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Abstract. Well Founded Semantics for logic programs extended with
eXplicit negation (W FSX) is characterized by that, in any model, when-
ever —a (the explicit negation of a) holds, then ~a (the negation by
default of a) also holds.

When explicit negation is used contradiction may be present (e.g. a and
—a both hold for some a) and thus no semantics is given to the program.
We introduce here the notion of removing some contradictions, through
identifying the set of models obtained by revising closed world assump-
tions. One such unique model is singled out as the contradiction free
semantics (CRSX). When contradiction does not arise, the contradic-
tion removal semantics coincides with WFSX.

1 Introduction

Recently, several authors have stressed and showed the importance of having
an explicit second kind of negation within logic programs, for use in deductive
databases, knowledge representation, and nonmonotonic reasoning [2, 4, 5, 7, 6,
14, 15, 16, 23, 21].

Some proposals for extending logic programming semantics with a second
kind of negation has been advanced. One such extension is the Answer Set se-
mantics (AS) [4], which is shown to be an extension of Stable Model (SM)
semantics [3] from the class of logic programs [8] to those with a second form
of negation. In [7] another proposal for such extension is introduced, based on
the SM semantics, where implicitly a preference between negative information
(exceptions) over positive information is assumed. However AS semantics is not
well founded. The meaning of the program is defined as the intersection of all
answer sets and it is known that the computation of this intersection is compu-
tationally expensive. Another extension to include a second kind of negation is
suggested by Przymusinski in [20]. Although the set of models identified by this
extension enjoys the well founded property, it gives some less intuitive results [1]
with respect to the coexistence of both forms of negation. Based on the XSM
semantics, Przymusinski [21] also introduces the Stationary semantics where the
second form of negation is classical negation. But classical negation also entails
that the logic programs under Stationary semantics no longer admit a procedural
reading.



On the other hand, WFSX! (Well Founded Semantics with eXplicit nega-
tion) [9], which we prefer, is an extension to Well Founded Semantics [22] in-
cluding a second form of negation called explicit negation, preserving the well
founded property (c¢f.[1] for a comparison of the above approaches) and proce-
dural reading. Furthermore, explicit negation is characterized by that, in any
model, whatever the classical literal !, whenever =l holds ~I, i.e. the negation
by default or implicit negation of ! also holds, and ! is false, thus avoiding the
less intuitive results concerning the relation between the two forms of negation
(cf. [1] for other approaches).

When a second form of negation is introduced contradiction may be present
(i.e. L and =7 hold for some 1) and no semantics is given by WFSX. We define here
the C' RSX semantics, extending WFSX by introducing the notion of removing
some contradictions and identifying the models obtained by revising closed world
assumptions supporting those contradictions. One unique model, if any such
revised model exists, is singled out as the contradiction free semantics. When
no contradiction is present C RS X semantics reduces to W FSX semantics. This
work is an improvement and above all a generalization of [10] to programs with a
second kind of non—pseudo negation. It captures a wide variety of nonmonotonic
reasoning forms in logic programming, as exhibited elsewhere [17].

Furthermore, under WFESX programs admit a procedural logic programming
reading, which is not the case if truly classical negation plus material implication
are used, as in [21], where case analysis is condoned. Under W FSX rules in the
program are unidirectional (contrapositives are not implicit), maintaining the
procedural flavour; the rule connective, «, is not material implication, but is
rather like an inference rule.

The paper is organized as follows: first we briefly review the W FSX seman-
tics introduced in [9] and present some examples when W FSX semantics is used.
Since some programs may have no semantics, next we introduce the CRSX, a
process of identifying negative literals which are true by the CW A inference rule,
as sources of contradiction, and show how contradiction may be removed. For
each way of removing contradiction in program P we construct a program P’
such that WFSX(P') is consistent. We then present some properties concerning

the CRSX semantics defined.

2 Language

Given a first order language Lang [18], an extended logic program is a set of
rules of the form

H‘_Bh-"1B1'1.7NC’V17-"1NCM m>0,n >0

where H, By,...,By,C1,...,Cp are classical literals. A (syntactically) classical
literal (or explicit literal) is either an atom A or its explicit negation —A. We
also use the symbol = to denote complementary literals in the sense of explicit

! In [12, 13] it is shown how WFSX relates to default theory.



negation. Thus =—A4 = A. The symbol ~ stands for negation by default?. ~L
is called a default literal. Literals are either classical or default. A set of rules
stands for all its ground instances w.r.t. Lang. When n = m = 0 we may simply
write H instead of H « .

