgss,w

P is contradictory w.r.t. L′; or
– non-contradictorys,w

P iff it is neither contradictorys,w
P nor it is based-on-contra-

dictions,w
P .

Proposition 3. A justifieds,w
P argument Ap

L is non-contradictorys,w
P if for no head L′ of

a rule in As
L, JustArgss,w

P is contradictory w.r.t. L′, and every counter-attack for As
L

is a non-contradictorys,w
P argument.

A truth value of an agent’s conclusion in a (consistent or paraconsistent) way of
reasoning is as follows:

Definition 10 (Truth Value of a Conclusion). Let P be an ELPd, and L ∈ H(P ), and
k ∈ {s, w}. A literal L over P is

– falsek,w
P iff every k-argument for L is overruledk,w

P

– truek,w
P iff there exists a justifiedk,w

P argument for L. Moreover, L is
• contradictoryk,w

P if L is the symbol⊥ or there exists a justifiedk,w
P argument for

¬L
• based-on-contradictionk,w

P if it is both truek,w
P and falsek,w

P

• non-contradictoryk,w
P , otherwise

– undefinedk,w
P iff L is neither truek,w

P nor falsek,w
P (i.e. there is no justifiedk,w

P argu-
ment for L and at least one k-argument for L is not overruledk,w

P ).

Example 1 (Privacy of Personal Life – PPL).Usually, any person deserves privacy with
respect to her personal life. However, when such a person behaves in a way that is not
acceptable (e.g. selling drugs) she will suffer the consequences. The first consequence
is the focus of media attention on her personal life and consequent loss of privacy. The
personal life of such a person might be exposed by the “results” of media attention (e.g.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 71

photos, reports, and so on), unless there is a law that protects her against it. The above
description can be expressed by the following extended logic programming rules.

focusOfMediaAttention(X) ← person(X), ¬acceptableBehavior(X).
¬acceptableBehavior(X) ← involved(X,Y ), againstSociety(Y ).
¬hasPrivacy(X) ← focusOfMediaAttention(X).
personalLifeExposed(X) ← ¬hasPrivacy(X), not protectedByLaw(X).
hasPrivacy(X) ← person(X), not ¬hasPrivacy(X).

In contrast, it is considered an absurdity that someone may lose her privacy when
she is involved in some event for which there is no evidence of being public (e.g. some-
one starting a long-term treatment for drugs dependency). The absurdity in the rule
below is represented as a denial:

⊥ ← ¬hasPrivacy(X), event(X,Y ), not publicEvent(Y ).

Moreover, modern society normally tries to protect children, and so their privacy is
guaranteed until evidence appears of some unusual behaviour (e.g. by having unaccept-
able behaviour).

hasPrivacy(X) ← child(X), not unusualChild(X).
unusualChild(X) ← child(X),¬acceptableBehavior(X).
person(X) ← child(X).

However, famous persons are inherently the focus of media attention:

focusOfMediaAttention(X) ← famousPerson(X).
person(X) ← famousPerson(X).

Assume an agent Ag with the knowledge above, plus some facts about Potira and
Ivoti 7. Potira is a famous child, and Ivoti is a famous soccer player in treatment for
drugs dependency:

child(potira). famousPerson(potira).
famousPerson(ivoti). event(ivoti, treatmentForDrugsDependency).

Figure 1 illustrates, with obvious abbreviations, the possible attacks of arguments
for “privacy of Potira’s life” over Args(PPL). The notation for that figure is as fol-
lows: Arguments are represented as nodes. A solid line from argument A to argument
B means “A attacks B”, a dotted line from A to B means “A is built based on B”, and
a line with dashes means “A reinstates B”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptable argument”, which are w.r.t.
the set of arguments of P . Then we can presume both the status of the arguments and
the truth value of the conclusions of PPL.
7 The following names are from Native South American, more specifically from the Tupi-
Guarani family, Potira and Ivoti both mean “flower”.



