
Planning as Abductive Updating

José Júlio Alferes ; João Alexandre Leite
Luı́s Moniz Pereira ; Paulo Quaresma

Universidade de Évora, R. Romão Ramalho, 59, 7000 Évora, Portugal
Centro de Inteligência Artificial (CENTRIA), Departamento de Informática

Universidade Nova de Lisboa, 2825-114 Caparica, Portugal
jja@dmat.uevora.pt; jleite@di.fct.unl.pt
lmp@di.fct.unl.pt; pq@dmat.uevora.pt

Abstract

In this paper we show how planning can be achieved by means of abduction, a form of non-monotonic reasoning, in the
LUPS language. LUPS employs the recently introduced notion ofDynamic Logic Programming, whereby the knowledge
representation rules, namely those representing actions, can dynamically change, crucial when agents are to be situated
in evolving environments. By integrating into a single framework several recent developments in the logic programming
and non-monotonic reasoning field of research, this work contributes to a better modeling and understanding of rational
agents. At the same time, it enjoys the advantages of a declarative and implementable specification, shortening the usual
gap between theory and practice often found in logical based approaches to agents. The system integrating Dynamic
Logic Programming, LUPS and Abduction, in order to achieve this form of planning, has been implemented.

1 Introduction and Motivation
In the last few years agent-based computing has been one
of the most debated concepts. Being a paradigm that
virtually invaded every sub-field of computer science, it
found in imperative languages the most common adopted
vehicle to its implementation, mainly for reasons of ef-
ficiency. However, since efficiency is not always a real
issue, but clear specification and correctness is, Logic
Programming and Non-monotonic Reasoning have been
brought (back) to the spot-light. Add to this significant
recent improvements in the efficiency of Logic Program-
ming implementations (Niemelä and Simons, 1997; XSB
System, 1999). Besides allowing for a unified declara-
tive and procedural semantics, eliminating the traditional
high gap between theory and practice, the use of several
and quite powerful results in the field of non-monotonic
extensions to Logic Programming (LP) can represent an
important added value to the design of rational agents.
For a better understanding a thorough exposition of how
Logic Programming can contribute to agent-based com-
puting, the reader is referred to Sadri and Toni (1999) and
Bozzano et al. (1999). Embedding agent rationality in
the LP paradigm affords us with a number of tools and
formalisms captured in that paradigm, such as belief revi-
sion, inductive learning, argumentation, preferences, etc.
(Kowalski and Sadri, 1996; Rochefort et al., 1999)

Traditionally, the work on logic programming was
mainly focused on representing static knowledge, i.e.
knowledge that does not evolve with time. Some work

had been done on updating knowledge bases but limited
to factual updates. The problem of updating the knowl-
edge rules, as opposed to updating the models generated
by them remained an open issue. Recently, in Leite and
Pereira (1997), the authors argued that the principle of in-
ertia could be successfully applied to the rules of a knowl-
edge base, instead of to the literals in its models, thereby
yielding the desired result. This lead to the introduction
of the paradigm ofDynamic Logic Programming (Alferes
et al., 1998, 2000).

Dynamic Logic Programming, supported by the no-
tion of Logic Program Updates, is simple and quite fun-
damental. Suppose that we are given a set of theories
(encoded as generalized logic programs) representing dif-
ferent states of the world. Different states may represent
different time periods or different sets of priorities. Con-
sequently, the individual theories contain mutually con-
tradictory as well as overlapping information. The rôle
of Dynamic Logic Programming is to use the mutual rela-
tionships existing between different states to precisely de-
termine the declarative as well as the procedural seman-
tics of the combined theory composed of all individual
theories.

Although solving the problem of dynamically evolv-
ing logic programs, Dynamic Logic Programming does
not by itself provide a proper language for its specifi-
cation. To achieve this goal, and in particular to allow
logic programs to describe transitions of knowledge states
in addition to the knowledge states themselves, Alferes
et al. (1999) introduced the language LUPS. LUPS al-



lows the association, with each state, of a set of transi-
tion rules, providing an interleaving sequence of states
and transition rules in an integrated declarative frame-
work. It is worth pointing out that, the most notable dif-
ference between LUPS and Action Languages (Gelfond
and Lifschitz, 1998) is that the latter deal only with up-
dates of propositional knowledge states while LUPS up-
dates knowledge states that consist of knowledge rules
i.e. the outcome of a LUPS update is not a simple set
of propositional literals but rather a set of rules. LUPS
also makes it easier to specify so-called “static laws”, to
deal with indirect effects of actions and to represent, and
reason about, simultaneous actions.