As in [18], we expand our language by adding to it the proposition u such
that for every interpretation I, I{u) = 1/2. By a non-negative programn we mean
a program whose premises are either classical literals or u. Given a program
P we denote by Hp (or simply H) its Herbrand base. If S is a set of literals
{Ly,....L,}, by ~S we mean the set {~L|L € S}.

If S is a set of literals then we say S is contradictory (resp. inconsistent) iff
there is classical literal L such that {L,—~L} C S (resp. {L,~L} C S). In this
case we also say that S is contradictory w.r.t. to L, (resp. S is inconsistent w.r.1.
to L). S is agnostic w.r.t. L iff neither L € § nor ~L € S.

3 WFSX overview

In this section we briefly review W FSX semantics for logic programs extended
with explicit negation. For full details the reader is referred to [9].
WFSX follows from one basic ”coherence” requirement:

-L =>~L (1)
i.e. (if L is explicitly false, L must be false) for any explicit literal L.

Ezample 1. Consider program P = {a «—~b, b—~a, —a —}.

If —a were to be simply considered as a new atom symbol, say ', and WFS
used to define the semantics of P (as suggested in [19]), the result would be
{—a,~=b}, so that —a is true and @ is undefined. We insist that ~a should hold,
and a not, because —a does. Accordingly, the WFSX of P is {-a,b, ~a, ~=b},
since b follows from ~a.

We begin by providing a definition of interpretation for programs with ex-
plicit negation which incorporates coherence from the start.

Definition 1 Interpretation. By an interpretation I of a language Lang we
mean any set TU ~F3, where T and F are disjoint subsets of classical literals
over the Herbrand base, and if =L € T then L € F (coherence)4. The set T
contains all ground classical literals true in I, the set F’ contains all ground
classical literals false in I. The truth value of the remaining classical literals is
undefined (The truth value of a default literal ~L is the 3-valued complement of

L)

2 This designation has been used in the literature instead of the more operational
"negation as failure (to prove)”. Another appropriate designation is "implicit nega-
tion”, in contradistinction to “explicit negation”.

3
By ~{ai,...,a,} we mean {~ai,...,~a,}.

* For any literal L, if L is explicitly false L must be false. Note that the complementary
condition "if L € T then =L € F” is implicit.



We next extend with an additional rule the P modulo I transformation of
[18], itself an extension of the Gelfond-Lifschitz modulo transformation, to ac-
count for coherence.

Definition 2 P/I transformation. Let P be an extended logic program and
let I be an interpretation. By P/I we mean a program obtained from P by
performing the following three operations for every atom A :

— Remove from P all rules containing a default premise L =~ A such that

Ael

Remove from P all rules containing a non—default premise L (resp. =L) such

that =L € I (resp. L € I).

— Remove from all remaining rules of P their default premises L =~ A such
that ~4 € I.

— Replace all the remaining default premises by proposition u®.

The resulting program P/I is by definition non-negative, and it always has

a unique least(P/I), where least(P/I) is:

Definition 3 Least-operator. We define least(P), where P is a non-negative
program, as the set of literals TU ~F obtained as follows:

— Let P’ he the non-negative program obtained by replacing in P every nega-
tive classical literal =L by a new atomic symbol, say '—_L’.

— Let T'U ~F' be the least 3-valued model of P’.

— TU ~F is obtained from T'U ~F’ by reversing the replacements above.

The least 3-valued model of a non-negative program can be defined as the
least fixpoint of the following generalization of the van Emden—I owalski least
model operator ¥ for definite logic programs:

Definition 4 ¥* operator. Suppose that P is a non-negative program, I is an
interpretation of P and A is a ground atom. Then ¥*(I) is an interpretation
defined as follows:

— U*(I)(A) = 1 iff there is a rule A «— A;,..., A, in P such that I(4;) =1
for all 1 < n.

— U*(I)(A) = 0 iff for every rule 4 — Aq,.... A, thereis an i < n such that
I(4;) =0.

— ¥*(I)(A) =1/2, otherwise.
To avoid incoherence, a partial operator is defined that transforms any non-

contradictory set of literals into an interpretation, whenever contradiction® is
not present.

