LUPS — a language for updating logic

programs *

José Jilio Alferes® Luis Moniz Pereira® Halina Przymusinska "¢
and Teodor C. Przymusinski ¢

aCentro de Inteligéncia Artificial, FCT/UNL, P-2825-11} Caparica, Portugal
b Computer Science, California State Polytechnic Univ. Pomona, CA 91768, USA
¢ Computer Science, Univ. of California Riverside, CA 92521, USA

Abstract

Most of the work conducted so far in the field of logic programming has focused
on representing static knowledge, i.e. knowledge that does not evolve with time.
To overcome this limitation, in a recent paper, the authors introduced dynamic
logic programming. There, they studied and defined the declarative and operational
semantics of sequences of logic programs (or dynamic logic programs). Each program
in the sequence contains knowledge about some given state, where different states
may, for example, represent different time periods or different sets of priorities.

But how, in concrete situations, is a sequence of logic programs built? For in-
stance, in the domain of actions, what are the appropriate sequences of programs
that represent the performed actions and their effects? Whereas dynamic logic pro-
gramming provides a way for, given the sequence, determining what should follow,
it does not provide a good practical language for the specification of the sequence
of updates which may be conditional on the intervening states.

Here we define the language LUPS — “Language for dynamic updates” — designed
for specifying changes to logic programs. Given an initial knowledge base (as a
logic program) LUPS provides a way for sequentially updating it. The declarative
meaning of a sequence of sets of update actions in LUPS is defined by the semantics
of the dynamic logic program generated by those actions. Additionally, we provide
a translation of the sequence of update statements sets into a single logic program
written in a meta-language, in such a way that the stable models of the resulting
program correspond to the previously defined declarative semantics. Finally, we
exhibit the usage of LUPS in several application domains.

* Extended version of the paper presented at LPNMR’99.

Preprint submitted to Elsevier Preprint 2 November 2000

1 Introduction

Several authors [21,22,3] have addressed the issue of updates of logic programs
and deductive databases, most of them following the so called “interpretation
update” approach. This approach, proposed in [24,15], is based on the idea
of reducing the problem of finding an update of a knowledge base DB by
another knowledge base U to the problem of finding updates of its individual
interpretations or models. More precisely, a knowledge base DB’ is considered
to be the update of a knowledge base DB by U if the set of models of DB’
coincides with the set of updated models of DB. As pointed out in [1], the
approach of [24,15], while adequate for the purpose of updating theories in
classical propositional logic (for which it was targeted), when applied to non-
monotonic theories suffers from several important drawbacks: first, it requires
the computation of all models of DB before computing the update; second, the
resulting knowledge base DB’ is only indirectly characterized (as one whose
models are all the updated models of the original DB) — no direct definition
of DB’ is provided; last, and most importantly, it leads to counterintuitive
results when the intensional part of the knowledge base (i.e. the set of rules)
changes. In [3] the authors eliminated the first two drawbacks by showing
how to, given a program P, construct another program P’ whose models are
exactly the interpretation updates of the models of P. However the last, and
most important, drawback still remained: no method to update logic programs
consisting of rules, not just extensional facts, was provided.

Example 1 Consider the logic program:

free < not jail

jail < abortion

whose only stable model is M = {free}. Suppose now that the update U
states that abortion becomes true, i.e. U = {abortion <}. According to the
interpretation approach to updating, we would obtain {free,abortion} as the
only update of M by U. However, by inspecting the initial program and the
update, we are likely to conclude that, since free was true only because jail
could be assumed false, and that was the case because abortion was false, now
that abortion became true jail should also have become true, and free should
be removed from the conclusions.

Suppose now that the law changes, so that abortion no longer implies jail. That
could, for example, be described by the new (update) program:

U, = {not jail < abortion}

We should now expect jail to become false and so free to become true (again).

This example suggests that the principle of inertia should be applied not just
to individual literals but rather to the whole rules of the knowledge base, as
originally pointed out in [18]. It also suggests that the update of a knowledge
base by another one should not just depend on their semantics, it should also
depend on their syntax. It also illustrates the need for some way of representing
negative conclusions.

In [1], the authors investigated the problem of updating knowledge bases rep-
resented by generalized logic programs® and proposed a new approach to this
problem that eliminates the drawbacks of previously proposed solutions. It
starts by defining the update of a generalized program P by another general-
ized program U, P @ U. The semantics of P & U avoids the above mentioned
problems by applying the inertia principle not just to atoms but to entire pro-
gram rules. This notion of updates is then extended to sequences of programs,
thereby defining the so-called dynamic logic programming. A dynamic logic
program is a (finite or infinite) sequence Py @ ...® P, ® ..., representing con-
secutive updates of logic programs by logic programs. The semantics defined
in [1] assigns meaning to such sequences.

However, dynamic logic programming does not by itself provide a proper lan-
guage for specifying (or programming) changes of logic programs. If knowledge
is already represented by logic programs, dynamic programs simply repre-
sent the evolution of knowledge. But how is that evolving knowledge speci-
fied? What makes knowledge evolve? Since logic programs describe knowledge
states, it’s only fit that logic programs describe transitions of knowledge states
as well. It is natural to associate with each state a set of transition rules to
obtain the next state. As a result, an interleaving sequence of states and rules
of transition will be obtained. Imperative programming specifies transitions
and leaves states implicit. Logic programming, up to now, could not specify
state transitions. With the language of dynamic updates LUPS we make both
states and their transitions declarative.

Usually updates are viewed as actions or commands that make the knowledge
base evolve from one state to another. This is the classical view e.g. in rela-
tional databases: the knowledge (data) is expressed declaratively via a set of
relations; updates are commands that change the data. In [1], updates were
viewed declaratively as a given update store consisting of the sequence of pro-
grams. They were more in the spirit of state transition rules, rather than com-
mands. Of course, one could say that the update commands were implicit. For
instance, in example 1, the sequence P ® U @ U, could be viewed as the result
of, starting from P, performing first the update command assert abortion,
and then the update command assert not jail < abortion. But, if viewed as

1 i.e. logic programs which allow default negation not only in rule bodies but also

in their heads.

a language for (implicitly) specifying update commands, dynamic logic pro-
gramming is quite poor. For instance, it does not provide any mechanism for
saying that some rule (or fact) should be asserted only whenever some condi-
tions are satisfied. This is essential in the domain of actions, to specify direct
effects of actions. For example, suppose we want to state that wake_up should
be added to our knowledge base whenever alarm_rings is true. As a language
for specifying updates, dynamic logic programming does not provide a way of
specifying such an update command. Note that the command is distinct from
assert wake_up < alarm_rings. With the latter, if the alarm stops ringing
(i.e. if not alarm_rings is later asserted), wake_up becomes false. In the for-
mer, we expect wake_up to remain true (by inertia) even after the alarm stops
ringing. As a matter of fact, in this case, we don’t want to add the rule say-
ing that wake_up is true whenever alarm-_rings is also true. We simply want
to add the fact wake_up as soon as alarm_rings is true. From there on, no
connection between wake_up and alarm_rings should persist.

This simple one-rule example also highlights another limitation of dynamic
logic programming as a language for specifying update commands: one must
explicitly say to which program in the sequence a rule belongs to. Sometimes,
in particular in the domain of actions, there is no way to know a priori to
which state (or program) a rule should belong to. Where should we assert
the fact wake_up? This is not known a priori because we don’t know when
alarm_rings.

In this paper we define, in section 3, a language for specifying logic program
updates: LUPS — “Language of dynamic updates”. The object language of
LUPS is that of generalized logic programs. A sentence U in LUPS is a set
of simultaneous update commands (or actions) that, given a pre-existing se-
quence of logic programs Py @ ... ® P, (i.e. a dynamic logic program), whose
semantics corresponds to our knowledge at a given state, produces a sequence
with one program more, Py®...®P,® P, 1, that corresponds to the knowledge
resulting from the previous sequence after performing all the new simultaneous
commands. A program in LUPS is a sequence of such sentences.

Given a LUPS program, its semantics is first defined, in section 4, by means
of a dynamic logic program generated by the sequence of commands. In sec-
tion 5, we furthermore describe a translation of any LUPS program into a
single generalized logic program, whose stable models exactly correspond to
the semantics of the original LUPS program.

In section 6, we argue that the new language LUPS represents a natural, pow-
erful and expressive tool for representing dynamically changing knowledge.
We do so by demonstrating the applicability of LUPS to several broad knowl-
edge representation domains. Finally, in section 7, we make some concluding
remarks and discuss future work.