It is perhaps useful to remark at this point that in
imperative programming the programmer specifies only
transitions between different knowledge states while leav-
ing the actual (resulting) knowledge states implicit and
thus highly imprecise and difficult to reason about. On
the other hand, dynamic knowledge updates, as described
above, enabled us to give a precise and fully declarative
description of actual knowledge states but did not offer
any mechanism for specifying state transitions. With the
high-level language of dynamic updates, we are able to
make both the knowledge states and their transitions fully
declarative and precise.

Rational agents must be able to reason about the
knowledge they possess and, among other things, plan to
achieve their goals. In general, planning consists of the
deliberative process by which a set of (partially or totally)
ordered actions is generated to achieve one or more goals.
Most approaches to agents based on computational logic
achieve planning but none of them allowing for dynami-
cally changing rules since they are limited to static inten-
sional knowledge. For a survey and roadmap of compu-
tational logic based agents the reader is referred to Sadri
and Toni (1999) and Bozzano et al. (1999).

Exampleswhere this dynamic behaviour of rules is es-
sential, where new rules come into play while, at the same
time, some rules cease to be valid, can be found in Le-
gal Reasoning, namely in what concerns the application
of law over time. In countries with legal systems where
laws are often changed, jurisprudencemakes heavy use of
the articles governing the application of law in time. The
representation of and reasoning about such articles is not
trivial, being most important the part dealing with tran-
sient situations, for example when an event occurs after
some new law has been approved but hasn’t taken effect
yet. Different outcomes can be obtained depending on
the date of the trial. In such situations an agent acting as
a lawyer for example, would have to plan its course of ac-
tion in quite complex situations due to the changing rules.
In Sect. 5 we present an example of such a situation.

Other examples can be found in computer games (of-
ten not taken very seriously by the computer science com-
munity but extremely challenging and lucrative (Jennings
et al., 1998)) where an agent has to deal with partially
different rules from level to level, and cross level plan-

ning is needed. In general, this framework is quite useful,
in all its power, in situations where agents with learning
capabilities are moved into slightly different domains (or
the domain descriptions change) and it is useful to use the
knowledge from the previous domain.

In this paper we show how planning can be achieved
by means of abduction, a form of non-monotonic reason-
ing, in the LUPS language, where actions to be performed
can be envisaged as abduced update rules. By integrat-
ing into a single framework several present developments
in the logic programming and non-monotonic reasoning
field of research, this work contributes to a better mod-
eling and understanding of rational agents while, at the
same time, it enjoys the advantages of a declarative and
implementable specification, shortening the usual gap be-
tween theory and practice often found in logical based
approaches to agents (Sadri and Toni, 1999).

The system integratingDynamic Logic Programming,
LUPS and Abduction, to achieve this form of planning,
has been implemented and tested on top of the XSB Sys-
tem (1999). This overall system allows for several forms
of reasoning havingmany applications currently being ex-
plored.

The paper is structured thus: After an introductory
section to briefly recapDynamic Logic Programming and
LUPS, the planning problem in LUPS is formalized and
its solutions characterized. This is followed by the pre-
sentation of an implemented solution based on abduction,
proven correct according to the formal characterization.
Finally we illustrate with an example and conclude.

2 Dynamic Logic Programming and
LUPS

In the LUPS framework (Alferes et al., 1999), knowledge
evolves from one state to another as a result of sets of
(simultaneous) update commands. In order to represent
negative information in logic programs and in their up-
dates, the framework resorts to more general logic pro-
grams, those allowing default negation not just in
the premises of their rules but in their heads as well. In
Alferes et al. (1998), such programs are dubbed general-
ized logic programs:

Definition 1 (Generalized Logic Program) A general-
ized logic program P in the language is a (possibly
infinite) set of propositional rules of the form:

(1)

where and are literals. A literal is either an atom
or its default negation . Literals of the form
are called default literals. If none of the literals appearing
in heads of rules of are default literals, then the logic
program is normal.



