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Abstract

According to the recently introduced notion of Dynamic Logic Program-
ming, knowledge is given by a set of theories (encoded as logic programs)
representing different states of the world. Different states may represent dif-
ferent time periods, different hierarchical instances, or even different domains.
The mutual relationships between different states are used to determine the se-
mantics of the combined theory composed of all individual theories. Although
suitable to encode one of the possible representational dimensions (e.g. time,
hierarchies, domains,...), Dynamic Logic Programming cannot deal with more
than one such dimensions simultaneously because it is only defined for linear
sequences of states. In this paper, we extend Dynamic Logic Programming to
allow for collections of states represented by arbitrary acyclic digraphs, intro-
ducing the notion of Multi-dimensional Dynamic Logic Programming. Within
this more general theory, we will also show how some particular state struc-
tures can be quite useful to model and reason about dynamic multi-agent
systems.

1 Introduction and Motivation

During the last few years, the notion of agency has virtually invaded every sub-field
of computer science. Although commonly implemented by means of imperative lan-
guages, mainly for reasons of efficiency, the agent paradigm has recently increased
its influence in the research and development of computational logic based systems.
Since efficiency is not always a real issue, but clear specification and correctness
is, Logic Programming and Non-monotonic Reasoning have been brought (back) to
the spot-light. To this accrues the recent significant improvements in the efficiency
of Logic Programming implementations for Non-monotonic Reasoning [8, 19, 23].
Besides allowing for a unified declarative and procedural semantics, eliminating the
traditional high gap between theory and practice, the use of several and quite power-
ful results in the field of non-monotonic extensions to Logic Programming (LP) can
represent an important added value to the design of rational agents. For a better
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understanding and a thorough exposition of how Logic Programming can contribute
to agent-based computing, the reader is referred to [22] and [6]. Embedding agent
rationality in the LP paradigm affords us with a number of tools and formalisms cap-
tured in that paradigm, such as belief revision, inductive learning, argumentation,
preferences, etc. [13, 18]

In [1], the paradigm of Dynamic Logic Programming (DLP) was introduced, fol-
lowing the eschewing of performing updates on a model basis, but rather as a process
of logic programming rule updates [15]. According to DLP, knowledge is given by a
set of theories (encoded as generalized logic programs) representing different states
of the world. Different states may represent different time periods, different hier-
archical instances, or even different domains. Consequently, the individual theories
may contain mutually contradictory as well as overlapping information. The role
of Dynamic Logic Programming is to use the mutual relationships extant between
different states to precisely determine the declarative as well as the procedural se-
mantics of the combined theory composed of all individual theories.

Since its introduction, DLP has been employed to represent several different
aspects of a system, namely as a way to:
represent and reason about the evolution of knowledge in time [1, 2];
combine rules learned by agents [17];
reason about updates of agents’ beliefs [9];
model agent interaction [20, 21];
model and reason about actions [3];
solve inconsistencies in metaphorical reasoning [16];

The common aspect among these DLP applications is that the states associated
with the given set of theories only encode one of the several possible representational
dimensions (e.g. time, hierarchies, domains,...). This is so because DLP is only
defined for linear sequences of states.

For example, DLP can be used to model the relationship of a hierarchical related
group of agents, and DLP can be used to model the evolution of a single agent
over time. But DLP, as it stands, cannot deal with both settings at once, and
model the evolution of a group of agents over time. An instance of such a multi-
dimensional scenario can be found in legal reasoning, where the legislative agency
is divided according to a hierarchy of power, governed by the principle Lex Superior
(Lex Superior Derogat Legi Inferiori) according to which the rule issued by a higher
hierarchical authority overrides the one issued by a lower one, and the evolution of
law in time is governed by the principle Lex Posterior (Lex Posterior Derogat Legi
Priori) according to which the rule enacted at a later point in time overrides the
earlier one. DLP can be used to model each of these principles individually, by
using the sequence of states to represent either the hierarchy or time, but is unable
to cope with both at once when they interact. For this to be possible, DLP needs
to be extended to allow a more general structure of states. An example based on
these legal principles will be further explored in a subsequent section.