Definition 5 The Coh operator. Let [ = TU ~F be a set of literals such that
T is not contradictory. We define Coh(I) = IU ~{=L | L € T}.

5 The special proposition u is undefined in all interpretations.
6 We say a set of literals S is contradictory iff for some literal L, L € S and =L € S.



Definition 6 The ¢ operator. Let P be a logic program and I an interpre-
tation, and let J = least(P/I). If Coh(J) exists we define @p(I) = Coh(J).
Otherwise @ p(I) is not defined.

Example 2. For the program of example 1 we have
P/{"Cl, bv ~, N_'b} = {b —;a (_}‘

least(P/{=a,b, ~a,~=b}) = {-a,b, ~a}

and:

Coh({-a,b,~a}) = {—a,b, ~a,~=b}.

Definition 7 WFS with explicit negation. An interpretation I of an exten-
ded logic program P is called an Extended Stable Model (XSM) of P iff & (1) =
I. The F-least Extended Stable Model is called the Well Founded Model. The
semantics of P is determined by the set of all X.SMs of P.

Ezample 3. Let P = {a «—~b,~c;b —~a;—c —~d}. This program has a least
model My = {~d,—c,~c,~=a,~=b,~=d} and two Extended Stabel Models
My = My U{~a,b} and M3 = My U {a,~b}. Considering model M; we have for
P/M; ={a— wb—uc <}, and

least(P/My) = J = {~d,d,~a',~' ~d' | ~c} = {~d, ~—d, =e, ~e, ~ma, ~=b}

Exzample 4. Let P be:
a—~a (i)
b —e~a (ii)
-b— (i)

After the transformation, program P’ has a rule b’ «, and there is no way in
proving ~b from rules (i) and (ii). And we have least(P'/{V/, ~b,~a'}) = {/, ~
a'} = M which corresponds to the model {=b, ~=a} if the coherence principle is
not applied. In our case we have C'oh(M) = {=b, ~b, ~—a} which is the intended
result.

Definition 8 Contradictory program. An extended logic program P is con-
tradictory iff it has no semantics, i.e. there exists no interpretation I such that
Pp(I)=1.

4 Revising contradictory extended logic programs

Once we introduce explicit negation programs are liable to be contradictory:

Ezample 5. Consider program P = {a « ;=a «—~b}. Since we have no rules for
b, by CW A it is natural to accept ~b as true. By the second rule in P we have
—a, leading to an inconsistency with the fact a. Thus no set containing ~b may

be a model of P.



We argue that the CW A may not be held of atom b since it leads to a contra-
diction. We show below how to revise” this form of contradiction, by making a
suitable revision of the incorrect C'W A on b. The semantics we introduce iden-
tifies {a, ~—a} as the intended meaning of P, where b is revised to undefined.
Assuming b false leads to a contradiction; revising it to true instead of undefined
would not minimize the revised interpretation.

4.1 Contradictory Well Founded Model

In order to revise possible contradictions we need to identify those contradictory
sets implied by applications CW A. The main idea is to compute all consequences
of the program, even those leading to contradictions, as well as those arising from
contradictions. The following example provides an intuitive preview of what we
intend to capture:

Ezample 6. Consider program P :

a—n~b(1) dea (i)
g — ~c (i) e —a (iv)

1. ~b and ~c hold since there are no rules for either b or ¢

2. —a and @ hold from 1 and rules (i) and (ii)

3. ~a and ~=a hold from 2 and inference rule (1) (cf. page 3)

4. d and e hold from 2 and rules (iii) and (iv)

5. ~d and ~e hold from 3 and rules (iii) and (iv), as they are the only rules for
d and e

6. ~~d and ~—e hold from 4 and inference rule (1) (cf. page 3).

The whole set of literals is then:
{~b, ~e,ma, a, ~a, ~oma, dy e, ~od, e, ~omd, ~ome )

N. B. We extend the language with the special symbol L. For every pair
of classical literals {L,—L} in the language of P we implicitly assume a rule

1« L I8

Definition 9 Pseudo—interpretation. A pseudo-interpretation (or p—inter-
pretation for short) is a possibly contradictory set of ground literals from the
language of a program.

We extend the © operator[18] from the class of interpretations to the class of
p—interpretations, and we call this the ©% operator (x standing for eXtended).

T We treat contradictory programs extending the approach of [10, 11].