2 Object language

In order to represent negative information in logic programs and their updates,
we require more general logic programs, allowing for default negation not A
not only in the premises of rules but also in their heads. In updates a not A
head means atom A is deleted if the body holds (cf. [2]). Deleting A means that
A is no longer true, not necessarily that it is false. When some form of closed
world assumption (CWA) is adopted as well, then this deletion causes A to be
false. In the updates setting, as we will make clear in Section 4, the CWA must
be explicitly encoded from the start, by making all not A false in the initial
program being updated. That is, the two concepts, deletion and CWA, are
orthogonal and must be separately incorporated. Thus, in general, using logic
programs extended with explicit negation [10] wouldn’t be adequate, because
explicitly negated heads express the negated is false, not just deleted.

In the stable models [19,14] and well-founded semantics [6] of single generalized
programs, the CWA is adopted ab initio, and default negation in the heads
is conflated with non-provability because there is no updating and thus no
deletion. Note however that, unlike with single generalized programs (cf. [14]),
in updates the head nots cannot be moved freely into the body, to obtain
simple denials: there is inescapable pragmatic information in specifying exactly
which not literal figures in the head, namely the one being deleted when the
body holds true. It is not indifferent that any other (positive) body literal in
the denial would be moved to the head. Example 9 shows just that.

In this section we recall the semantics of single generalized logic programs,
as defined in [1,2]. The class of generalized logic programs can be viewed as
a special case of yet broader classes of programs, introduced earlier in [14]
and in [19]. As shown in [2], their semantics coincides with the stable models
semantics [9] for the special case of normal programs. Moreover, the semantics
also coincides with the one in [19] (and, consequently, with the one in [14])
when the latter is restricted to the language of generalized programs.

For convenience, generalized logic programs are syntactically represented as
propositional Horn theories. In particular, default negation not A is repre-
sented as a standard propositional variable (atom). Suppose that K is an arbi-
trary set of propositional variables whose names do not begin with a “ not”. By
the propositional language L generated by the set L we mean the language
whose set of propositional variables consists of {4 : A € K}U{not A: A € K}.
Atoms A € IC, are called objective atoms while the atoms not A are called de-
fault atoms. From the definition it follows that the two sets are disjoint. By
“literals” we mean objective or default atoms in L.

Definition 2 (Generalized Logic Program) A generalized logic program

P in the language Lx is a (possibly infinite) set of propositional rules of the
form

L+ Li,....,L,

where L, Ly, ..., L, are literals.

If none of the literals appearing in heads of rules of P are default ones, then
we say that the logic program P is normal.

By a (2-valued) interpretation M of Lx we mean any set of atoms from Ly
satisfying the condition that for any A in K, precisely one of the atoms A or
not A belongs to M. Given an interpretation M we define:

Mt={AeK:AecM} and
M- ={notA:notAc M} ={notA:A¢ M}

By a (2-valued) model M of a generalized logic program we mean a (2-valued)
interpretation that satisfies all of its clauses. As usual, a clause is satisfied in
an interpretation if whenever its body belongs to the interpretation its head
does too.

Definition 3 (Stable models of generalized logic programs) An inter-
pretation M of Li is a stable model of a generalized logic program P if M s
the least model of the Horn theory P U M~ or, equivalently, if:

M ={L:Lis aliteral and PUM™ F L}

3 Language for updates

In our update framework, knowledge evolves from one knowledge state to
another as a result of update commands stated in object language.

Knowledge states K S; represent dynamically evolving states of our knowledge.
They undergo change due to update actions. Without loss of generality (as will
become clear below) we assume that the initial knowledge state, K'Sy, is empty
and that in it all predicates are false by default. This is the default knowledge
state. Given the current knowledge state KS, its successor knowledge state
KS[U] is produced as a result of the occurrence of a non-empty set U of
simultaneous updates. Each of the updates can be viewed as a set of (parallel)

actions and consecutive knowledge states are obtained as

where U;’s represent, consecutive sets of updates. We also denote this state by:

So defined sequences of updates will be called update programs. In other words,
an update program is a finite sequence U = {U; : s € S} of updates indexed
by the set S = {1,2,...,n}. Each updates is a set of update commands.
Update commands (to be defined below) specify assertions or retractions to
the current knowledge state. By the current knowledge state we mean the one
resulting from the last update performed.

Knowledge can be queried at any state ¢ < n, where n is the index of the
current knowledge state. A query will be denoted by:

holds Bi,..., B, notCy,...,notC,, at ¢?

and is true iff the conjunction of its literals holds at the state K B,. If ¢ = n,
we simply skip the state reference “at ¢”.

3.1 Update commands

Update commands cause changes to the current knowledge state leading to
a new successor state. The simplest command consists of adding a rule to
the current state: assert L < Li,..., L;. For example, when a law stating
that abortion is punished by jail is approved, the knowledge state might be
updated via the command: assert jail <— abortion.

In general, the addition of a rule to a knowledge state may depend upon some
precondition. To allow for that, an assert command in LUPS has the form:

assert L < Ly,...,L;, when Ly q,..., Ly, (1)

The meaning of such assert rule is that if the precondition Ly, ..., L, is true
in the current knowledge state, then the rule L <— Ly, ..., Ly should belong
to the successor knowledge state. Normally, the so added rule persists, or is in
force, from then on by inertia, until possibly defeated by some future update
or until retracted. This is the case for the assert-command above: the rule

jail < abortion remains in effect by inertia from the successor state onwards
unless later invalidated.

However, there are cases where this persistence by inertia should not be as-
sumed. Take, for instance, the alarm_ring discussed in the introduction. This
fact is a one-time event that should not persist by inertia, i.e. it is not sup-
posed to hold by inertia after the successor state. In general, facts that denote
names of events or actions should be non-inertial. Both are true in the state
they occur, and do not persist by inertia for later states. Accordingly, the rule
within the assert command may be preceded with the keyword event, indi-
cating that the added rule is non-inertial. Assert commands are thus of the
form (1) or of the form?:

assert event L < Ly,..., Ly when Ly ,1,...,L,, (2)

While some update commands, such as assert republican_congress, repre-
sent newly incoming information, and are thus one-time non-persistent up-
date commands (whose effect, i.e. the truth of republican_congress, may nev-
ertheless persist by inertia), some other update commands are liable to be
persistent, i.e., to remain in force until cancelled. For example, an update like:

assert jail <— abortion when rep_congress, rep_president

or
assert wake_up when alarm_sounds

might be always true, or at least true until cancelled. Enabling the possibility
of such updates allows our system to dynamically change without any truly
new updates being received. For example, the persistent update command:

assert set_hands(T) when get_hands(C) A get_time(T) N (T — C) > A
defines a perpetually operating clock whose hands move to the actual time

position whenever the difference between the clock time and the actual time
is sufficiently large.

In order to specify such persistent updates commands (which we call laws) we
introduce the syntax:

always L < Ly,..., Ly when Ly,1,..., Ly, (3)

and:

always event L < Ly,...,L;, when L;q,..., L, (4)

2 In both cases, if the precondition is empty we just skip the whole when subclause.

For cancelling persistent update commands, we use:

cancel L < Ly,..., Ly when Ly,1,..., L, (5)

The first two statements mean that, in addition to any new set of arriving
update commands, the persistent update command keep executing with them
too. In the first case without, and in the second one with the event key-
word. The third statement cancels execution of this persistent update, once
the conditions for cancellation are met.

The existence of persistent update commands requires a “trivial” update,
which does not specify any truly new updates but simply triggers all the
already defined persistent updates to fire, thus resulting in a new modified
knowledge state. Such “no-operation” update ensures that the system con-
tinues to evolve, even when no truly new updates are specified, and may be
represented by assert true. It stands for the tick of the clock that drives the
world being modeled.

To deal with the deletion of rules, we introduce the retraction commands:

retract L < Ly,...,L; when Ly {,..., L, (6)

and:
retract event L < Ly,..., L, when Lyy,..., Ly, (7)
meaning that, subject to precondition Lgyq,..., Ly, the rule L < Ly,..., Ly

is either retracted from now on (in (6)), or just retracted temporarily in the
next state (in (7)). The latter represents a non-inertial retract, i.e. an event
of retraction, triggered by the event keyword.

The cancelling of an update command is not equivalent to retracting a rule.
Cancelling an update just means it will no longer be added as a command to
updates, it does not cancel the inertial effects of its previous application(s).
However, retracting an update causes any of its inertial effects to be cancelled
from now on, as well as cancelling a persistent law. Also, note that “retract
event ...” does not mean the retracting of an event, because events persist
only for one state and thus do not require retraction. It represents a temporary
removal of a rule from the successor state (a temporary retraction event).