The semantics of generalized logic programs is de-
fined as a generalization of the stable models semantics
(Gelfond and Lifschitz, 1988).

Definition 2 (Default assumptions) Let be a model
of . Then:

Definition 3 (Stable Models of Generalized Programs)
A model is a stable model of the generalized program
iff:

As proven in Alferes et al. (1998), the class of stable
models of generalized logic programs extends the class of
stable models of normal programs Gelfond and Lifschitz
(1988) in the sense that, for the special case of normal
programs both semantics coincide.

In LUPS, knowledge states, each represented by a
generalized logic program, evolve due to sets of update
commands. By definition, and without loss of generality
Alferes et al. (1999), the initial knowledge state is
empty and, in it, all predicates are assumed false by de-
fault. Given a current knowledge state , its successor
state is produced as a result of the occurrence of a non-
empty set of simultaneous update commands. Thus,
any knowledge state is solely determined by the sequence
of sets of updates commands performed from the initial
state onwards. Accordingly, each non-initial state can be
denoted by:

where each is a set of update commands.
Update commands specify assertions or retractions to

the current knowledge state (i.e. the one resulting from
the last update performed). In LUPS a simple assertion is
represented as the command:

(2)

Its meaning is that if is true in the current
state, then the rule is added to its succes-
sor state, and persists by inertia, until possibly retracted or
overridden by some future update command.

In order to represent rules and facts that do not persist
by inertia, i.e. that are one-state events, LUPS includes
the modified form of assertion:

(3)

The retraction of rules is performed with the update
command:

(4)

Its meaning is that, subject to precondition
(verified at the current state) rule is ei-
ther retracted from its successor state onwards, or just
temporarily retracted in the successor state (if governed
by ).

Normally assertions represent newly incoming infor-
mation. Although its effects remain by inertia (until coun-
tervened or retracted), the assert command itself does not
persist. However, some update commands may desirably
persist in the successive consecutive updates. This is es-
pecially the case of laws which, subject to some precon-
ditions, are always valid, or of rules describing the effects
of an action. In the former case, the update command
must be added to all sets of updates, to guarantee that the
rule remains indeed valid. In the latter case, the specifica-
tion of the effects must be added to all sets of updates, to
guarantee that, when the action takes place, its effects are
enforced.

To specify such persistent update commands, LUPS
introduces:

(5)

(6)

The first states that, from the current state onwards, in
addition to any newly arriving set of commands, when-
ever the preconditions are verified, the persistent rule is
added too. The second command cancels this persistent
update.

Definition 4 (LUPS language) An update program in
LUPS is a finite sequence of updates where
each is a non-empty set of (simultaneous) commands
of the forms (2)-(6).

Any knowledge state ( ) resulting
from an update program can be queried
via . The query is true iff the
conjunction of its literals holds at .

The semantics of LUPS (Alferes et al., 1999) is de-
fined by incrementally translating update programs into
sequences of generalized logic programs. The meaning of
such sequences of programs is determined by the seman-
tics defined in Alferes et al. (1998). Given a sequence of
generalized programs the semantics has to
ensure that the newly added rules (in the later programs of
the sequence) are in force, and that previous rules are still
valid (by inertia) as far as possible, i.e. they are kept for as
long as they do not conflict with newly added ones. Ac-
cordingly, given a model of the last program , start
by removing all the rules from previous programs whose
head is the complement of some later rule with true body
in (i.e. by removing all rules which conflict with more
recent ones). All other persist through by inertia. Then,



as for the stable models of a single generalized program,
add facts for all atoms which have no rule at all
with true body in , and compute the least model. If
is a fixpoint of this construction, is a stable model of
the sequence up to .

Definition 5 (Dynamic Logic Program) Let S be an or-
dered set with a smallest element and with the property
that every other than has an immediate prede-
cessor and that for some finite . Then

is a Dynamic Logic Program, where each
of the s is a generalized logic program.