72 I. Carnevale de Almeida and J.J. Alferes

As
ch(p)

As
fP (p)

As
pe(p)

A′s
pe(p)

As
fOMA(p)

A′′s
hP (p)

As
hP (p)

A′s
hP (p)

As
¬hp(p)

Aw
¬hP (p)

As
pLE(p)

Fig. 1. Acceptable arguments in Args(PPL) for Potira

The argument for “Potira has no Privacy” (As
¬hp(p)) and also the arguments for

“Potira has privacy” (As
hp(p),A

′s
hp(p),A

′′s
hp(p)) are contradictory

s,w
PPL; the argument “Por-

tira has her personal life exposed” (As
pLE(p)) is either based-on-contradiction

s,w
PPL and

overruleds,w
PPL. The other arguments are non-contradictory

s,w
PPL. Therefore, the truth val-

ues for conclusions about Potira are as follows:

– fP (p), ch(p), fOMA(p) and pe(p) are non-contradictorys,w
PPL;

– hp(p) and ¬hp(p) are both (trues,w
PPL and) contradictory

s,w
PPL and false

s,w
PPL; and

– pLE(p) is both based-on-contradictions,w
PPL and false

s,w
PPL.

Moreover, the truth values for conclusions regarding Ivoti are as follows:

– fP (i), pe(p) and fOMA(i) are non-contradictorys,w
PPL;

– hp(i) and ¬hp(i) are both contradictorys,w
PPL and false

s,w
PPL; and

– “There is falsity in PPL” (i.e. ⊥) is both (trues,w
PPL and) contradictorys,w

PPL and
falses,w

PPL. Then
– ev(i, TFDD) and pLE(i) are both based-on-contradictions,w

PPL and false
s,w
PPL.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 73

3 A proof for an argument

Though the declarative semantics just exposed may rely on an iterative procedure, its
usage for computing arguments may not always be appropriate. This is specially the
case when we are only interested in the proof for a (query) argument, rather than all
acceptable arguments, as is obtained by the iterative process. Such a query oriented
proof procedure can be viewed as conducting a “dispute between a proponent player
and an opponent player” in which both proponent and opponent exchange arguments.
In its simplest form, the dispute can be viewed as a sequence of alternating arguments:

PR0, OP0, PR1, . . . , PRi, OPi+1, PRi+2, . . .

The proponent puts forward an initial argument PR0. For every argument PRi put for-
ward by the proponent, the opponent attempts to respond with an attacking argument
OPi+1 against PRi. For every attacking argumentOPi+1 put forward by the opponent,
the proponent attempts to counter-attack with a proposed argument PRi+2 againstOPi.
To win the dispute, the proponent needs to have a proposed argument against every op-
posing argument of the opponent. Therefore, a winning dispute can be represented as a
dialogue tree, which represents the top-down, step-by-step construction of a proof tree.
We follow [15]’s proposal, which defines a proof for an argument AL as a dialogue tree
for AL. However, our definition of dialogue tree is in accordance with the acceptability
of the arguments of an ELPd P (see Def. 5):

A proposed argument AL ∈ Argsp(P ) is acceptable if all of its opposing
arguments inArgso(P ) are attacked by acceptable arguments fromArgsp(P ).

To define a dialogue tree for an argument AL we need first a definition of dialogue
for an argument. A dialogue for AL is a sequence of PR and OP moves of proposed
arguments and opposing arguments, such that the first PR move is the argument AL.
Each OP (resp. PR) move of a dialogue consists of an argument from Argso(P )
(resp. Argsp(P )) attacking the previous proposed (resp. opposing) argument in such
a dialogue. Intuitively, we can see that every PR move wants the conclusion of AL to
be acceptable, and each OP move only wants to prevent the conclusion of AL from
being acceptable. In the case of PR moves, we can further say that if we impose a
restriction that proposing arguments cannot be used more than once in a sequence of
moves of a dialogue, then the dialogue will have a finite sequence of PR and OP
moves. Therefore, none of the proposed arguments can be used more than once in the
same dialogue, but any of the opposing arguments can be repeated as often as required
to attack a proposed argument.