8 This is not strictly necessary but simplifies the exposition. Furthermore, without loss
of generality, we only consider rules L « L, =L for which rules for both L and —L
exist in P. We also use the notation L to denote the head of rule L «— L, —L.



Definition 10 The ©* operator. Let P be a logic program and .J a p—inter-
pretation. The operator ©F : 7— I on the set 7 of all 3-valued p interpretations
of P is defined as follows: If I € 7 is a p—interpretation of P and A is a ground
classical literal then ©%(I) is the p—interpretation defined by:

1. @4%(I)(A) = 1iff thereis a rule A — Ly,...,L, in P such that for all i <n
either j(L,) =1, or L; is positive and I(L;) = 1;
2. O4(I)(A) = 0 iff one of the following holds:
(a) for every rule A — Ly,...,L, in P there is an ¢ < n, such that either
j(L;) =0, or L; is positive and I(L;) = 0;
(b) J(=A) =1;
3. ©3(I)(A) = 1/2 otherwise.

Note that the only difference between this definition and the definition of @
operator introduced in [18] is coundition (2b) capturing the coherence require-
ment, or inference rule (1). Furthermore, since it is defined over the class of
p—interpretations, it allows that for a given literal L, we may have @%(I)(L) =1

as well as ©%(I)(L) = 0.

Proposition 11. For every p interpretation .J, the operator ©F is monotone

and has a unique least fixed point given by (~)§“”, also denoted by £27(.J)°.

Definition 12 p—model. Given a program, a p—model is a p—interpretation [
such that:

I=0°(I) (2)

Remark. Note that if a p-model M is contradictory w.r.t. to L then M is incon-
sistent w.r.t. to L by virtue of inference rule (1), although the converse is not
true.

Definition 13 Well Founded Model. The pseudo Well Founded Model Mp
of P is the F least p model.

The non minimal models satisfying (2) above (pseudo) Extended Models (X M's
for short). To compute the p-model Mp we define the following transfinite se-
quence {I,} of fixed points:

Io == <q),q)>
Lopr = 27(L) = 67 1"
Is = Uﬁ,<6 1, for limit ordinal 6

Equivalently, the pseudo well founded model Mp of P is the F least fixed
point of (2) and is given by Mp = I, = 2°1*,

Definition 14. A program P is contradictory iff L € Mp.

% Recall [18] that the F-least interpretation used to compute the least fixed point of
O3 is ~Hp.



Ezample 7. Recall the program of example 6:
P={a—~b;na—~c;d—a;e— na}.

(‘)}S = {~a, ~ma, ~b, b, e, ~vme, ~vd, ~oad e e )
Q)2 = 01,(0)) = {~b,~e,~vmb, e, ~vmd, e = O = 1
0} = 01,(0)) = {a,d,=a,e,~b, ~mb, ~c, e, mmd, ~me} = O = 1
(“)}j = 0Oy, ((—)}2l ) = {a, ~ma,—a, ~a,d, ~=d, e, ~=e, ~b, ~omb, ~e, ~mc, ~od, ~od, et =
= (‘);2“ =1I
@;32 = @13(@1,;) = {a, ~ma, —a, ~a, d, ~—d, e, ~=e, b, ~v=b, ~ve, ~mey ~vd, ~v=d, ~ve} =
=0 =L=1

so the program is contradictory.

4.2 Removing the contradiction

In order to get revised non—contradictory consistent models we must know where
contradiction arises from and prevent it. In this section we identify sets of default
literals true by C'WW A whose revision to undefined can remove contradiction, by
withdrawing the support of the CW As on which the contradiction depends.

Definition 15 Dependency set. A Dependency Set of a literal L in a program
P, represented as DS(L), is obtained as follows:

1. If L is a classical literal:

(a) if there are no rules for L then the only DS(L) = {L}.

(b) for each rule L «— By,...,By(n > 0) in P for L, there exists one
DSy(L) = {L}UJ; DS;i)(B;) for each different combination k of one
7(i) for each 1.

2. For a default literal ~L :

(a) if there are no rules in P for L then a DS(~L) = {~L}.

(b) if there are rules for L then choose from every rule for L a single literal.
For each such choice there exist several DS(~L); each contains ~L and
one dependency set of each default complement!® of the chosen literals.

(c) if there are rules for =L then there are, additionally, dependency sets

DS(~L) = {~L}U DSi(~L) for each k.