Definition 4 (LUPS) An update program in LUPS is a finite sequence of
updates, where an update is a set of commands of the form (1) to (6).

Example 5 Consider the following scenario:

e once Republicans take over both Congress and the Presidency they establish
a law stating that abortions are punishable by jail;

e once Democrats take over both Congress and the Presidency they abolish
such a law;

e in the meantime, there are no changes in the law because always either the
President or the Congress vetoes such changes;

e performing an abortion is an event, i.e. a non-inertial update.

Consider the following update history: (1) a Democratic Congress and a Re-
publican President (Reagan); (2) Mary performs abortion; (3) Republican Con-
gress is elected (Republican President remains in office: Bush); (4) Kate per-
forms abortion; (5) Clinton, a Democrat, is elected President; (6) Ann per-
forms abortion; (7) Gore, a Democrat, is elected President and Democratic
Congress is in place (year 20007); (8) Susan performs abortion.

The specification in LUPS would be® :

Persistent update commands:

always jail(X) < abt(X) when repC A repP
always not jail(X) < abt(X) when not repC A not repP

Alternatively, instead of the second clause, in this example, we could have used
a retract statement

retract jail(X) < abt(X) when not repC A notrepP

Note that, in this example, since there is no other rule implying jail, retracting
the rule is safely equivalent to retracting its conclusion.

The above rules state that we are always supposed to update the current state
with the rule jail(X) < abt(X) provided repC and repP hold true and that
we are supposed to assert the opposite provided not repC' and not repP hold
true. Such persistent update commands should be added to Uy .

Sequence of non-persistent update commands:

3 Where the rules with variables simply stand, as usual, for all the ground rules
that result from replacing the variables by all the ground terms in the language.

10

U, : assert repP
Us : assert notrepP
assert not repC
Us : assert event abt(ann)
U, : assert event abt(mary)
U; : assert not repC
Us : assert repC
Us : assert event abt(susan)
Uy : assert event abt(kate)

Of course, in the meantime we could have a lot of trivial update events repre-
senting ticks of the clock, or any other irrelevant updates.

Intuitively, the results of this LUPS program should be the following:

Initially, there is no rule about going to jail or not whenever an abortion is
performed. The rules asserted in Uy do not change this.

When, in Uy, Mary opts for abortion, since there is no rule concerning it,
jail(mary) does not become true, and so should be false by default.

With the rule asserted in Us, both repC and repP become true (repP is
true because it was true before, and remains so by inertia). Thus, by the
first persistent command, the rule jail(X) < abt(X) must be asserted.
When Kate undergoes an abortion (in Uy) the above rule is in force, and so
jail(kate) becomes true.

With the fact asserted in Us, none of the when-conditions of the two per-
sistent commands hold. So, none of the two rules, jail(X) < abt(X) and
not jail(X) < abt(X), are to be asserted here. However, note that the rule
asserted in Us remains true by inertia.

Now Ann chooses abort and, since the rule asserted in Uz holds by inertia,
jail(ann) becomes true.

When notrepC' is asserted, in Uy, the when-conditions of the second per-
sistent command become true and, consequently, not jail(X) < abt(X) is
asserted.

When Susan subjects herself to an abortion, the rule asserted in Uy is in force
by inertia. Moreover this rule, being the more recent, is used to “reject” the
rule introduced in Us. Accordingly, not jail(susan) is true in this state.

We come back to this example after the definition of the declarative semantics
for LUPS, and then show that these intuitive results are indeed obtained.

4 Semantics of LUPS

In this section we provide update programs with a meaning, by translating
them into dynamic logic programs. The semantics of an update program is
then determined by the semantics of the so obtained dynamic program.

11

For clarity, we start by briefly describing the language and semantics of dy-
namic logic programs of [1]. We recall that a dynamic program is a sequence
Py®...® P, (also denoted @ P, where P is a set of generalized logic programs
indexed by 1,...,n and Py = {}). Intuitively such a sequence may be viewed
as the result of, starting with program P, updating it with program P, ...,
and updating it with program P,. In such a view, dynamic logic programs are
to be used in knowledge bases that evolve®. New rules (coming from new, or
newly acquired, knowledge) can be added at the end of the sequence, bother-
ing not whether they conflict with previous knowledge. The role of dynamic
programming is to ensure that these newly added rules are in force, and that
previous rules are still valid (by inertia) as far as possible, i.e. that they are
kept for as long as they do not conflict with more recent ones.

The semantics of dynamic logic programs is defined according to the rationale
above. Given a model M of the last program P,, start by removing all the
rules from previous programs whose head is the complement of some later
rule with true body in M (i.e. by removing all rules which conflict with later
ones). All others persist through, by inertia. Then, as for the stable models
of a single generalized program, add facts not A for all atoms A which have
no rule at all with true body in M, and compute the least model. If M is a
fixpoint of this construction, M is a stable model of the sequence up to P,.

Definition 6 (Rejected rules) Let @{P; : i € S} be a dynamic logic pro-
gram, let s € S, and let M be a model of P,. Then:

Rejects(M) = {Ly < Body € P, | 3 not Ly <~ Body' € P;,i <j <s A
M = Body'}

where not Ly denotes the complement of the literal Ly (i.e. denotes not A if Ly
is an atom A, and denotes A if Ly is a default literal not A) , and both Body
and Body' are conjunctions of literals.

Note that, according to this definition, even rules with false body might be
rejected. In fact, the condition for rejection does not impose Body to be true
in M. However, as we remark below, the rejection of rules with false body
does not influence the resulting semantics. So, to simplify the definition, we

4 Instead of viewing programs in the sequence as different stages of knowledge in
the linear evolution of the knowledge base, these can also be viewed as different time
points in possible future evolutions of the knowledge, or even as knowledge of ever
more specific objects organized in a hierarchy (see [5] for more on this view). Since
our goal here is simply to recap dynamic programming for the purpose of better
understanding LUPS, we do not develop these other views herein.

12

do not impose M = Body.

Definition 7 (Default rules) Let M be a model of a generalized logic pro-
gram P. Then:

Default(P,M) ={not A|BA« Ll ..., L,e P: MLl ...,L,}

To allow for querying a dynamic program at any state s, the definition of
stable model is parameterized by the state:

Definition 8 (Stable Models of a DLP at state s) Let @P = @{P, :
i € S} be a dynamic logic program, let s € S, and let U = U;<, P;. A model
M of Py is a stable model of @ P at state s iff:

M = least([U — Rejects(M)] U Default(U, M))

If some literal or conjunction of literals ¢ holds in all stable models of @ P at
state s, we write @; P Fsm ¢-

Mark here that, as noted after Definition 6, the rejection of rules with false
body in M do not affect the resulting semantics. In fact, adding or removing
such rules does not affect the result of least.

Example 9 Consider the DLP P, ® P,, where P, and P, are:

P :c+ P, :nota + ¢

a < notb

The only stable model at Py is M = {¢,nota,notb}. In fact, Default(P; U
Py, M) = {not b}, Rejecty(M) = {a < not b}, and:

M = {c,not a,not b} = least((P, U Py — {a < notb}) U {not b})

Note here that, as mentioned in Section 2, in DLPs the head not ’s cannot
be moved freely into the body, to obtain denials. The rule in Py includes the
pragmatic information that not a is to be deleted if ¢ is true, information that
would be lost with the denial. Intuitively that rule makes a different statement
from that of the rule notc < a, which however yields the same denial. And
this difference is reflected by the defintion of stable models for DLPs. In fact,
iof the rule in Py 1s replaced by this other one, the only stable model at Py would
be {not c,a,notb} instead.

The reader can check that if the rule in Py is replaced by u < a, ¢, not u (which,
under the stable models semantics, is equivalent to the denial) the results are

13

also different from the ones above: with this rule instead, there is no stable
model at P,.

In [2] a transformational semantics for dynamic programs is presented. Ac-
cording to this equivalent definition, a sequence of programs is translated into
a single generalized program (with one new argument added to all predicates)
whose stable models are in one-to-one correspondence with the stable mod-
els of the dynamic program. This transformational semantics, here presented
in Appendix A, is the basis of an existing implementation of dynamic logic
programming.