Definition 11 (dialoguep,o
AL
). Let P be an ELPd, p (resp. o) be the kind (strong or weak)

of a proposed (resp. an opposing) argument of P , andArgsp(P ) andArgso(P ) be the
set of p-arguments and o-arguments of P , respectively. A dialogue p o (in P ) for an
argument AL ∈ Argsp(P ), called dialoguep,o

AL
, is a finite non-empty sequence of m

moves movei = ALi
(1 ≤ i ≤ m) such that

1. move1 = AL



74 I. Carnevale de Almeida and J.J. Alferes

2. for every 1 < i ≤ m, ALi
attacks ALi−1

and
– if i is odd then ALi

∈ Argsp(P ) and there is no odd j < i such that ALj
=

ALi
, or

– if i is even then ALi
∈ Argso(P ).

We say that movei is odd if i is odd; otherwise, movei is even.

A dialogue forAL succeeds if its last move is a PRmove. In this proposal, we want
to guarantee that a dialogue tree for an argument AL is finitary (cf. Prop. 2). Neverthe-
less, we only consider grounded finite ELPd in order to relate the declarative semantics
(presented in the previous section) to this proposal of operational semantics. By con-
sidering this, every dialogue in such a dialogue tree finishes because there will always
be a last move PR (resp. OP ) in such a dialogue, so no opposing (resp. proposed)
argument against it exists. For non-grounded (infinite) programs, there may be (failed)
dialogues with an infinite sequence of moves. In such a case, these dialogues should
be considered failures, and the argument for such a dialogue tree should be deduced
as defensible. The main problem of such an approach is detecting an infinite sequence
of moves in a dialogue. However, the following definition will consider cases of both
‘grounded finite ELPd’ and ‘non-grounded (infinite) ELPd’.

Definition 12 (The Status of a dialogue). Let P an ELPd. A dialogue p o (in P ) for
an argument AL ∈ Argsp(P ) is completed iff its last move is m, and

– if m is odd then there is no argument in Argso(P ) attacking ALm
, or

– if m is even then there is no argument in Argsp(P )− Sp attacking ALm
where Sp

is the set of all ALj
in the sequence such that j is odd

(or it is infinite). A completed dialogue is failed iff its last move is odd (or it is infinite);
otherwise, it succeeds.

Note that a dialoguep,o
AL

in P and the lfp(F p,o
P ) “grow up” in different ways. In the

former, an argument A in the last move, movef , is not attacked by any argument in
Args(P ). Since A attacks the previous move,movef−1, we can say that the argument
B in movef−2 was reinstated by A. Thus, each movei (1 ≤ i < f − 1) is reinstated
by movei+2. The latter evaluates argument A as acceptable in the first iteration of the
characteristic function F p,o

P . In the second iteration, A reinstatesB, so thatB is accept-
able and might reinstate other arguments in all following iterations. We can further say
that dialoguep,o

AL
decreases (in a top-down way) and lfp(F p,o

P ) increases (in a bottom-up
way) the set of evaluated arguments.

Proposition 4. Let movem = AL be the last move of a succeeded dialoguep,o
A′

L

in P .
Then, AL ∈ F p,o

P (∅).

A dialogue tree DT for AL is held between a proposed argument PR and its op-
posing argument OP against PR, where the root of DT is AL. The dialogue tree DT
considers all possible ways in which AL can be attacked because each branch ofDT is
a dialogue for AL, i.e. every single dialogue for AL is built because we should consider
the overall arguments in Args(P ) to deduce the status of AL. The dialogue tree DT
for an argument AL succeeds if every dialogue of DT succeeds.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 75

Definition 13 (DT p,o
AL
). Let P be an ELPd, p (resp. o) be the kind (strong or weak) of

the proposed (resp. opposing) argument ofArgs(P ), andArgsp(P ) (resp.Argso(P ))
be the set of p-arguments (o-arguments) of P . A dialogue tree p o (in P ) for AL ∈
Argsp(P ), called DT p,o

AL
, is a finite tree of moves movei = ALi

(i > 0) such that

1. each branch of DT p,o
AL

is a dialoguep,o
AL
, and

2. for all i, if movei is
– even then its only child is a p-argument attacking ALi

∈ Argso(P ), or
– odd then its children are all o-arguments attacking ALi

∈ Argsp(P )

A DT p,o
AL

succeeds iff all branches (i.e. all dialoguep,o
AL
) of the tree succeeds.