Definition 6 (Rejected rules) Let be a
Dynamic Logic Program, let , and let be a model
of . Then

To allow for querying a dynamic program at any state
, the definition of stable model is parameterized by the
state:

Definition 7 (Stable Models of a DLP at state ) Let
be a Dynamic Logic Program, let ,

and let . A model of is a stable model
of at state iff:

If some literal or conjunction of literals holds in all
stable models at state of the Dynamic Program, we write

.

The translation of a LUPS program into a dynamic
program is made by induction, starting from the empty
program , and for each update , given the already
built dynamic program , determining the
resulting program . To cope with per-
sistent update commands we will further consider, asso-
ciated with every dynamic program in the inductive con-
struction, a set containing all currently active persistent
commands, i.e. all those that were not cancelled until that
point in the construction, from the time they were intro-
duced. To be able to retract rules, we need to uniquely
identify each such rule. This is achieved by augmenting
the language of the resulting dynamic programwith a new
propositional variable “ ” for ev-
ery rule appearing in the original LUPS
program.

Definition 8 (Translation into dynamic programs) Let
be an update program. The corre-

sponding dynamic program
is obtained by the following inductive construction, using
at each step an auxiliary set of persistent commands

:

Base step: with .
Inductive step: Let with set of

persistent commands be the translation of
. The translation of is

with set of persistent commands
, where is:

, and is:

where denotes a generalized logic program rule, and
and a conjunction of literals. In the inductive step,

if the last two lines are omitted. In that case
does not exist.

Definition 9 (LUPS semantics) Let be an update pro-
gram. A query

is true in iff .

3 LUPS and Plans
LUPS, by allowing to declaratively specify both knowl-
edge states and their transitions, can be used as a powerful
representation language in planning scenarios. Its variety
of update commands can serve to model from the sim-
plest condition-effect action to parallel actions and their
indirect effects.

In this section we formalize the planning problem in
LUPS, and characterize its solutions. Throughoutwe con-
sider to be an update program in the
language . We begin by considering a set of actions from
, whose specification is defined by update commands.

Definition 10 (Action) Let be a set
of atoms from where each represents an action.
We call the elements of actions. Typically for every
action there will be one (or more) update commands of the
forms (2)-(6), where the action appears in the ‘ ’
clause.



Fo example, in

we have, intuitively, that is an action whose precon-
ditions are and whose effect is an update
that, according to its type, can model different kinds of
actions, all in one unified framework. Examples of kinds
of actions are:

actions of the form causes ,
where are fluents (such as in
the language of Gelfond and Lifschitz
(1998)) translates into the update command

.

actions whose epistemic effect is a rule
update of the form updates with

trans-
lates into the update command

.

actions that, when performed in parallel, have dif-
ferent outcomes, of the form or cause

and and in parallel cause
translates into the three up-

date commands:

actions with non-deterministic effects of the form
causes or translates

into the update commands (where are new
auxiliary predicates and is a unique identifier of
an occurrence of ):

In this representation of the non-deterministic ef-
fects of an action , we create two auxiliary actions
( ) with deterministic effects, and make the ef-
fect of be the non-deterministic choice between
actions or .

Next, we formalise action updates and plans:

Definition 11 (Action Update) An action update, , is
a set of update commands of the form:

Intuitively, each command of the form
will represent the performing of

action . Note that performing an action is something
that does not persist by inertia. Thus, according to the
description of LUPS in Sect. 2 the assertion must be of
an event. By asserting , the effect of the action
will be enforced if the preconditions are met. Each
action update represents a set of simultaneous actions.
For simplicity, we represent the update commands in an
action update just by their corresponding . Instead
of we write

.

Definition 12 (Plan) A plan is a finite sequence of action
updates.

In order to relate the goals to be achieved with the
plans, we need to know the effect of executing the plan.
This is given by the following function:

Definition 13 (Result) The result of applying a plan
to an update program

is given by the update program:

Finally, the planning problem is about finding a plan
such that a goal, given in the form of a LUPS query, is
achieved as the result of applying the plan to the initial
state update program.