In this paper we introduce the notion of Multi-dimensional Dynamic Logic Pro-
gramming (MDLP) which generalizes DLP to allow for collections of states repre-
sented by arbitrary acyclic digraphs. Within this more general theory, we will also
show how some particular state structures can be quite useful to model and reason
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about dynamic multi-agent systems.

The remainder of the paper is structured as follows: In Sect.2 we briefly recap
DLP and some other definitions used throughout the paper. In Sect.3 we define
MDLP. In Sect.4 we relate MDLP to multi-agent systems and illustrate with an
example. In Sect.5 we motivate further developments and conclude.

2 Background Definitions

In this section we begin with a brief review of the so called generalized logic pro-
grams, their stable model semantics, and the notion of dynamic logic programming,
as set forth in [1]. For the purpose of self containment, we will also recap some
definitions related to graph theory.

2.1 Generalized Logic Programs and their Stable Models

To represent negative information in logic programs and their updates, we need more
general logic programs that allow default negation not A not only in rule premises
but also in their heads. It is worth noting why, in the update setting, generalizing
the language to allow default negation in rule heads (thus defining “generalized logic
programs”) is more adequate than introducing explicit negation in programs (both
in heads and bodies). Suppose we are given a rule stating that A is true whenever
some condition C'ond is met. This is naturally represented by the rule A «+— Cond.
Now suppose we want to say, as an update, that A should no longer be the case (i.e.
should be deleted or retracted), if some condition C'ond' is met. How to represent
this new knowledge? By using extended logic programming (with explicit negation)
this could be represented by = A < Cond'. But this rule says more than we want
to. It states that A is false upon Cond’, and we only want to go as far as to say
that the truth of A is to be deleted in that case. All we want is to say that, if
Cond' is true, then not A should be the case, i.e. not A <— Cond'. As argued in [11],
the difference between explicit and default negation is fundamental whenever the
information about some atom A cannot be assumed to be complete. Under these
circumstances, the former means that there is evidence for A being false, while the
latter means that there is no evidence for A being true. In the deletion example,
we desire the latter case. Note, however, that the adequacy of generalized logic
programs for this purpose is in facilitating the intuitive writing of updates. Indeed,
as proven in [7], generalized logic programs and extended logic programs have the
same expressive power. In fact, every generalized program can be transformed into
an extended program, in such a way that the stable models of the original correspond
to the answer sets of the transformed one, and vice-versa. We refer to [7] for these
transformations’ rendering.

For the definition of the semantics it will be convenient to syntactically represent
generalized logic programs as propositional Horn theories. In particular, we will
represent default negation not A as a standard propositional variable (atom). Sup-
pose that K is an arbitrary set of propositional variables whose names do not begin
with a “not”. By the propositional language Li generated by the set L we mean the
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language £ whose set of propositional variables consists of {A : A € K} U {not A :
A € K}. Atoms A € K, are called objective atoms while the atoms not A are called
default atoms. From the definition it follows that the two sets are disjoint. By a
generalized logic program P in the language Lx we mean a finite or infinite set of
propositional Horn clauses r of the form L < L,...,L,where L and L; are atoms
from Lx. By head(r) we mean L. If head(r) = A (resp. head(r) = not A) then
not head(r) = not A (resp. not head(r) = A). If all the atoms L appearing in heads
of clauses of P are objective atoms, then we say that the logic program P is nor-
mal. Consequently, from a syntactic standpoint, a logic program is simply viewed
as a propositional Horn theory. However, its semantics significantly differs from the
semantics of classical propositional theories and is determined by the class of stable
models defined below.

By a (2-valued) interpretation M of L we mean any set of atoms from Ly that
satisfies the condition that for any A in K, precisely one of the atoms A or not A
belongs to M. Given an interpretation M we define:

Mt={AeK:Aec M}
M~ ={notA:notAe M} ={notA: A¢ M}.

Definition 1 (Stable models of generalized logic programs) We say that a
(2-valued) interpretation M of Li is a stable model of a generalized logic program
P if M is the least model of the Horn theory P U M~: M =Least(P U M™). o

Following an established tradition, from now on we will often be omitting the
default (negative) atoms when describing interpretations and models.