The translation of an update program into a dynamic program is obtain-
able by induction, starting from the empty program F,, and for each update
U;, given the already built dynamic program P, & ... ® P;,_;, determining
the resulting program Py, @ ... & Pi_y & P;. To cope with persistent update
commands we will further consider, associated with every dynamic program
in the inductive construction, a set containing all currently active persistent
commands, i.e. all those that were not cancelled, up to that point in the con-
struction, from the time they were introduced. To be able to retract rules,
we need to uniquely identify each such rule. This is achieved by augmenting
the language of the resulting dynamic program with a new propositional vari-
able “rule(L < Ly,...,L,)" for every rule L <— L,..., L, appearing in the
original LUPS program® .

Definition 10 (Translation into dynamic programs) LetU = U;®...®
U, be an update program. The corresponding dynamic program Y(U) = P =
Py®...® P, is obtained by the following inductive construction, using at each
step © an auziliary set of persistent commands PCj:

Base step: Py = {} with PCy = {}.

Inductive step: LetP; = Py ®...® P; with the set of persistent commands
PC; be the translation of U; = Uy @ ... ® U;. The translation of Ui, =
U ®...Q0 U 1s Piyr = Py ® ... ® Py with the set of persistent commands
PC;. 1, where:

PCi+1 == PCZU
U{assert R when C : always R when C € U; 1}
U{assert event R when C : always event R when C € U;,,}

—{assert [event] R when C : cancel R when D € U1 N®; P; Esm D}

® Note that, by definition, all such rules are ground and thus the new variable
uniquely identifies the rule, where rule/1 is a reserved predicate.

14

—{assert [event] R when C : retract R when D € U; .1 A®,; P; Esm D}

NUjt1 = Uipn UPCipy

Py ={R, rule(R) : assert [event] R when C € NU; 1 A ®; P; Esm C}
U {not rule(R) : retract [event] R when C € NU; ;1 A ®; P; Esm C}
U {notrule(R) : assert event R when C € NU; A@®; | Pi_1 Fsm C}
U {rule(R) : retract event R when C € NU;A@®;_, Pi_1 Esm C,rule(R)}

where R denotes a generalized logic program rule, and C' and D a conjunction
of literals. assert [event] R when C and retract [event] R when C are
used for notational convenience, and stand for either the assert or the assert-
event command (resp. retract and retract-event). So, for example in the first
line of the definition of P;i1, R and rule(R) must be added if there exists
either a command assert R when C' or a command assert event R when C
obeying the conditions C' there.

In the inductive step, if i = 0 the last two lines are omitted. In that case NU;
does not exist.

Definition 11 (LUPS semantics) Let U be an update program.
A query holds Ly, ..., L, at q is true in U iff @, Y(U) Fun L1,. .., L.

Example 12 Recall the LUPS program of Fxample 5, which consisted in the
following two persistent update commands (added to Uy):

always jail(X) < abt(X) when repC A repP
always not jail(X) < abt(X) when not repC A not repP

plus the sequence of non-persistent commands:

U, : assert repP
Us : assert not repP
assert not repC'
Us : assert event abt(ann)
U, : assert event abt(mary)
U; : assert not repC
Us : assert repC
Us : assert event abt(susan)
U, : assert event abt(kate)

It is easy to check that

Y(Uy) = {} & {repP < ruley; notrepC < ruley; rule; <—; ruley <} °

15

Thus, according to the DLP semantics, except for repP, everything else is
false by default at Uy .

In Uy, Y(U; ® Uy) = Y(Uy) ® {abt(mary) < rules; rules <—}. Thus, at U,
repP and abt(mary) are true and everything else false by default.

At state Us, repC is added, and the rule added via the assert event of U,
must be retracted. Accordingly:

Y(U; @ Uy @ Us) = Y(Us) @ {repC < ruley; rules <—; notrules <}
and repP and repC' are true at Us.

Now, since both repP and repC are true at Uz, then by the first persistent
command, the rule jail(X) < abt(X) must be added, and so:

YU, ®...0Uy) =Y (Us) @ { jail(X) < abt(X), rules(X); rules <;

abt(kate) < ruleg; ruleg <}

Thus, at state Us, jail(kate) is true.

The addition of notrepC and of abt(ann) in states Us and Us, respectively,
yields:
YU ®...0Us) =Y (Uy) @ {notrepP < ruler; rule; <—; notrules <}

@ {abt(ann) < ruleg; ruleg <}

According to the semantics of this DLP program, jail(ann) is true at state Us.

After the addition of notrepC', in Uz, both repC and repP are false, and so
the rule not jail(X) < abt(X) is added. Thus:

YU, ®...0Us) =Y(Us) @ { notrepC < ruleg; ruleg <—; notrules}

& { not jail(X) < abt(X), ruleyp; ruleyy +;

abt(susan) < ruleyy; ruley; <}

The reader can check that the semantics of this DLP program entails that
not jail(susan) is true at state Us. In particular note how, in the only stable
model at state Ug, the rule jail(X) < abt(X), added in Uy, is rejected.

6 To simplify notation, instead of using the whole rule as a quoted atom as argument
of the predicate rule, we index the rule names in this example with unique numbers.

16

From the results on dynamic programs in [1], it is clear that LUPS generalizes
the language of updates of “revision programs” defined in [21]:

Proposition 13 (LUPS generalizes revision programs) Let I be an in-
terpretation and R a revision program. Let U = U, @ Uy be the update program
where:

U ={assert A: Acl}

Uy, ={assert A+ By,...,not By, : in(A) < in(By),...,out(B,) € R}
U{assert not A < By,...,not By, : out(A) <+ in(By),...,out(B,) € R}

Then, M is a stable model of Y(U) iff M is an interpretation update of I by
R in the sense of [21].

PROOF. This proposition follows easily from theorem 5.1 of [1] (whose proof
may be found in [2]). The afore mentioned theorem states that the stable
models of the dynamic logic program P; & P, exactly correspond to the in-
terpretation updates of I by R, where P, is just the set of facts in I, and P,
includes the rules:

A+ By,...,notB, for every in(A) < in(By),...,out(B,) € R
not A < By,...,not B, for every out(A) < in(By),...,out(B,) € R

5 Translation into generalized logic programs

The previous section established the semantics for LUPS. However, its defini-
tion is based on a translation into dynamic logic programs, and is not purely
syntactic. Indeed, to obtain the translated dynamic program, one needs to
compute, at each step of the inductive process, the consequences of the previ-
ous one.

In this section we present a translation of update programs and queries, into
normal logic programs written in a meta-language. The translation is purely
syntactic, and is correct in the sense that a query holds in an update program
iff the translation of the query holds in all stable models of the translation of
the update program. This translation also directly provides a mechanism for
implementing update programs: with a pre-processor performing the transla-

tions, query answering is reduced to that over normal logic programs” .

7 See Section 7 for more information about such an implementation.

17

The translation presented here assumes the existence of a sequence of consecu-
tive updates. Nevertheless, it is easy to see that the translation is modular (i.e.
adding an extra update does not modify what has been already translated).
Thus, in practice, the various updates can be iteratively translated, one at a
time.

Note that the translation presented below is not necessary for understanding
the example applications shown in the next section. Thus, a reader less inter-
ested in the implementation of LUPS, and more interested in its applications,
can skip this section without loss of continuity.

The translation uses a meta-language generated by the language of the up-
date programs. For each objective atom A in the language of the update
program, and each special propositional symbol ruler. o4, or cancelr pody
(where these symbols are added to the language for each rule L < Body in the
update program®), the meta-language includes the following symbols: A(s,),
At(s,t), A(s,t), and A%(s,t), where s and ¢ range over the indexes of the
update program. Intuitively, these new symbols mean, respectively: A is true
at state s considering all states until #; A is true due to the update program
at state s, considering all states until ¢; A is false at state s considering all
states until ¢; not A is true due to the update program at state s, considering
all states until .

Intuitively, the first index argument added to atoms stands from the update
state where the atom has been introduced. So, according to the transformation
below, in non-persistent asserts the first argument of atoms in the head of
rules is instantiated with the index of the update state where the rule was
asserted. In persistent asserts, the argument ranges over the indexes where
the rule should be asserted (i.e. all those greater than the state where the
corresponding always command is).

The second index argument stands for the query state. Accordingly, when
translating (non-event) asserts, the second argument of atoms in the head of
rules ranges over all states greater than that where the rule was asserted. For
event asserts, the second argument is instantiated with the index of the update
state where the event was asserted. This is so in order to guarantee that the
event is only true when queried in that state (it does not remain, by inertia,
to subsequent query states).

Inertia rules are added to allow for the usage of rules asserted in states before
the query one. Such rules say that one way to prove L at state s with query
state ¢, is to prove L at state s — 1 with the same query state (unless its

8 Recall that, according to Definition 2, programs are possibly infinite sets of propo-
sitional rules. Thus, the special propositional symbols are added for every such
propositional rule.