Based on the second condition of Definition 13, we might obtain more than one
dialogue tree for an argument. This occurs because only one proponent’s move is built
for each opponent’s move of a dialogue tree. For instance,

Example 2. Let P = {p ← not a; a ← not b, not c; a ← not d; b; c ← not g; g}.
There are two possible DT s,s

Ap
in P : the first dialogue tree does not succeed because

there is a last move which is an o-argument, viz [a ← not b]; the second one also does
not succeed because every last move is an o-argument, viz [g] and [a ← not d].

At this point we can relate, for grounded finite programs, the results from a DT p,o
AL

to the status of the argument AL (see Def. 7), as follows:

Proposition 5. An argument Ap
L in a grounded finite P is

– justifiedp,o
P iff there exists a successful DT p,o

AL

– overruledp,o
P iff for all DT p,o

AL
: there exists a move2 = Ao

L′ such that DT o,p
AL′

suc-
ceeded

– defensiblep,o
P iff it is neither justifiedp,o

P nor overruledp,o
P .

The following example illustrate the concepts presented in Proposition 5.

Example 3. Let P2 = {a ← not b; ¬a; b; ¬b; c; ⊥ ← not c}. On the top of Figure 2,
it is illustrated the possibleDTw,w

AL
in P2. Note that each dialogue tree does not succeed

because its last move is an o-argument. Nevertheless, all arguments are defensiblew,w
P2

because none of these last moves are justifiedw,w
P2 . On the bottom of the Figure 2 it is

also illustrated the possibleDT s,w
AL

in P2. In such a case, all arguments are justifieds,w
P2 .

Proposition 6. A justifieds,w
P argument As

L in a finite ground P is

– contradictorys,w iff L is the symbol ⊥, or different from ⊥ and there exists at least
a successful DT s,w

A¬L
; or

– based-on-contradictions,w iff As
H is not contradictorys,w and

• there exists a contradictorys,w As
L′ (with a rule L′ ← Body) such that L ∈

Body, or
• there exists anL′′ in the head of a rule inAs

L such thatAs
L′′ is contradictorys,w,

or



76 I. Carnevale de Almeida and J.J. Alferes

P : [a ← not b, not ¬a, not ⊥]

O : [b ← not ¬b, not ⊥] O : [¬a ← not a, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [c ← not ¬c, not ⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : [b ← not ¬b, not ⊥]

O : [¬b ← not b, not ⊥]

P : [¬b ← not b, not ⊥]

O : [b ← not ¬b, not ⊥]

P : [¬a ← not a, not ⊥]

O : [a ← not ¬a, not ⊥]

P : [b]

P : [¬b]

P : [c]

P : [¬a]

P : [a ← not b]

O : [b ← not ¬b, not ⊥]

P : [¬b]

P : [c; ⊥ ← c]

Fig. 2. SomeDT w,w
AL

andDT s,w
AL

in {a ← not b;¬a; b;¬b; c;⊥ ← not c}



Argumentation-based Proof for an Argument in a Paraconsistent Setting 77

• for all dialogues,w
AH

in DT s,w
AH

: the last move has not a non-contradictorys,w

argument; or
– non-contradictorys,w, otherwise.

To conclude about the truth value of an objective literal L we evaluate more than
one dialogue tree of each argument for such L:

Proposition 7. An objective literal H is

– truep,o
P iff there exists a successful DT p,o

AH
. Thus, H is

• contradictoryp,o
P iff for all successful DT p,o

AH
: Ap

H is contradictoryp,o
P , or

• based-on-contradictionp,o
P iff for all successfulDT p,o

AH
:Ap

H is based-on-contra-
dictionp,o

P , or
• non-contradictoryp,o

P iff there exists a successful DT p,o
AH

such that Ap
H is non-

contradictoryp,o
P ;

– falsep,o
P (in P ) iff ∀DT p,o

AH
: Ap

H is overruledp,o
P ;

– undefinedp,o
P (in P ) iff ∀DT p,o

AH
: Ap

H is neither justifiedp,o
P nor overruledp,o

P .