2.2 Dynamic Logic Programming

Here, we recap the notion of dynamic program update @{ Ps : s € S} over a totally
ordered set P ={ P, :s € S} of logic programs. The idea of dynamic updates, in-
spired by [14], is simple and quite fundamental. Suppose that we are given a set of
program modules P, indexed by different states of the world s. Each program P
contains some knowledge that is supposed to be true at the state s. Different states
may represent different time periods or different sets of priorities or perhaps even
different viewpoints. Consequently, the individual program modules may contain
mutually contradictory as well as overlapping information. The role of the dynamic
program update @ {Ps: s € S} is to use the mutual relationships existing between
different states (and specified in the form of the ordering relation) to precisely deter-
mine, at any given state s, the declarative as well as the procedural semantics of the
combined program, composed of all modules. Consequently, the notion of a dynamic
program update supports the important paradigm of dynamic logic programming.
Given individual and largely independent program modules Ps describing our knowl-
edge at different states of the world (for example, the knowledge acquired at different
times), the dynamic program update @ {P; : s € S } specifies the exact meaning
of the union of these programs.

Suppose that P = {P;:s € S} is a finite or infinite sequence of generalized
logic programs in the language £ = Lg, indexed by the finite or infinite set S =
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{1,2, ..., n, ...} of natural numbers. We will call elements s of the set S U {0}
states and we will refer to 0 as the initial state.
By K we denote the following superset of the set I of propositional variables:

K=KU{A A, A, Ap, Ap : A€K, s Su{0}}
We denote by £ = Lz the extension of the language £ = Li generated by K.

Definition 2 (Dynamic Program Update) By the dynamic program update
over the sequence of updating programs P = {Ps:s € S} we mean the logic pro-
gram [HP, which consists of the following clauses in the extended language L:

e Ap. < By,... ,Bn,,Cr,...,C  for any clause

A « By, ..., By, notCy, ..., notC, in the program Py, where s € S.

® Ap < By,..., By, Cr,...,Cy for any clause

notA <« By, ..., B, notCy, ..., notC, in the program P, where s € S.
o Ay« Ay 1,not Ap and A7 < A |, notAp,and As < Ap, and A7 < Ap_ for
all objective atoms A € K and for oll s € S.

o Ay .for all objective atoms A € K. o

Observe that the dynamic program update |#/P is a normal logic program, i.e., it
does not contain default negation in heads of its clauses. Moreover, only the inheri-
tance rules contain default negation in their bodies. Also note that the program [P
does not contain the atoms A or A~, where A € KC, in heads of its clauses. These
atoms appear only in the bodies of rewritten program clauses. The notion of the
dynamic program update @;P at a given state s € S changes that:

Definition 3 (Dynamic Program Update at a Given State) Given a fized
state s € S, by the dynamic program update at the state s, denoted by @sP, we
mean the dynamic program update HP augmented with the following Current State
Rules:

e A A; and A~ <~ A, and not A <— A, for all objective atoms A € K. o

2.3 Graphs

A directed graph, or digraph, D = (V, E,§) is a composite notion of two sets V' = Vp
of vertices and E = Ep of (directed) edges and a mapping § : E — V x V. If
d(e) = (v,w) then v is called the initial vertex and w the final vertex of the edge
e. A directed edge sequence from vy to v, in a digraph is a sequence of edges
€1, €2, ..., e, such that d(e;) = (v;_1,v;) for i = 1,...,n. A directed path is a directed
edge sequence in which all the edges are distinct. A directed acyclic graph, or acyclic
digraph (DAG), is a digraph D such that there are no directed edge sequences from
v; to v;, for all vertices v; of D. A source is a vertex with in-valency 0 (number of
edges for which it is a final vertex) and a sink is a vertex with out-valency 0 (number
of edges for which it is an initial vertex). We say that v; < v; if there is a directed
path from v; to v; and that v; <wv; if v; <wvj ori = j.

For simplicity, we will omit the explicit representation of the mapping ¢ of a
graph, and represent its edges e € E by their corresponding pairs of vertices (v, w)
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such that (v, w) = d(e). Therefore, a graph D will be represented by the pair (V, E)
where V' is a set of vertices and F is a set of pairs of vertices.
Follows the notion of relevancy DAG, D,, of a DAG D, wrt a vertex v of D.