18

complement is proven at state s, thus blocking the inertia of L).

Literals in the body of asserted rules are translated such that both arguments
are instantiated with the query state. This guarantees that body literals are
always evaluated in the query state. Literals in the when clause have both
arguments instantiated with the state prior to that when the rule was asserted.
This guarantees that those literals are always evaluated considering that state
as the query state.

Definition 14 (Translation of update programs) By the translation of
an update program U = Uy ® ... Q@ U, in the language L, Tr(U), we mean the
normal logic program consisting of the following rules, in the meta-language
above:

Default knowledge state rules. For all objective atoms A € L, andt > 0:

A(0,t)

These rules state that in the initial state all objective atoms are false.

Update rules. For all objective atoms A € L, and s,t > 0:

These update rules state that A is true (resp. false) at state s if A (resp. not A)
15 true due to the update program at state s.

Inertia rules. For all objective atoms A € L, and s,t > 0:

A(s,t) < A(s — 1,t),not Au(s,t)
A(s,t) < A(s — 1,t),not A%(s,t)

Inertia rules say that A is true (resp. false) if it is true (resp. false) in the
previous state and its complement is not true due to the update at s.

19

Translation of asserts. For all update commands

assert L +— By,...,not B, when Cy,...,notC,, € U,

foranyl<s<mnandt>s:

Tuze%(—Bl,...,notBk (S + 17 t) — 01(57 S)a SRR Cm(S, S)

TL < By(t,t),...Bg(t,t),rulerp, .. notn,(t, 1), Ci(s,s),...,Cpn(s,s)

where TL = A"(s + 1,t) if L is an objective atom A, and TL = A%(s + 1,t)
if L is a default atom not A. The rule L < By, ... ,not By is added at state
s + 1 provided condition C4,...,notCy, holds at state s (considering only
states till s). It will remain true by inertia for all t > s+ 1 unless the lit-
eral rulepp, .. .not B, (t,t) becomes false. Moreover, beginning at state s + 1,
rulenc g, .. notB,(t,t) is true (and so remains by inertia).

Translation of retracts. For all update commands

retract L < By,...,not B, when C4,...,notC,, € U,

forany 1 <s<nandt> s:

rule}, g, o, (5T 1,1) < Ci(s,5),...,Cpls,s)
cancel}, p, o, (5 + 1,1) = Ci(s5,5),...,Cp(s,)

The rule L < By, ...,not By s retracted at state s+ 1 provided that condition
Ci,...,not C,, holds at state s. Retractions also cancel persistent update rules.

Translation of persistent asserts. For all update commands

always L < By,...,not B, when C4,...,notC,, € U,

20

foranyl<s<mnandt,g+1>s:

Cancel%(—Bl,...,not Bk(s + 17 t) —

Tlde%(—Bl,...,notB,c (q +1, t) — Gy (qv Q),) Cm(qv Q),
cancelpe g, .mot B, (¢ + 1,4 +1)

TL < B1 (t, t), . Bk (t, t), ruleLFBl,,,,,not By, (t, t),

CancelLeBl,...,notBk (q + 17 q + 1)7 OI (Q7 Q)a RN Cm(Qa Q)

where TL = A%(q+1,t) if L is an objective atom A, and TL = A*(q + 1,t) if
L is a default atom not A. The rule L <+ By, ...,not By is added to any state
greater than s, provided condition C,...,not C,, holds at that state s, and
will remain true by inertia for all t > q, unless retracted or cancelled.

Translation of cancellation rules. For all update commands

cancel L + By,...,not B, when C4,...,notC,, € U,

forany 1 <s<nandt> s:

cancely, g porp, (5 +1,1) < Ci(s,5),...,Cn(s,)

The persistent update of rule L < By, ...,not By is cancelled at state s + 1
provided condition C4,...,not C,, holds at state s.

Translation of assert events. For all update commands

assert event L < By,...,not B, when C4,...,notC,, € Uy

forany 1 < s <n:

TL<+ Bi(s+1,s+1),...Bg(s+1,s+1),Ci(s,5),...,Cn(s,s)

where TL = A"(s+1, s+1) if L is objective atom A, and TL = A%(s +1,s + 1)
if L is default atom not A. The rule L < By, ..., not By, is added at state s+1,
but does not remain true through inertia.

21

Translation of retract events. For all update commands

retract event L < By,...,not B, when C,...,notC,, € U,

forany 1 < s <n:

rulef, g porp (5+ 1,5 +1) < Ci(s,8),...,Cn(s,s)

cancel}, p, o, (8 +1,5+1) « Ci(s,5),...,Cnp(s,s)

The rule L < By, ...,not By, is retracted at state s + 1 under the named con-
ditions. The retraction does not remain true through inertia.

Translation of persistent assert events. For all update commands

always event L < By,...,not B, when C,,...,notC,, € U,

foranyl<s<mnandt,g+1>s:

Cancel%(—Bl,...,not By, (S + 17 t) —

TL+ Bi(q+1,q+1),...Be(qg+1,q+1),

Calncell/eBl,...,notB;c ((] + 17 q + 1)7 OI(Q: Q)a IO Om(Qa Q)

where TL = A%(q+1, q+1) if L is objective atom A, and TL = A*(¢ + 1,q+ 1)
if L is default atom not A.

The translation of update programs queries is similar to that of conditions in
update commands:

Definition 15 (Translation of queries)

Let Q = holds Bq,...,By,notCq,...,notC,, at q be a query to an update
program U in the language L. The translation of Q, Tr(Q), is the conjunction
of literals in the meta-language:

Bl(QaQ)a e '7Bk(Q7Q)7CI(Q7Q)7 e 7Cm(Q7Q)

Theorem 16 (Correctness of the translation) Let U be an update pro-
gram. A query Q is true in U iff Tr(U) FEsm Tr(Q).

22

PROOF. See Appendix A.

6 Application domains

In this section we discuss and illustrate with examples the applicability of
the language LUPS to several broad knowledge representation domains. The
selected domains include: active databases, theory of actions, legal reasoning,
and software specification. They are not intended by any means to constitute
an exhaustive list of potential application domains but just to serve as sample
representatives. For each of the selected application domains we present an
illustrative example, each of which has been run and tested under our imple-
mentation of LUPS. Additional examples of application of LUPS can be found
in [4].

6.1 Active Knowledge Bases

Persistent update laws allow us to handle not only knowledge states that dy-
namically change due to newly received updates, but they enable us also to
model the much more involved case of self-updating or active knowledge bases,
which undergo change even though no truly new updates occurred. For exam-
ple, the watch’s hands move whether or not new updates are received. Since
the high-level language of updates LUPS defined above has a built-in capabil-
ity to define persistent updates, it permits us to model active knowledge bases.
The following example illustrates the language’s ability to handle persistent
updates.

Example 17 (Timers) Timers are started by the action on_for(N) which
means the timer will be on for the next N states. This notion can be captured
by three persistent rules added to Uy :

always event on_for(M) when on_for(N),N >0,M =N —1

With this rule the timer is on for M states (or clock ticks) if it was on for
N = M +1 states in the previous state. Timers are on if they are on_for(N),
where N > 0: always on < on_for(N), N > 0, and they are turned off when
N = 0: always not on < on_for(0). Consider the update command asserted
at some state Uy,: U, : assert event on_for(2). As intended, on holds in the
state n + 1,n + 2 but not on holds in the state n + 3.

The problem of building, querying and modifying active databases is studied
by many researchers in the database community, and is considered to be an

23

important research topic. We believe that our approach is likely to have a
major impact on the ongoing research in this area by helping to precisely
define both the declarative and the procedural meaning of the notion of active
database.

6.2 Reasoning about Actions

An exceptionally successful effort has been made lately in the area of reasoning
about actions. Beginning with the seminal paper by Gelfond and Lifschitz [11],
introducing a declarative language for talking about effects of actions (action
language A), through the more recent paper of Giunchiglia and Lifschitz [13]
setting forth an enhanced version of the language (the so called language C),
a number of very interesting results have been obtained by several researchers
significantly moving forward our understanding of actions, causality and effects
of actions (see the survey paper [12] for more details on action languages).
These recent advances also significantly influenced our own work on dynamic
knowledge updates.

The theory of actions is very closely related to knowledge updates. An action
taking place at a specific moment of time may cause an effect in the form of
a change of the status of some fluent. For example, an action of stepping on
a sharp nail may result in severe pain. The occurrence of pain can therefore
be viewed as a simple (atomic) knowledge update triggered by a given action.
Similarly, a set of parallel actions can be viewed as triggering (causing) parallel
atomic updates. The following suitcase example illustrates how LUPS can be
used to handle parallel updates.