Ezample 8. P = {a —~b ;-a «—~c ;d — a ;e — —a}. In this case we have the
following dependency sets:

DS(~b) = {~b} DS (~a) = {~a,b}
DS(QC) = {~c} DS, (~a) = {~a,—a, ~c}
DS(a) = {a,~b}

DS(—a) = {-a,~c}

DSy (~d) = {~d}U DS (~a) ={~d,~a,b}

DSy(~d) = {~d} U DSs(~a) = {~d,~a,—a,~c}

DS(L,) ={Lla,a,a,~b, ~c}

10 The default complement of a classical literal L is ~L; that of a default literal ~L is

L.



Definition 16 Support of a literal. A support S5y (L) w.r.t. to a model M
is a non empty dependency set DS(L) such that DS(L) C M. If there exists a
SSn (L) we say that L is supported in M.

For simplicity, a support w.r.t. the pseudo WFM Mp of P is represented by
SS(L).

Definition 17 Support of a set of literals. A support w.r.t. to a model M
is:

SSur({Lis--- Lu}) = SSum i (Li)

For each combination & of j(i) there exists one support.

With the notion of support we are able to identify which literals support
a contradiction, i.e. the literal L. In order to remove a contradiction we must
change the truth value of at least one literal from each support set of L. One
issue is for which literals we allow to initiate change of their truth values; another
is how to specify a notion of minimal change.

As mentioned before, we only wish to initiate revision on default literals true
by CWA in a manner made precise later. To identify such rewvising literals we
first define:

Definition 18 Default supported. A default literal ~A is default supported
w.r.t. M if all supports SSu(~A) have only default literals.

Ezample 9. Let P = {-a; a —~b; b — ¢; ¢ — d}. The only support of L is
{=a,a,~b, ~c,~d}, and default supported literals are ~b, ~c, and ~d. Here
we are not interested in revising the contradiction by undefining ~b or ~¢
because they depend on ~d. The reason is that we are attempting to remove
ounly contradictions based on C'W As. Now, the CW A of a literal that is supported
on another depends on the C'W A of the latter.

In order to make precise what we mean we first present two definitions:

Definition 19 Self supported set. A set of default literals S is self supported
w.r.t. a model M iff there exists a SSM(S) =8.

Definition 20 Revising and co—Revising literals. Given a program P with
pseudo well-founded model M p, we define co-R p, the co-revising literals induced
by P, as the set of literals belonging to some minimal self supported set w.r.t.
Mp. We define R p, the revising literals, as the set of co—revising literals L such
that =L € Mp. The next examples motivate these definitions.

Ezample 10. Let P = {=p; p+r~a; —a —~b}.

The co-revising literals are {~a, ~b} and the revising are {~b}. The difference
is that to revise ~a one needs to change the truth value of —a as well, because
of coherence. To revise ~b there is no such need. Revising —a only is not enough
since then ~a becomes true by default.



Ezample 11. In the program of example 9, the self supported sets w.r.t. Mp are
{~b, ~c,~d}, {~c,~d}, and {~d}. Thus the only revising literal is ~d. Note how
the requirement of minimality ensures that only CWA literals not depending on
other CWAs are revising. In particular:

Proposition 21.

1. If there are no rules for L then ~L is a co revising literal.
2. If there are no rules for L nor for =L then ~L is a revising literal.
3. If ~L is co—revising and default supported then it is revising.

An atom can also be false by CW A if in a positive "loop”. Such cases are
also accounted for:

Ezxample 12. Let Py and Py be:

Py ={—a; a —~b; b« b,c}

Py={-a; a —~b; b—b; b—c}

For Py self supported sets are: {~b, ~c}, {~b}, and {~c}. Thus ~b and ~c
are revising. For P, the only minimal self supported set is {~c} thus only ~c is
revising. The only support set of ~b is {~b, ~c}. In P, it is clear that ~b depends
on ~c. So ~b is not revising. In P; the truth of ~b can support itself. Thus ~b
is also revising.

Another class of literals is needed in the sequel. Informally, indissociable
literals are those that strongly depend on each other, so that their truth value
must always be the same. It is impossible to change the truth value of one
without changing the truth value of another. So:

Definition 22 Indissociable set of literals. A set of default literals S is in-
dissociable iff

Vi, ~b €5 ~a € () SSi(~b)

i.e. each literal in S belong to every support of every literal in S.