Definition 4 (Relevancy DAG) Let D = (V, E) be an acyclic digraph. Let v be
a vertez of D, i.e. v € V. The relevancy DAG of D wrt v is D, = (V,,, E,) where:

Vo =A{v; :v; €V and v; < v}
E, = {(vi,v)) : (v;,vj) € E andv;,vj €V, }o

Intuitively the relevancy DAG of D wrt v is the subgraph of D consisting of all
vertices and edges contained in all directed paths to v.

3 Multi-dimensional Dynamic Logic Programming

As noted in the introduction, allowing the individual theories of a dynamic program
update to be related by a linear sequence of states only, limits the use of DLP to
represent and reason about a single dimension, where by dimension we mean an
aspect that is encoded by the states (e.g. time, hierarchy,...). In this section we gen-
eralize DLP to allow for states to be represented by the vertices of an acyclic digraph
(DAG) and their relations by the corresponding edges, thus enabling to concurrently
represent, depending on the choice of a particular DAG, several dimensions of a rep-
resentational updatable system. In particular, the DAG can represent not only a
system with n independent dimensions, but also the inclusion of inter-dimension de-
pendencies. We start by defining the framework consisting of the generalized logic
programs indexed by a DAG:

Definition 5 (Multi-dimensional Dynamic Logic Program) Let Li be a
propositional language as described before. A Multi-dimensional Dynamic Logic
Program, P, is a pair (Pp, D) where D = (V, E) is an acyclic digraph and Pp =
{P, :v € V'} is a set of generalized logic programs in the language Ly, indezed by
the vertices v € V of D. We call such vertices of D states. For simplicity, we will
often leave the language Li implicit. o

We want to characterize the models of P at any given state. For this purpose, we
will maintain the basic intuition of logic program updates, whereby an interpretation
is a stable model of the update of a program P by a program U iff it is a stable
model of a program consisting of the rules of U together with a subset of the rules
of P comprised by those that are not rejected (do not carry over by inertia) due
to their overriding by program U. With the introduction of a DAG to index the
programs, it is no longer the case that a given program has a single ancestor. This
has to be dealt with, the intuition being that a program P, € Pp can be used to
reject rules of any program P, € Pp if there is a directed path from u to v. In the
example depicted in Fig.1, rules of P; can be used to reject rules from P, but not to
reject rules from Pj.

Formally, the models of the Multi-dimensional Dynamic Logic Program are char-
acterized according to the definition:
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Figure 1:

Definition 6 (Stable Models at state s) Let P = (Pp, D) be a Multi-dimensional
Dynamic Logic Program, where Pp = {P,:v € V'} and D = (V, E). An interpreta-
tion My is a stable model of the multi-dimensional update at state s € V', iff:

Mg = least ([Ps — Reject(s, Ms)| U De fault (Ps, My))

where

P =Jr

i<s
. B re P |3r'ePLi<j<s,
Reject(s, M) = { head(r) = not head(r") A M E body(r")

Default (Py, My) = {not A | fr € Py : (head(r) = A) A M, E body(r)} o

Intuitively, the set Reject(s, M) contains those rules belonging to a program
indexed by a state ¢ that are overridden by the head of another rule with true body
in state j along a path to state s. Ps contains all rules of all programs that are
indexed by a state along all paths to state s, i.e. all rules that are potentially
relevant to determine the semantics at state s. The set Default (Ps, M) contains
default negations not A of all unsupported atoms A, i.e., those atoms A for which
there is no rule in P, whose body is true in M.

Example 7 Consider the following programs: P, = {a < notb} ,P, = {c<+},P, =
{nota < ¢}, P, = {} indezed by the graph D = (V, E) such that V = {t,u,v,w}
and E = {(t,u), (t,v), (u,w), (v,w)}, as depicted in Fig.2. The only stable model at
state w is My, = {not a, notb,c}. To confirm, we have that:

Reject(w, M) = {a < notb}  Default (P, M,) = {not b}
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Pi={a<notc}

Figure 2:

and, finally,
[P — Reject(s, My,)] U De fault (P, M,,) = {not a < ¢; ¢ <—; not b}

whose least model s M,,. Note that at state v the only stable model is M, =
{a, not b, not ¢} because the rule nota < ¢ only rejects the rule a < notb at state
w, that is, when both the rules not a <— ¢ and ¢ < are present. o

The following theorem establishes that Multi-dimensional Dynamic Logic Pro-
gramming is a generalization of Dynamic Logic Programming.