Example 18 (Suitcase) There is a suitcase with two latches which opens
whenever both latches are up, and there is an action of toggling applicable to
each latch [20]. This situation is represented by the three persistent rules:

always open < up(l1),up(12)
always up(L) when not up(L),toggle(L)
always not up(L) when up(L),toggle(L)

In the initial situation [1 is down, (2 is up, and the suitcase is closed:

U, = {assert not up(l1), assert up(l2), assert not open}

Suppose there are now two simultaneous toggling actions:

U, = {assert event toggle(l1), assert event toggle(I2)}

24

and afterwards another 12 toggling action: U3 = {assert event toggle(I2)}.
In the knowledge state 2 we will have up(I1), not up(l12) and the suitcase is not
open. Only after Us will latch [2 be up and the suitcase open.

However, there are also major differences between dynamic updates of knowl-
edge and theories of actions. While in our approach we want to be able to
update one knowledge base by an arbitrary set of rules that constitutes the
updating knowledge base, action languages deal only with updates of proposi-
tional knowledge states. In other words, action languages are limited to purely
atomic assertions and retractions, and thus deal exclusively with purely ex-
tensional (or relational) knowledge bases. Our approach further allows us to
model self-updating or active knowledge bases that are capable of undergoing
change without any outside triggers at all. As a result, from a purely syntactic
point of view, LUPS is strictly more expressive than action languages A or C.

At the semantic level, however, the situation is not so simple. The main mo-
tivation behind the introduction of the language C was to be able to express
the notion of causality. This is a very different motivation from the motivation
that we used when defining the semantics of updated knowledge bases. Here
the main principle was to inherit as much information as possible from the
previous knowledge state while changing only those rules that truly have to
be affected by the given update(s). As a result, one can easily see that, even in
simple cases, the semantics of knowledge updates and that of action languages
often differ.

In spite of these differences, the strong similarities between the two approaches
clearly justify a serious effort to investigate the exact nature of the close rela-
tionship between the two research areas and between the respective families
of languages, their syntax and semantics. Hopefully, we will be able to bridge
the gap between these two intriguing and closely related research areas.

6.3 Legal Reasoning

Robert Kowalski and his collaborators did a truly outstanding research work
on using logic programming as a language for legal reasoning (see e.g. [16]).
However logic programming itself lacks any mechanism for expressing dynamic
changes in the law due to revisions of the law or due to new legislation. Dy-
namic knowledge representation allows us to handle such changes in a very
natural way by augmenting the knowledge base only with the newly added or
revised data, and automatically obtaining the updated information as a result.
We illustrate this capability of LUPS on the following simple example.

Example 19 (Conscientious objector) Consider a situation where some-
one is conscripted if he is draftable and healthy. Moreover a person is draftable

25

when he attains a specific age. However, after some time, the law changes and
a person is no longer conscripted if he is indeed a conscientious objector:

U : always draftable(X) when of _age(X)
assert conscripted(X) < draftable(X), healthy(X)

U, : assert healthy(a). assert healthy(b). assert of _age(b).
assert consc_objector(a). assert consc_objector(b)

Us : assert of _age(a)

Uy : assert not conscripted(X) < consc_objector(X)

In state 3, b is subject to conscription but after the last assertion his situation
changes. On the other hand, a is never conscripted.

In addition to providing automatic updating, LUPS allows us to keep the
entire history of past changes and to query the knowledge base at any given
time in the past. The ability to keep track of all past changes in the law is
a feature of crucial importance in this domain. We expect, therefore, that
by using LUPS as a language for representation and reasoning about legal
knowledge we may be able to significantly improve upon the work supported
on standard logic programming.

6./ Software Specifications

One of the most important problems in software engineering is that of choosing
a suitable software specification language. The following are among the key
desired properties of such a language:

(1) Possibility of a concise representation of statements of natural language,
commonly used in informal descriptions of various domains.

(2) Availability of query answering systems which allow rapid prototyping.

(3) Existence of a well developed and mathematically precise semantics of
the language.

(4) Ability to express conditions that change dynamically.

(5) Ability to handle inconsistencies stemming from specification revisions.

It has been argued in several papers (see e.g. [17,7]) that the language of logic
programming is a good potential candidate for the language of software speci-
fications. While logic programming clearly possesses the first three properties,
it lacks simple and natural ways of expressing conditions that change dynami-
cally and the ability to handle inconsistencies stemming from specification re-

26

visions. The last problem is called elaboration tolerance and requires that small
modifications of informal specifications result in localized and simple modifi-
cations of their formal counterparts. Dynamic knowledge representation based
on generalized logic programs extends logic programming exactly with these
two missing dynamic update features. Moreover, small informal specification
revisions require equally small modifications of the formal specification, while
all the remaining information is preserved by inertia. The following banking
example illustrates the above claims.

Example 20 (Banking transactions) Consider a software specification for
performing banking transactions. Account balances are modeled by the predicate
balance(AccountNo, Balance). Predicates deposit(AccountNo, Amount) and
withdrawal (AccountNo, Amount) are used to represent, by means of events,
the actions of depositing and withdrawing money into and out of an account,
respectively. A withdrawal can only be accomplished if the account has a suf-
ficient balance. This simplified description can easily be modeled in LUPS by
Ui:

always balance(Ac, OB + Up) when update Bal(Ac, Up), balance(Ac, OB)
always not balance(Ac, OB) when updateBal(Ac, NB), balance(Ac, OB)
assert update Bal(Ac, —X) < withdrawal(Ac, X), balance(Ac, O),0 > X
assert update Bal(Ac, X) < deposit(Ac, X)

The first two rules state how to update the balance of an account, given any
updateBal occurrence: when some updateBal occurs for account Ac, the bal-
ance of Ac must be changed by Up. This is accomplished by simultaneosly
adding the fact for the new balance (in the first command) and deleting the
fact with the old balance of Ac (in the second command). With the last two
rules, deposits and withdrawals are carried out, by causing update Bal.

An initial situation can be imposed via assert commands. Deposits and with-
drawals can be stipulated by asserting events of deposit/2 and withdrawal /2.
E.g.:

U, : {assert balance(1,0), assert balance(2,50)}

Us : {assert event deposit(1,40), assert event withdrawal(2,10)}

causes the balance of both accounts 1 and 2 to be 40, after state 3.

Now consider the following sequence of informal specification revisions. De-
posits under 50 are no longer allowed; VIP accounts may have a negative
balance up to the limit specified for the account; account #1 is a VIP account
with the overdraft limit of 200; deposits under 50 are allowed for accounts with
negative balances. These can in turn be modeled by the sequence:

27

Uy : assert not updateBal(Ac, X) < deposit(Ac, X), X < 50

Us : assert updateBal(Ac, —X) + vip(Ac, L), withdrawal(Ac, X),
balance(Ac, B),B+ L > X

Us : assert vip(1,200)

U, : assert updateBal(Ac, X) + deposit(Ac, X), balance(Ac, B), B < 0

This shows dynamic knowledge representation constitutes a powerful tool for
software specifications that will prove helpful in the difficult task of building
reliable and provably correct software.

7 Conclusions and future work

We have presented LUPS, a language for specifying dynamic updates in non-
monotonic knowledge bases. Knowledge bases are represented by generalized
logic programs allowing default negation in rule heads. We provided a declara-
tive semantics for the language, by translating LUPS programs into sequences
of logic programs, whose semantics is determined by dynamic logic program-
ming [1]. We have also presented a purely syntactic translation of LUPS pro-
grams into logic programs written in a meta-language, and proven its cor-
rectness with respect to the declarative semantics. The translation immedi-
ately leads to a mechanism for implementing LUPS: with a pre-processor
performing the translation, query answering is reduced to that over normal
programs. Such a pre-processor, that translates LUPS programs into logic pro-
grams that can be run in the DLV-system [8] (which computes stable mod-
els of normal programs) has been implemented by us and is available at:
http://centria.di.fct.unl.pt/~jja/updates/
Another implementation, also to be found there, includes a pre-processor and
a meta-interpreter for query answering under the well-founded semantics, and
runs under XSB-Prolog. Though not complete according to the semantics de-
fined in this paper, this other implementation coincides with it on the broad
class of stratified programs. This follows from the well known result that the
well-founded and the stable sematics coincide on that class. And, for such
programs, using XSB-Prolog may have some advantage over using DLV, in-
cluding better efficiency in query answering, and its less restrictive usage of
variables and functors in programs. Further discussion of these implementa-
tions is, however, beyond the scope of this paper.