Definition 14 (Planning Solution) Given an update pro-
gram and a query (goal)

, the plan
is a planning solution if the query is true in the result of
applying to , i.e. such that

This definition suggests that planning solutions can be
seen as abductive update solutions in the LUPS frame-
work. This will be explored in the next section.

4 On the implementation of LUPS
and planning

In Alferes et al. (1999), a translation is presented of up-
date programs and queries into single normal logic pro-
grams which are written in a meta-language. The transla-
tion is purely syntactic, and has been proven correct there:
a query holds in an update program iff its translation be-
longs to all stable models of the update program transla-
tion. The latter directly supports a mechanism for imple-
menting update programs: after a pre-processor performs
the translations, query answering is reduced to that over
normal logic programs by means of a meta-interpreter.



The pre-processor and a meta-interpreter for answering
queries have been implemented1

The translation uses a meta-language generated by
the language of the update programs. For each ob-
jective atom in the language of the update program,
and each special propositional symbol or

(where these symbols are added to the
language for each rule in the update pro-
gram), the meta-language includes the following sym-
bols: , , , and , where
and range over the indexes of the update program. Intu-
itively, these new symbols mean, respectively: is true
at state considering available all states up to ; is true
due to the update program at state , considering all states
up to ; is false at state considering all states up to ;

is true due to the update program at state , consid-
ering all states up to .

Intuitively, the first indexical argument added to atoms
stands from the update state at which the atom was been
introduced via a rule. So, according to the transformation
in Alferes et al. (1999), in non-persistent asserts, the first
argument of atoms in the head of rules is instantiated with
the index of the update state where the rule was asserted.
In persistent asserts, the argument ranges over the indexes
where the rule should be asserted (i.e. all those greater
than the state where the corresponding command
is). The second indexical argument stands for the query
state. Accordingly, when translating (non-event) asserts,
the second argument of atoms in the head of rules ranges
over all states greater than the one where the rule was as-
serted. For event asserts, the second argument is instanti-
ated with the index of the update state where the event was
asserted. This is so in order to guarantee that the event is
only true when queried about in that state.

Inertia rules are added to allow for access to rules as-
serted in states before the state the query is posed. Such
rules say that one way to prove at state with query
state , is by proving at state with the same
query state (unless its complement is proven at state ,
thus blocking the inertia of ).

Literals in the body of asserted rules are translated
such that both arguments are instantiated with the query
state. This guarantees that body literals are always
evaluated with respect to the query’s state. Literals in
the when clause have both arguments instantiated with
the state immediately prior to that in which the rule was
asserted. This guarantees that those literals are always
evaluated considering that prior state as their query state.
The complete formalization of the translation can
be found in Alferes et al. (1999).

Planning solutions, as defined in the previous section,
1The system, running under XSB-Prolog, a system with tabling, is

available from:
http://centria.di.fct.unl.pt/ j̃ja/updates/
Rather than stable models semantics, the well-founded semantics is used
instead.

are clearly similar to abductive solutions in the LUPS
framework: when finding a plan, one is looking for sets of
”assert event´´commands, standing for actions performed,
that when added to the sequence derive the top query and
are consistent (in the sense that a stable model exists).
In this abductive setting, the abducibles are commands
of the form where . Given
the above described translation of a sequence of update
commands into a single normal logic program with in-
ertia rules, this abduction problem in the LUPS setting,
can easily be transformed into an abduction problem in
normal logic programs. Simply translate the sequence of
update commands into a single program, and define as ab-
ducibles those translation predicates arising from translat-
ing commands for every , where is
an action. It is easily seen that finding abductive solutions
for queries over the translated abductive logic program is
tantamount to finding planning solutions in the original
update program.

Theorem 1 (Planning as abduction) Let be the
logic program obtained from the translation of an update
program , and let

be the set of abducibles. Given a
subset of , let be such that

iff .
Then is an abductive solution for

in the logic program iff
is a planning solution for

in .

According to this theorem, to implement a plan gen-
erator in LUPS, all that needs doing is to implement the
translation from LUPS programs to logic programs, and
then to use an interpreter for abduction on top of the trans-
lated program. This is the basis of our implementation
which, aside from the aforementioned preprocessor for
the translation, employs an interpreter for the abduction
procedureABDUAL (Alferes et al., 1999). Note that mul-
tiple abductions at one state, ie parallel actions, can be
generated.