Example 4. Following Example 3, all literals of P2 are justifieds,w
P2 . However, all liter-

als of P2 are undefinedw,w
P2 .

4 Conclusions and Further Work

Our argumentation semantics is based on the argumentation metaphor, in the line of
the work developed in [9, 15, 2, 18] for defining semantics of single extended logic pro-
grams. In these argumentation-based semantics, rules of a logic program are viewed as
encoding arguments of an agent. More precisely, an argument for an objective literal L
is a sequence of rules that “proves” L, if all default literals (of the form not L′) in the
body of those rules are assumed true. In other words, arguments encoded by a program
can attack – by undercut – each other. Moreover, an argument for L attacks – by rebut
– another argument if this other argument assumes its explicit negation (of the form
¬L). The meaning of the program is so determined by those arguments that somehow
(depending on the specific semantics) can defend themselves from the attacks of other
arguments.

We generalise [15]’s definition of argument by proposing two kind of arguments,
viz. strong arguments and weak arguments. By having two kinds of arguments, viz.
strong arguments and weak arguments, the attack by undercut is not needed. Simply
note that rebut are undercut attacking weak arguments. Therefore, rebut is not consid-
ered in our proposal since, as already shown in [17, 6, 18], it can be reduced to under-
cut by considering weaker versions of arguments. [2] also defines a methodology for
transforming non-exact, defensible rules into exact rules with explicit non-provability
conditions and shows that this transformation eliminates the need for rebuttal attacks
and for dealing with priorities in the semantics.

Similar to [9, 15] we formalise the concept of acceptable arguments with a fixpoint
operator. However, the acceptability of an argument might have different results and it
depends on which kind of interaction between (strong and weak) arguments is chosen.
Therefore, our argumentation semantics assigns different levels of acceptability to an



78 I. Carnevale de Almeida and J.J. Alferes

argument for an objective literal L and so it can be justified, overruled, or defensible.
Moreover, a justified argument for L can be contradictory, based on contradiction, or
non contradictory. Consequently, a truth value ofL can be true (and contradictory, based
on contradiction, or non contradictory), false or undefined.

Since our argumentation semantics is parametrised by the kind of interaction be-
tween arguments, we obtain results from a consistent way of reasoning to a paraconsis-
tent way of reasoning. A consistent way of reasoning neither concludes that L nor ¬L
are true, even if one of these is a fact. A paraconsistent way of reasoning can conclude
L is true even if it also concludes that ¬L is true. Given that we consider denials in
the agent’s knowledge base – in a conflicting situation – a consistent way of reasoning
cannot conclude that a given L is true if L is related with the presence of the falsity; a
paraconsistent way of reasoning might conclude L even it is related with falsity. Fur-
thermore, our argumentation semantics (and the corresponding proof procedure) suc-
ceeds in detecting conflicts in a paraconsistent extended logic program with denials, i.e.
it handles with contradictory arguments and with the presence of falsity.

For this proposal we have made two implementations, both in XSB System (by re-
sorting to tabling) [19] which computes the argumentation Prolog implementation over
an agent’s knowledge base. One bottom-up implementation of the semantics, follow-
ing closely its declarative definition; another of query-driven proof procedures for the
semantics. The proof procedure has also been implemented by using the toolkit Inter-
prolog [4], a middle-ware for Java and Prolog which provides method/predicate calling
between both.

As we mentioned, the original semantics, defined in [5], is a generalisation of the
one presented here to a distributed argumentation-based negotiation semantics. As fu-
ture work we intend to generalise this (centralised) proof procedure to a distributed
proof procedure seeing the negotiation process as a forest of dialogue trees, rather than
a single tree as here.