Finally we’ve discussed and illustrated by examples the applicability of LUPS
to several broad knowledge representation domains (viz. active databases, the-
ory of actions, legal reasoning and software specifications). The examples in

28

this paper are simply meant to show that the LUPS language can be a useful
tool for representing knowledge in those domains. However they do not pro-
vide a deep study of the applicability of the LUPS language. Such a deeper
study is subject of ongoing and future work, namely on:

e bridging the gap between knowledge updates and the very active research
area of reasoning about actions, by analyzing the exact nature of the rela-
tionship existing between these two closely related areas and by comparing
the syntax and semantics of the languages used in both domains of research.

e applying LUPS as a language for representation and reasoning about legal
knowledge and for representation and reasoning about multi-agent commu-
nication.

e applying knowledge update methodology to the domain of software engi-
neering by using knowledge updating as a tool for software specification
and verification of program correctness.

e using the language of knowledge updates for research on the principles,
modeling and design of active knowledge bases.

We also intend to explore the possibility of applying dynamic knowledge up-
dating for the sake of equipping knowledge bases with true object-oriented
capabilities. Dynamic knowledge updating seems to provide exactly the tools
needed in order to allow instances of class objects to fully inherit knowledge
contained in their super-classes. Namely, we can view the subclass instance
as an update of its super-class in which new rules represent the updating
knowledge, while the super-class represents the original knowledge.

In addition, we plan to further investigate the use of LUPS as a natural frame-
work for reasoning about and updating visual databases, with the purpose of
ensuring efficient querying, storage and retrieval of images based on the de-
scription of their visual contents. As pointed out in [23], image databases
must be equipped with “an ability to reason about objects [...] and an ability
to maintain an updated view of the world based on the actions that either the
system or the user has performed.” Moreover, the need to handle motion re-
quires the ability to deal with spatio-temporal reasoning, where, at any given
time moment, information about a given image frame depends on its own con-
tent as well as on the content of its temporal neighbors. LUPS seems to be
ideally suited for this purpose. In fact we have already tested the prototype
implementation of LUPS on some introductory samples of visual databases,
with quite encouraging results.

Dynamic Logic Programming, and LUPS, provide a way of avoiding contradic-
tory information. This is done by limiting the inheritance of rules by inertia:
when updating a knowledge base K B with another knowledge base K B’, if the
latter concludes some L, then limit the inertia of rules from the former that
lead to the conclusion not L. Clearly not all forms of contradiction are avoided

29

in this way. For example, if KB’ is itself contradictory, the inconsistency of
the resulting update is not avoided. We intend to devise effective methods
of handling such knowledge inconsistencies by developing new contradiction
removal and diagnosis techniques.

Another possible source of inconsistency not dealt with by LUPS, stems from
its use of a two-valued semantics in the object language. In fact, an update may
be inconsistent and yet have no clear contradiction (such as A and not A), the
inconsistency coming from the inability of the two-valued semantics to han-
dling a specific knowledge representation phenomenon (e.g. resulting from odd
“loops” over negation). To overcome this source of inconsistencies, we plan to
extend our approach to the three-valued well-founded object language seman-
tics. This would further allow us to model updates with undefined outcome.

Last, but not least, we intend to further pursue the study of foundations and
basic principles of dynamic knowledge representation and the adequacy of
LUPS as a high-level for that purpose.

Acknowledgements

This work was partially supported by PRAXIS XXI project MENTAL, and
by a NATO grant for L. M. Pereira to visit Riverside. Special thanks are due
to Paulo Quaresma, for his collaboration on the examples of application.

References

[1] J.J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic logic programming. In A. Cohn and L. Schubert, editors, KR’98.
Morgan Kaufmann, 1998.

[2] J.J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic updates of non-monotonic knowledge bases. Journal of Logic
Programming, 45(1-3):43-70, 2000.

3] J. J. Alferes and L. M. Pereira. Update-programs can update programs. In
J. Dix, L. M. Pereira, and T. Przymusinski, editors, NMELP’96. Springer, 1996.

[4] J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and
P. Quaresma. Preliminary exploration on actions as updates. In M. C. Meo and
M. V. Ferro, editors, Joint Conference on Declarative Programming, AGP’99,
1999.

[5] F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with
inheritance. In D. De Schreye, editor, ICLP’99. MIT Press, 1999.

30

6] C. V. Damisio and L. M. Pereira. Default negated conclusions: why not 7 In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, ELP’96, volume 1050
of LNAI pages 103-117. Springer, 1996.

[7] A. Ed-Dbali and P. Deransart. Software formal specification by logic
programming: The example of standard PROLOG. Technical report, INRIA,
Paris, 1993.

8] W. Faber and G. Pfeifer. DLV homepage, 1996. Available at
http://www.dbai.tuwien.ac.at/proj/dlv/.

[9] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, ICLP’88. MIT Press, 1988.

[10] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, ICLP’90. MIT Press, 1990.

[11] M. Gelfond and V. Lifschitz. Representing actions and change by logic
programs. Journal of Logic Programming, 17:301-322, 1993.

[12] M. Gelfond and V. Lifschitz. Action languages. Linkoping Electronic Articles
in Computer and Information Science, 3(16), 1998.

[13] E. Giunchiglia and V. Lifschitz. An action language based on causal
explanation: Preliminary report. In AAAI’98, pages 623-630, 1998.

[14] K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic
Programming, 35:39-78, 1998.

[15] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In J. Allen, R. Fikes, and E. Sandewall, editors, KR’91.
Morgan Kaufmann, 1991.

[16] R. Kowalski. Legislation as logic programs. In Logic Programming in Action,
pages 203-230. Springer-Verlag, 1992.

[17] K. K. Lau and M. Ornaghi. The relationship between logic programs and
specifications. Journal of Logic Programming, 30(3):239-257, 1997.

[18] J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs.
In J. Dix, L. M. Pereira, and T. Przymusinski, editors, Logic Programming and
Knowledge Representation, volume 1471 of LNAI Springer, 1997.

[19] V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning
(preliminary report). In B. Nebel, C. Rich, and W. Swartout, editors, KR’92.
Morgan-Kaufmann, 1992.

[20] F. Lin. Embracing causality in specifying the indirect effects of actions. In
IJCATI’95, pages 1985-1991. Morgan Kaufmann, 1995.

[21] V. Marek and M. Truszczynski. Revision specifications by means of programs.
In C. MacNish, D. Pearce, and L. M. Pereira, editors, JELIA ’94. Springer,
1994.

31

[22] T. Przymusinski and H. Turner. Update by means of inference rules. In
V. Marek, A. Nerode, and M. Truszczynski, editors, LPNMR’95. Springer, 1995.

[23] Report. Workshop on high performance computing and communications for
grand challenge applications: Computer vision, speech and natural language
processing and artificial intelligence. IEEE Transactions on Knowledge and
Data Engineering, 5(1):138-154, 1993.

[24] M. Winslett. Reasoning about action using a possible models approach. In
V. Marek, A. Nerode, and M. Truszczynski, editors, AAAI’88, 1988.

A The proof of Theorem 16

Due to the size of the proof, partially resulting from the size of the translation
itself, instead of a complete proof, here we only present its sketch. Moreover,
we only consider LUPS programs with assert, persistent assert and assert event
commands. The extension of the proof for the case of persistent assert event
commands is easy to obtain from the corresponding proofs for the assert event
commands and persistent assert commands. The translation of retract and
cancel commands is adapted from the well known technique of rule naming.

For the proof of this theorem, we first need to recall the transformational
semantics for dynamic programs presented in [2].

Definition 21 (Dynamic Program Update) By the dynamic program up-
date over the sequence of updating programs P = {P; : s € S} we mean the
logic program WP, which consists of the following clauses in the extended lan-
guage L, obtained from augmenting the language L of P, with the symbols A,

A(s), A(s), A“(s), and A(s) for any atom A of L and any s € S :

(RP) Rewritten program clauses:

A%(s)+By,...,B,,Cy,...,C, (A.1)
Au(s) < By,...,B,,Cy,...,C, (A.2)
(A.1) for any clause:
A« By, ..., By, notCy, ..., notC,
(A.2) for any clause:
notA < By, ..., By, notCy, ..., notC,

9 In [2] the symbols A, Ag, A, , Ap,, and Ap, where used, respectively, instead of

A, A(s), A(s), A%(s), and A(s)

32

wn the program Py, where s € S. The rewritten clauses are simply obtained
from the original ones by replacing atoms A (respectively, the atoms not A)
occurring in their heads by the atoms A"(s) (respectively, A*(s)) and by

replacing negative premises not C' by atoms C.