5 Illustrative Example
In this section we present an example illustrating the abil-
ity of this framework to deal with dynamically chang-
ing rules. One domain where such dynamic behaviour of
rules is essential is Legal Reasoning. In this domain new
rules come into play while, at the same time, other rules
cease to be valid. In countries with legal systems where
laws are often changed, jurisprudence makes heavy use
of the articles governing the application of law over time.
The representation of, and reasoning about, such articles
is non trivial, the one most important being the part deal-
ing with transient situations. For example, when an event
occurs after some new law has been approved, but hasn’t
yet taken effect. Different outcomes could be obtained



depending on the date of the trial. In such situations an
agent, acting as a lawyer, would have to plan its course of
action in complex situations due to the changing rules.

Consider a fictional situation where someone is con-
scripted if he is draftable and healthy. Moreover a per-
son is draftable when he reaches a specific age. In this
situation, if someone is conscripted and not incorporated
(for example because he hides), he is cited for a crime
and, if tried, goes to jail. Of course one cannot be tried
while in hiding. Consider that a person is electable for
office if electable previously and not in hiding. Moreover,
the person ceases to be electable if ever been to jail. Af-
ter some time, a new law is approved that renders one
not conscripted if a conscientious objector. However, this
law will only take effect after 20 days. How could John,
electable, healthy, conscientious objector, that became of
age 10 days after this new law has been enacted, avoid
being incorporated, and remain electable for office in the
future? This is an illustrative scenario easily expressible
in LUPS. It translates into the update commands2:

where is the set of possi-
ble actions. If we have the goal of never being incorpo-
rated and being electable after 30 , the desirable solution
would be to perform the action at 20, and
perform the action after 30. Note that if
John does not hide at 20, he will be cited for a crime, be
trialed, sent to jail and thus would never be electable for
office again. The goal is:

would return an abductive solution that would correspond
2Where is a built in predicate such that it is true iff the

current time is , which could be implemented in LUPS itself.

to the plan , where:

representing the desired solution.

6 Conclusions and Future Work
The ability to deal with dynamic situations is one of the
major features of our proposal, as it allows one to handle
a new class of planning problems. In fact, extant plan-
ning frameworks do not easily encompass the description
of worlds with dynamically changing rules. For instance,
neither PDDL (McDermott et al., 1998) nor OCL (Liu and
McCluskey, 2000) are capable of describing dynamic sit-
uations. Dynamic Logic Programming permits as well the
representing of actions in the STRIPS- or ADL-style, uti-
lized in these planners, with pre-conditions, effects, and
conditional and logical operators. Additionally, it caters
for simultaneous actions and, due to its expressiveness, it
can model complex effects of actions. By using an ex-
plicit representation of the world, and of the actions avail-
able at each state, its history and attending change can
itself be queried and reconstructed.

Above all, embedding planning into a logic program-
ming framework with a precise declarative semantics,
makes it amenable to integration with other, already de-
veloped, monotonic and non-monotonic knowledge rep-
resentation and reasoning functionalities. Among these:

Extensive declarative knowledge representation,
comprising default and explicit negation

Semantics (and implementation) for non-stratified
knowledge

Observance and updating of integrity constraints

Knowledge rules updating, besides that of action
rules updating

Abductive reasoning, over and above the abduction
of actions

Inductive learning of knowledge and action rules

Belief revision and contradiction removal

Argumentation for collaboration and competition

Preference semantics, combinable with updates

Meta- and object-language combination through
meta-interpreters, facilitating language extensions
and execution control

Model-based diagnosis of artifacts, via observa-
tions and actions on them

Declarative debugging of logic programs represent-
ing knowledge bases



Explanation generation

Distribution with communication

Agent architectures

Test and tried implemented logic programming sys-
tems, tabled execution

Our ongoing research has promoted and achieved
some of these integrative desiderata, and currently pur-
sues a number of them. Such integrateable facilities pave
the way for the building of complex rational agents em-
ploying sophisticated planning amongst themselves.