Theorem 8 (Generalization of DLP) Let Pp = {Ps:s € S} be a sequence
of generalized logic programs in the language L = Ly, indexed by set of natural
numbers S = {1,2,3, ..., n}. Let P = (Pp, D) be the Multi-dimensional Dy-
namic Logic Program, where D = (S, E) is the acyclic digraph such that E =
{(1,2),(2,3),...,(n — 1,n)}. Then, an interpretation N of the language L = L is
a stable model of the dynamic program update at state s, @, Pp, if and only if N is
the extension N =M of an interpretation M such that M is a stable model of the
multi-dimensional update at state s. o

3.1 Transformational Semantics

The previous definition (Def.6) establishes the semantics of Multi-dimensional Dy-
namic Logic Programming by characterizing its stable models at each state. Next
we present an alternative definition, based on a purely syntactical transformation
that, given a Multi-dimensional Dynamic Logic Program, P = (Pp, D), produces
a generalized logic program whose stable models are in a one-to-one relation with
the stable models of the multi-dimensional update previously characterized. This
transformation also provides an approach towards a mechanism for implementing
Multi-dimensional Dynamic Logic Programming: with a pre-processor performing
the transformation query answering is reduced to that over generalized logic pro-
grams.

Similar to DLP, and without loss of generality, we will extend the DAG D with
an initial state (sq) and a set of directed edges (s, s’) connecting the initial state to



Dynamic Logic Programming with Multiple Dimensions

all the sources of D. For our purposes, we will extend K with a predicate reject/1.
Therefore, from now on IC denotes the superset of the set I of propositional variables:

K=KuU {A’,As, Ay, Ap,, Ap reject(Ay),reject(A;): A€, se VU {50}}

Definition 9 (Multi-dimensional Dynamic Program Update) Let P be a
Multi-dimensional Dynamic Logic Program, where P = (Pp, D), Pp ={P, :v € V'}
and D = (V, E). Given a fized state s € V, the multi-dimensional dynamic program
update over P at state s is the generalized logic program HP, which consists of the
following clauses in the extended language L, where D, = (Vi, E,) is relevancy DAG
of D wrt s:

(RP) Rewritten program clauses:
Ap, < By,...,B,,Cy,...,C~
Ap < By,... ,Bn,Cp,...,C,
for any clause:
A« By, ..., By, notCy, ..., notC,
respectively, for any clause:
notA < By, ..., By, notCy, ..., notC,

in the program P,, where v € V;. The rewritten clauses are obtained from the
original ones by replacing atoms A (respectively, the atoms not A) occurring
in their heads by the atoms Ap, (respectively, Ay ) and by replacing negative
premises not C' by C'~.

(IR) Inheritance rules:
A, < Ay, notreject(A,) A, < A, notreject(A,)

for all objective atoms A € K and all (u,v) € E;. The inheritance rules say
that an atom A is true (respectively, false) in the state v € V if it is true
(respectively, false) in any ancestor state v and it is not rejected, i.e., forced
to be false (respectively, true).

(RR) Rejection Rules:
reject(A;) < Ap,  reject(Ay) < Ap

for all objective atoms A € K and all u,v € Vi where u < v. The rejection
rules say that if an atom A is true (respectively, false) in the program P,, then
it rejects inheritance of any false (respectively, true) atoms of any ancestor.

(UR) Update rules:
Ay« Ap, A, + Ap,

for all objective atoms A € K and all v € V,. The update rules state that
an atom A must be true (respectively, false) in the state v € Vj if it is true
(respectively, false) in the program P,.
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(DR) Default Rules:
As
for all objective atoms A € K. Default rules describe the initial state sy by
making all objective atoms initially false.