(UR) Update rules:

A(s) < A"(s)

(A.3)
A(5) « Au(s)

for all objective atoms A and all s € S. The update rules state that an atom
A must be true (respectively, false) in state s € S if it is true (respectively,
false) in the updating program P;.

(IR) Inheritance rules:

A(s) < A(s — 1), not A(s) (A.4)
A(s) < A(s — 1), not A%(s) (A.5)

for all objective atoms A and all s € S. The inheritance rules say that an
atom A is true (respectively, false) in the state s € S if it is true (respec-
tively, false) in the previous state s — 1 and it is not rejected, i.e., forced to
be false (respectively, true), by clauses in the updating program Ps.

(DR) Default rules:
F10) (A.6)

for all objective atoms A. Default rules describe the initial state 0 by making
all objective atoms initially false.

Definition 22 (Dynamic Program Update at a Given State) Given a
fized state s € S, by the dynamic program update at the state s, denoted by
D P, we mean the dynamic program update WP augmented with:

(CS;) Current State Rules:

A+ A(s) (A.
A Afs) (A.8)
not A< A(s) (A.9)

for all objective atoms A. Current state rules specify the current state s in
which the updated program is being evaluated and determine the values of
the atoms A, A and not A.

33

Suppose now instead that we have augmented the language with the predi-
cate symbols with one more argument ¢ (for every ¢ € S), and use the same
argument in all the literals of rules from A.3 to A.6. For example, rule A.4
would then be:

A(s,t) < A(s — 1,t), not Au(s,t)

Note that with this new translation, the modified rules A.3 to A.6, are exactly
the same as update, inertia and default knowledge state rules from definition
14.

Moreover, let rules A.1 and A.2 now be replaced, respectively, by:

o
S5
—~
_CIJ
~
~
Sy
—
_@F
~
Sy
3
—_~
_@F
~
Q
—~
\.N
~
~—
AP
—~
_@F
~
~

and the current state rules at state s now be:

A<+ A(s,s)

not A< A(s, s)

Compared with the previous one, this translation only adds an extra argument
that is used only for ¢ equal to the current state s. Clearly, the stable models
restricted to atoms A in the original language £ are exactly the same in both
translations.

Moreover, in the latter translation A (resp. not A) is true in a stable model of
the dynamic program at state s iff A(s,s) (resp. A(s,s)) is true in that stable
model. Thus, for answering queries in a dynamic program at some state s,
the two remaining current state rules are no longer needed provided that the
query is posed after adding to it the two extra arguments, both instantiated
with state s. In the sequel, this latter translation of a dynamic program @ P

is represented by T'(6 P).

Lemma 23 Let @ P be a dynamic program. Then @p Esm B, ..., not C, iff
T@BP) =Esm Bi(s,s),...,Cu(s,s).

At this point, note that if a LUPS program is comprised only of commands
of the form assert L <— Lq,..., L, then the main Theorem is already proven.
In fact, in these simple LUPS programs, Y (/) is obtained by adding L <
Ly, ..., L to program P, iff assert L < L4,..., Ly € U;. Moreover, the trans-
lation of a LUPS programs with just these commands, exactly coincides with
the translation above of the dynamic program, and the translation of a query

34

coincides with that of the lemma. So the lemma guarantees the correctness of
the Theorem (for this simple case).

Suppose now that we are given a dynamic logic program P = P;®...®P;®...®
P,, resulting from the translation of a LUPS program U, ®...QU;®...QU,,
and that to U;,; the command assert A < Ly,..., L, when Ly,y,...,L,, is
added ' . The translation of this command (simplified for the case where no
retract or cancel commands exist) is the rule:

r= AU+ 1,1) ¢ Bi(t,1), ..., Balt, 1), C1(i, i), ..., Colis 1)

According to lemma 23, and since the indexes in the two extra arguments never

increase, T(P)U{r} Esm C1(4,1),...,Cn(i,1) iff P; Egm C1, ..., C, (where P;
denotes the sequence P up to program P;). Accordingly, if P; =g Ci, ..., Cy,
then replacing the rule above by r, = A“(i + 1,t) < B (t,t),..., Bi(t,1)
doesn’t change the stable models, and clearly T'(P) U {r;} is the translation
of the dynamic program obtained from P by adding A < Ly, ..., L to P;y;.
Le., if P; g C1,...,C, then adding r produces the same effects as adding
A<+ Ly,...,Ly to Py If Py rem O, ..., C, then the rule r can be deleted,
and so adding assert A < L;,...,L; when Ly,,..., L, to U;;; has no
effect on P. This is exactly the semantics of the assert command in Def. 10.

Assume now that, with the dynamic program P as above resulting from
the translation of the same LUPS program, one adds to U;y; the command
always A < Ly,..., Ly when Ly, ..., L,. The simplified translation of this
command results in the rules:

r(g+1)=A%q+1,t) « Byi(t,t),...,Bi(t,t),Ci(¢,9),-..,Cnlq, q)

for all ¢ + 1 > i. Clearly, each of these r(q + 1) rules is the same as the
rule that would be introduced in the translation if a command assert A <
Ly,...,L;, when Ly,,..., L, is added to U,;;. So, according to this trans-
lation, the addition of always A < Ly,..., Ly when Ly,q,..., L, to U;;; is
equivalent to the addition of assert A < L,...,L; when L;,...,L,, to
every U,y for ¢ > 4, and this is the meaning of the persistent assert command
in definition 10.

Suppose now that we are given a dynamic logic program P;11 = P ®... @ Py,

resulting from the translation of a LUPS program U; ®...®U,,, and that U,
includes the command assert event A <— L,..., Ly when Ly ,q,...,L,,. The

10 The case where the literal in the head is of the form not A is in all respects similar
to this one, and omitted for brevity.

35

simplified translation of this command is the rule r:

A'(i+ 1,0+ 1)« Bi(i +1,i+1),...,Br(i+ 1,i+ 1),C1(4,7), . .., Cp(3,17)

Consider also the rule r' resulting from the translation of the command re-
sulting from the assert event above when dropping the keyword event:

AU+ 1,8) ¢ Byi(t,4), ..., Ba(t,0), C1(i 1), .., Con(is 1)

Note that the truth of any literal L(q, q), with ¢ < i+ 1, in the stable models
of T(P;11)U{r} does not depend on the addition of 7, i.e. T(P;y1) Esm L(q, q)
iff T(Pi1) U{r} Esm L(q,q). The same happens when adding rule ' instead.
Moreover, note that for ¢ = 7 + 1 adding rule r as the same effect has adding
roie. T(Pip)U{r} Fen Lt + 1,04+ 1) iff T(Pip1) U{r'} FEsm LE+1,i+1).
Thus, for any ¢ up to i+ 1 adding r or r' has exactly the same effect, meaning
that, up to ¢ 4+ 1, the semantics of adding the assert event command given by
the translation, is the same as that of adding the assert command. This agrees
with definition 10. To prove the correctness of assert event commands we have
also to prove that, if more commands U;,» ® ... ® U, are given, the truth of
literals L(q, q) for some ¢ > i + 1 is not affected by that rule (in definition
10 this is guaranteed by adding to P;;» a literal falsifying the body of the
rule). And this is indeed the case. For that, note that in the inertial rules the
second argument is kept fixed. Thus, since ¢ # ¢ + 1, rule r is never activated
via inertia rules. The only possibility of rule r being activated in Tr(U) is
via some literal C'(i + 1,7 + 1) resulting from the translation of a literal in
a when-clause of a command in U;;;. But this is exactly the case where its
truth is verified in Py, and where rule » must be taken into account. The
complete proof of this point is slightly more complex, to take into consideration
to non-relevance property of stable models. The long and short of is is that
because of the stratification on state indexes, non-relevance between states is
not introduced. The technicalities of this are omitted here for brevity.

The complete proof continues by showing the correctness of persistent assert
event commands. This is done by reducing the translation of such commands
to the translation of several assert event commands, in the same way as the
proof of persistent assert commands is done by reducing their translation into
several assert commands. The results are then generalized to the case where
retract and cancel commands exist, and the correctness of these commands
is shown. Note apropos that the translation of retract and cancel commands
relies on the known technique of naming rules. The proof is thus based on the
correctness of naming with respect to the translation into dynamic programs
of definition 10.

36