References

1. J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system for non-
monotonic reasoning. Journal of Automated Reasoning, 14(1):93–147, 1995.

2. A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Journal of Artificial Intelligence, 93(1–2):63–101, 1997.

3. L. M. Pereira e M. Schroeder C. V. Damásio. Revise: Logic programming and diagnosis.
In U. Furbach J. Dix and A. Nerode, editors, 4th International Conference (LPNMR’97),
volume LNAI 1265 of Logic Programming and NonMonotonic Reasoning, pages 353–362.
Springer, July 1997.

4. M. Calejo. Interprolog: Towards a declarative embedding of logic programming in java.
In J. J. Alferes and J. Leite, editors, 9th European Conference (JELIA 2004), LNAI, pages
714–71. Springer, 2004. Toolkit available at http://www.declarativa.com/InterProlog/.

5. Iara Carnevale de Almeida and José Júlio Alferes. An argumentation-based negotiation
framework. In K. Inoue, K. Satoh, and F Toni, editors, VII International Workshop on Com-
putational Logic in Multi-agent Systems (CLIMA), volume 4371 of LNAI, pages 191–210.
Springer, 2006. Revised Selected and Invited Papers.



Argumentation-based Proof for an Argument in a Paraconsistent Setting 79

6. Iara de Almeida Móra and José Júlio Alferes. Argumentative and cooperative multi-agent
system for extended logic programs. In F. M. Oliveira, editor, XIVth Brazilian Symposium
on Artificial Intelligence, volume 1515 of LNAI, pages 161–170. Springer, 1998.

7. P. Dung, P. Mancarella, and F. Toni. Computational Logic: Logic Programming and Beyond
– Essays in Honour of Robert A. Kowalski, volume 2408, chapter Argumentation-based proof
procedures for credulous and sceptical non-monotonic reasoning, pages 289–310. Springer,
2002.

8. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
10th International Conference on LP (ICLP), pages 616–630. MIT Press, 1993.

9. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Journal of Artificial Intelligence,
77(2):321–357, 1995.

10. P. M. Dung, R. Kowalski, and F. Toni. Argumentation-theoretic proof procedures for default
reasoning. Technical Report. Available at http://www.doc.ic.ac.uk/˜ft/PAPERS/arg03.pdf,
May 2003.

11. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren and Szeredi,
editors, 7th International Conference on LP (ICLP), pages 579–597. MIT Press, 1990.

12. R. P. Loui. Process and policy: Resource-bounded non-demonstrative reasoning. Journal of
Computational Intelligence, 14:1–38, May 1998.

13. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit
negation. In European Conference on Artificial Intelligence (ECAI), pages 102–106. John
Wiley & Sons, 1992.

14. J. L. Pollock. Defeasible reasoning with variable degrees of justification. Journal of Artificial
Intelligence, 133:233–282, 2002.

15. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

16. H. Prakken and G. A. W. Vreeswijk. Handbook of Philosophical Logic, volume 4, chapter
Logics for Defeasible Argumentation, pages 218–319. Kluwer Academic, 2 edition, 2002.

17. Michael Schroeder, Iara de Almeida Móra, and José Júlio Alferes. Vivid agents arguing
about distributed extended logic programs. In Ernesto Costa and Amilcar Cardoso, edi-
tors, Progress in Artificial Intelligence, 8th Portuguese Conference on Artificial Intelligence
(EPIA), volume 1323 of LNAI, pages 217–228. Springer, 1997.

18. R. Schweimeier and M. Schroeder. Notions of attack and justified arguments for extended
logic programs. In F. van Harmelen, editor, 15th European Conference on Artificial Intelli-
gence. IOS Press, 2002.

19. T. Swift and et all. Xsb - a logic programming and deductive database system
for unix and windows. Technical report, XSB project, 2003. Toolkit available at
http://xsb.sourceforge.net/.

20. G. A. W. Vreeswijk. Abstract argumentation systems. Journal of Artificial Intelligence,
90(1–2):225–279, 1997.