(CS;) Current State Rules:
A— A, A+ A; notA+ A7

for all objective atoms A € K. Current state rules specify the current state
s in which the program is being evaluated and determine the values of the
atoms A, A~ and not A. o

As mentioned before, the generalized stable models of the program obtained by
the previous transformation coincide with those characterized in Def.6, as expressed
in the following theorem:

Theorem 10 Given a Multi-dimensional Dynamic Logic Program P = (Pp, D),
the generalized stable models of BP |, restricted to L, coincide with the generalized
stable models of the multi-dimensional update at state s according to Def.6. o

The transformation specified in Def.9 depends on the prior determination of the
relevancy graph wrt the given state. Our choice to make this so was based on
criteria of clarity and readability. Nevertheless this needs not be so: one can also
declaratively specify, by means of a logic program, the notion of relevancy graph,
giving rise to the following transformation as the basis of an implementation:

Definition 11 (Multi-dimensional Dynamic Program Update - Alterna-
tive Transformation) Let P = (Pp, D) be a Multi-dimensional Dynamic Logic
Program, where Pp ={P, :v € V} and D = (V, E). Given a fized state s € V, the
multi-dimensional dynamic program update over P at state s is the generalized logic
program B P, which consists of the following clauses in the extended language

L U {rel_edge(u,v), rel_path(u,v), edge(u,v) : u,v €V}
(RP) Rewritten program clauses:

APU%BIa--- ,Bm,CI_,... ,C_
Ay « By, B, Cr.... Cy

for any clause:
A« By, ..., By, notCq, ..., notC,
respectively, for any clause:
notA <+ By, ..., B, notCy, ..., notC,

in the program P,, where v € V.
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(IR) Inheritance rules:

A, + Ay, notreject(Ay), rel_edge(u, v)
A, < A, ,notreject(A,), rel_edge(u,v)

for all objective atoms A € K and all u,v € V.

(RR) Rejection Rules:
reject(A,) < Ap,,rel_path(u,v)  reject(Ay) < Ap ,rel_path(u,v)

for all objective atoms A € K and all u,v € V.

(UR) Update rules:
Ay« Ap, A, + Ap,

for all objective atoms A € K and all v € V.

(DR) Default Rules:
50

for all objective atoms A € K.

(CS;) Current State Rules:
A— A, A A7 notA+ A

for all objective atoms A € K.

(ER) Edge Rules
edge(u, v)

for all (u,v) € E. Edge rules describe the edges in graph D.

(RER;) Current State Relevancy Edge Rules

rel_edge(X, s) < edge(X, s)
rel_edge(X,Y) + edge(X,Y), rel_path(Y, s)

Current State Relevancy Edge Rules define which edges are in the relevancy
graph wrt s.

(RPR) Relevancy Path Rules

rel_path(X,Y) < rel_edge(X,Y)
rel_path(X, Z) < rel_edge(X,Y), rel_path(Y, Z)

Relevancy Path rules define the notion of relevancy path in a graph. o

Based on this transformation, an implementation running on XSB-Prolog exists
and can be found at http://centria.di.fct.unl.pt/~jja/updates/.
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4 MDLP and Multi-agent Systems

Some particular acyclic digraphs are especially useful to model several aspects of
multi-agent systems. One of these is a n-dimensional lattice, where each dimension
represents one particular characteristic to be modeled. Suppose a linear hierarchi-
cally related society of agents situated in a dynamic environment. Fig.3 represents
the lattice that encodes this situation. It has two dimensions, one representing the
linearly arranged agents, and the other representing time. If d; represents time and
dy represents the hierarchy, P;; contains the new knowledge of agent 1 at time 1.
P3, contains the knowledge of agent 2 (who is hierarchically superior to agent 1) at
time 3, and so on... The overall semantics of a system consisting of n agents at time
t is given by H;,P. Let us consider the following simple example:

Example 12 In February 97, the President of Brazil passed a law determining that,
in order to guarantee the safety aboard public transportation airplanes, all weapons
are forbidden. Furthermore, all exceptional situations that, due to public interest,
require an armed law enforcement or military agent are to be the subject of specific
requlation by the Military and Justice Ministries. We will refer to this as rule 1.
At the time of this event, there was in force an internal norm of the Department
of Civil Aviation stating that “Armed Forces Officials and Police Officers can board
with their weapons if their destination is a national airport”. We will refer to this
as rule 2. Restricting ourselves to the essential parts of these requlations, they can
be encoded by the following generalized logic program clauses:

rulel : not carry_weapon < not exception
rule2 : carry_weapon < armed_of ficer
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Figure 4:

Let us consider 2 distinct dimensions corresponding to the two principles that gov-
ern this situation: Lex Posterior (dy) and Lex Superior (ds). Agent 1 represents the
Department of Civil Aviation and Agent 2 represents the President of Brazil. We
will consider two time points representing the time when the two regulations were
enacted. We have then a graph whose vertices are {(1,1), (1,2),(2,1),(2,2)} (in the
form (agent,time)) and whose edges are the obvious subset of those depicted in Fig.3.
We have that Py ; contains rule 2, Py o contains rule 1 and the other two programs are
empty. Let us further assume that there is an armed_officer represented by a fact in
P, 1. Applying Def.6, for Mo = {not carry_weapon, not exception, armed_of ficer}
at state (2,2) we have that:

Reject((2,2), Msp) = {carry_weapon < armed_of ficer}
Default (Paz, Mso) = {not exception}

1t 1s triveal to see that
My o = least ([Pa2 — Reject((2,2), Ma2)] U Default (P, Mas))

which means that in spite of rule 2, since the exceptions have not been requlated yet,
rule 1 prevails for all situations and no one can carry a weapon aboard an airplane.
This would correspond to the only stable model of By 2P. o

In what concerns the usability of MDLP in a multi-agent context, it is not limited
to the assignment of a single semantics to the overall system, i.e., the multi-agent
system does not have to be described by a single DAG. Instead we could determine
each agent’s view of the world by associating with each agent a DAG representing
its view of the relationships with other agents and amongst themselves.

Example 13 Consider a society of agents representing a hierarchically structured
research group. We have the Senior Researcher (As, ), two Researchers (A and A,s)
and two students (As1 and Ag) supervised by the two Researchers. The hierarchy is
depicted in Fig./, which also represents the view of the Senior Researcher. Typically,
students think they are always right and do not like hierarchies, so their view of the
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[Psr_{aeb}) Po= {} Pr2 {c}]

\

C Pa={not a<-b}

Figure 5:

community is quite different. Figh depicts one possible view by Ag1. In this scenario,
we could use MDLP to determine and eventually compare A, ’s view, given by H,, P
in Fig.4, with Ag s view, given by B P in Fig.5. If we assign the following simple
logic programs to the 5 agents:

P, = {a < b} P, ={b} Py ={c} P, = {nota < ¢} Py ={}

we have that B, P in Fig.4 has Mg = {a,b,c} as the only stable model, and B P
in Fig.5 has Mg, = {not a,b,c} as the only stable model. That is, according to the
student Ag1’s view of the world a is false, while according to the senior researcher
A, s view of the world a is true. o

5 Conclusions and Future Work

In this paper we introduced the notion of Multi-dimensional Dynamic Logic Pro-
gramming. We have presented its semantics based on a characterization of its stable
models, as well as by means of two syntactic transformations into a logic program
which serve as the basis of an existing implementation.

Though the main motivation was to extend Dynamic Logic Programming to allow
for the concurrent representation of several dimensions, be it within a single or a
multi-agent system, MDLP turns out to be a useful practical framework to study
the changes in behaviour of such multi-agent systems and how they hinge on the
relationships amongst the agents i.e., on the current DAG that represents them.
MDLP offers an important tool in the formal study of the social behaviour in multi-
agent communities.

In what concerns future work, it can be discerned into development and integra-
tion. As for the former, we are currently exploring the dynamic updating of the
indexing DAG, to reflect dynamic societies of agents. By specifying the edges of
the graph by means of facts in the logic program, we already pave the way to allow
them also to be described by rules, and therefore represent conditional edges. This
set of logic program rules could, in turn, be subject to updates and represent evolv-
ing relationships between the states represented by the vertices. Note however that
these updates would have to obey the constraint that the resulting graph be acyclic.
We are also researching into the epistemic meaning and implications of dropping
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the acyclicity condition of the indexing digraph, and in particular to model compu-
tational steps and processes through synchronous activation of successive edges.

We are also exploring the relationship between MDLP and logic program com-
position [5].

Among the integration tasks, we foresee bringing into MDLP preferring facilities,
such as described in [4] as well as abductive reasoning about updates.

To conclude, it is our opinion that Multi-dimensional Dynamic Logic Program-
ming adds expressiveness and attractiveness to knowledge representation in logic
programming and non-monotonic reasoning, and provides a scaffolding framework
for inter-agent and intra-agent architectures
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