Proposition 23. If S is a minimal self supported set and the only SS5(5) is S,
then S is an indissociable set of literals.

Ezample 13. In P below, {~a, ~b, ~c} is a set of indissociable literals:
ap — a—b

p —e~a be—c

C—a



Ezample 1. Let P be:

ap — a+—b a+—c

P — ~a b—a

We have:
§S(~e) = {~c}
SS(~b) = {~a,~b, ~c}
SS(~a) = {~a,~b, ~c}

and the unique indissociable set of literals is {~c} which is also the set of revising
literals.

Given the revising literals we find on which the contradiction rests. This is
done by finding the supports of L where revising literals occur only as leaves
(these constitute the corresponding assumption sets):

Definition 24 Assumption set. Let P be a program with (pseudo) WFM Mp
and L € Mp. An assumption set AS(L) is defined as follows, where Rp is the
set of the revising literals induced by P :

1. If L is a classical literal:

(a) if there is a fact for L then the only AS(L) = {}.

(b) foreachrule L «— By,...,By(n > 1)in P for L such that {B;,...,B,} C
Mp, there exists one ASL(L) = |J; AS;(;)(B;) for each different combi-
nation % of one j(7) for each 1.

2. For a default literal ~L :

(a) if ~L € Rp then the only AS(~L)={~L}.

(b) if ~L € co — Rp then there is a AS(~L) = {~L}.

(¢) if ~L & co— Rp then choose from every rule for L a single literal
whose default complement belongs to Mp. For each such choice there
exist several AS(~L); each contains one assumption set of each default
complement of the chosen literals.

(d) if =L € Mp then there are, additionally, assumption sets AS(~L) =
ASy(—L) for each k.

Definition 25. A program P is revisable iff no assumption set of L is empty.

This definition entails a program P is not revisable if L has some support
without co-revising literals.

Ezample 15. Consider P = {—a; a —~b ;b «—~c ;c} with
Mp ={L1,a,~a,—a,~b,c}.

The ounly support of L is SS(L) = {L,a,~a,—a,~b,c}. co— Rp = {}. Thus
AS(L)={} and the program is not revisable.



Definition 26 Removal set. A Removal Set (RS) of a literal L of program P
is a set of literals formed by the union of one non—empty subset from each

ASp(L).

Note that although the program may induce revising literals, it is not enough
for a program to bhe revisable.

In order to make minimal changes that preserve the indissociability of literals
we define:

Definition 27 Minimal contradiction removal sets. Let R be a minimal
removal set of L. A Minimal Contradiction Removal Set of program P is the
smallest set M C'RS such that R C MCRS and MCRS is inclusive of indisso-

ciable literals.

Definition 28 Contradiction removal sets. A contradiction removal set
(or C'RS for short) of a program P is either a MCRS or the union of MCRSSs.

Ezample 16. ex:review P = {a «—~b; b«r~a; —a}.
DS(~a) = {} DS(a) = {~b} DS(~b) = {a}
DS(L,) =DS(a)UDS(~a) D {—a,a,~b}

The Mp is obtained as follows:

Il) = @ 13 = {—|(I,, ~a, N_|b7 b} = 6)}2 Tw
11 = {—|(L,N—|b} = (_,).’II‘UT“’ I4 — {—m,_/,\,a/’,v—,b’b} — (_,);IrsTu:
12 = {_|(I/1N(I,’N_|b} = (-)}1 Tw IF) — 14

Mp = {-a,~a,b,~=b} and L, ¢ Mp; thus the program is non—contradictory.

Ezample 17. Consider P = {a «—~b ;na —~c ;d — a ;e — —a}.
Since ~b and ~c are both revising literals AS(L) = {~b, ~c}. The contra-
diction removal sets are:

CRS; = RS (L) = {~b}
CYR52 = RSQ(J_Q) = {NC}
C'R»Sg = RSg(J_a) = {Nb NC}
Ezample 18. Let P be:
a «—~b —a —n~f
S —n~d =d —n~e

with Mp = {~b, ~=b, ~d, ~e, ~=e, ~f, ~=f, a,—a, ~d, ~a, ~—a}.
Note that ~d is not co revising, since there exists SS(~d) = {~d, —d, ~c}.
The revising literals are ~b, ~e, and ~f. The assumptions sets are:

ASy (L) = {~b, ~e}
ASy(L) = {~b}
AS3(L) = {~b,~f}

Thus the only contradiction removal set is {~b}.