Acknowledgements
All authors were partially supported by PRAXIS XXI
project MENTAL. J. A. Leite was partially supported by
PRAXIS XXI scholarship no. BD/13514/97.

References
J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinski
and T. C. Przymusinski.Dynamic Logic Programming.
In A. Cohn, L. Schubert and S. Shapiro (eds.), Procs.
of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98),
Trento, Italy, pages 98-109. Morgan Kaufmann, June
1998.

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusin-
ski and T. C. Przymusinski. Dynamic Updates of Non-
Monotonic Knowledge Bases. To appear in The Journal
of Logic Programming, 2000.

J. J. Alferes, L. M. Pereira, H. Przymusinska and T.
C. Przymusinski, LUPS - a language for updating
logic programs. In M. Gelfond, N. Leone and G.
Pfeifer (eds.), Procs. of the 5th International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’99), El Paso, Texas USA, pages 162-
176, Springer-Verlag, LNAI 1730, 1999.

J. J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przy-
musinski and P. Quaresma, Preliminary exploration on
actions as updates.In M. C. Meo and M. Vialres-Ferro
(eds.), Procs. of the 1999 Joint Conference on Declar-
ative Programming (AGP’98), L’Aquila, Italy, pages
259-271, September 1999.

J. J. Alferes, L. M. Pereira and T. Swift, Well-founded
Abduction via Tabled Dual Programs. In Procs. of the
16th International Conference on Logic Programming,
Las Cruces, New Mexico, Nov. 29 - Dec. 4, 1999.

M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi and
F. Zini, Logic Programming and Multi-Agent System:

A Synergic Combination for Applications and Seman-
tics. In K. Apt, V. Marek, M. Truszczynski and D. S.
Warren (eds.), The Logic Programming Paradigm - A
25-Year Perspective, pages 5-32, Springer 1999.

M. Gelfond and V. Lifschitz. The stable model seman-
tics for logic programming. In R. Kowalski and K. A.
Bowen. editors. 5th International Logic Programming
Conference, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classsical negation in logic
programs and disjunctive databases. New Generation
Computing, 9:365-385, 1991.

M. Gelfond and V. Lifschitz. Action languages. Linkop-
ing Electronic Articles in Computer and information
Science, 3(16), 1998.

N. Jennings, K. Sycara and M. Wooldridge. A Roadmap
of Agent Research and Development. In Autonomous
Agents and Multi-Agent Systems, 1, 275-306, Kluwer,
1998.

R. Kowalski and F. Sadri. Towards a unified agent archi-
tecture that combines rationality with reactivity. In D.
Pedreschi and C. Zaniolo (eds), Logic in Databases,
Intl. Workshop LID’96, pages 137-149, Springer-
Verlag, LNAI 1154, 1996.

J. A. Leite and L. M. Pereira. Generalizing updates:
from models to programs. In J.Dix, L.M. Pereira and
T.C.Przymusinski (eds), Selected extended papers from
the LPKR’97: ILPS’97 workshop on Logic Program-
ming and Knowledge Representation, pages 224-246,
Springer-Verlag, LNAI 1471, 1998.

D. Liu and L. McCluskey. The Object Centered Language
Manual-OCL . University of Huddersfield. 2000.

D. McDermott et al. PDDL - The Planning Domain Defi-
nition Language. Yale University, 1998.

I. Niemelä and P. Simons. Smodels - an implementation
of the stable model and well-founded semantics for
normal logic programs. In Procs. of the 4th Interna-
tional Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97), pages 420-429,
Springer, July 1997.

S. Rochefort, F. Sadri and F. Toni, editors, Pro-
ceedings of the International Workshop on
Multi-Agent Systems in Logic Programming, Las
Cruces, New Mexico, USA,1999. Available from
http://www.cs.sfu.ca/conf/MAS99.

F. Sadri and F. Toni. Computational Logic and Mul-
tiagent Systems: a Roadmap, 1999. Available from
http://www.compulog.org.

The XSB Group. The XSB logic programming
system, version 2.0, 1999. Available from
http://www.cs.sunysb.edu/˜sbprolog.