Ezample 19. Consider the program P = {-a; a «~d;~d «—~e}. We have Mp =
{~e,~=e,=d,~d, a,—a,~ =a,~a} which is contradictory. The only revising
literal is ~e and ~d is a co—revising literal. Hence one AS(~d) = {~d} and the

other AS(~d) = {~e}. The only CRS is {~d, ~e}.
4.3 Contradiction Free Programs
Next we show that for each contradiction removal set there is a non-contradictory

program obtained from the original one by a simple update. Based on these
programs we define the CRSX semantics.

Definition 29 CW A inhibition rule. The CW A inhibition rule for an atom
Als A —~A.

Any program P containing a C'W A inhibition rule for atom A has no models
containing ~A.!!

Definition 30 Contradiction free program. For each contradiction removal
set CRS; of a program P we engender the contradiction free program:

Pers, =daef PU{A —~A

~A € CRS;} (3)

Proposition 31. For any contradiction removal sets 7 and j, CRS; C CRS; =
AIPCRS'J- C A’IPGRSi'

Theorem 32 Soundness of contradiction free programs. A contradiction
free program Pcpgs is non contradictory, i.e. it has WFSX semantics, and
Mp.ps C Mp.

Ezample 20. Consider the program P :

a «— ~b —e — ~d

b— ~a,~c ¢+ ~e
The well founded model is
Mp = {1 ~d, ~=d, ~e, ~—e, —c, ¢, ~mic, ~c, ~b, ~=b, a, ~=a}.
The contradiction removal sets are:
CRS, = {~d} CRSy ={~e} CRS; = {~d,~e}
with C' RSy and C'RS, being minimal w.r.t. set inclusion.

' This rule can be seen as the productive integrity constraint «—~A. In fact, since the
W F Semantics implicitly has in it the productive constraint «— A, ~A, the inhibition
rule can be seen as the minimal way of expressing by a program rule that ~A leads
to an inconsistency.



— Pcrs, = PU{d «—~d}, with the unique model
Mp = {~e,~=e, c, ~mc, ~b, ~=b, a, ~—a, ~=d}.
— Pcrs, = PU{e —~e}, with well founded model
Mp = {~d, =c, ~c, ~oma, ~=b, ~=d .
— Pcrs, = PU{e —~e,d —~d} with well founded model
Mp = {~—a,~=b, ~=e, ~=d}.

Definition 33 C'RSX Semantics. Given a revisable contradictory program P
let C'RS; be any contradiction removal set for P. An interpretation I is a CRSX
model of P iff:

I= QSP(",’RS‘i (I) : (4)
The least (w.r.t. C) C’RSX model of P is called the CRW FM model'2.

The contradiction removal semantics logic programs extended with explicit
negation is defined by the WFSX well founded models of the revised programs
defined by (4), representing the different forms of revising a contradictory pro-
gram.

Ezample 21. For program P of example 12 the assumption sets are A5y, = {~b}
and ASy, = {~b, ~c}. Thus the only C'RS is {~b}, and the only CRSX model
is {—a, ~a,~c}. For program P the only assumption set is AS; = {~c}. Thus
the only C'RS is {~c}, and the only CRSX model is {—a, ~a}.

Example 22. Let P be:

a «—n~b b—c

S e ceb

The only self supported set is S = {~b, ~c}. Moreover the only support of S
is itself. Thus ~b and ~c are revising and indissociable. As the only assumption
set of L is {~b, ~c} there are three removal sets: {~b}, {~c}, and {~b, ~c}.
Without indissociability one might think that for this program there would exist
three distinct ways of removing the contradiction. This is not the case, since the
XSMs of Pgr,, Pgr,, and Pg, are exactly the same, i.e. they all represent the
same revision of P. This is accounted for by introducing indissociable literals
in minimal contradiction removal sets. In fact there exists only one MCRS
{~b,~c} and thus the only contradiction free program is Pg,.

Theorem 34. For every i,j
CRS; # CRS; = WFM(Pcrs,) # WFM(Pcrgs;) -

Theorem 35. The collection of contradiction free programs is a upper semi-
lattice under set inclusion of rules in programs, and the set of revised models
under set inclusion is a lower semi-lattice. There is a one—to—one correspondence
between elements of both semi-lattices.

2 This model always exists (cf. theorem 35.)
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