
From logic programs updates to action description
updates?

J. J. Alferes1, F. Banti1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal,
jja |banti@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy,
brogi@di.unipi.it

Abstract. An important branch of investigation in the field of agents has been
the definition of high level languages for representing effects of actions, the pro-
grams written in such languages being usually called action programs. Logic pro-
gramming is an important area in the field of knowledge representation and some
languages for specifying updates of Logic Programs had been defined. Starting
from the update language Evolp, in this work we propose a new paradigm for
reasoning about actions called Evolp action programs.
We provide translations of some of the most known action description languages
into Evolp action programs, and underline some peculiar features of this newly
defined paradigm. One of such feature is that Evolp action programs can easily
express changes in the rules of the domains, including rules describing changes.

1 Introduction

In the last years the concept of agent has became central in the field of Artificial Intelli-
gence. “An agent is just something that acts” [25]. Given the importance of the concept,
ways of representing actions and their effects on the environment have been studied. A
branch of investigation in this topic has been the definition of high level languages for
representing effects of actions [7, 12, 14, 15], the programs written in such languages
being usually calledaction programs. Action programs specify which facts (or fluents)
change in the environment after the execution of a set of actions. Several works exist
on the relation between these action languages and Logic Programming (LP) (e.g. [5,
12, 20]). However, despite the fact that LP has been successfully used as a language for
declaratively representing knowledge, the mentioned works basically use LP for pro-
viding an operational semantics, and implementation, for action programs. This is so
because normal logic programs, and most of their extensions, have no in-built means
for dealing with changes, something that is quite fundamental for action languages.

In recent years some effort was devoted to explore the problem of how to update
logic programs with new rules [3, 8, 10, 18, 19]. Here, knowledge is conveyed by se-
quences of programs, where each program in a sequence is an update to the previous

? This work was partially supported by project FLUX (POSI/40958/SRI/2001).

ones. For determining the meaning of sequences of logic programs, rules from previ-
ous programs are assumed to hold by inertia after the updates (given by subsequent
programs) unless rejected by some later rule. LP update languages [2, 4, 9, 18], besides
giving meaning to sequences of logic programs, also provide in-built mechanisms for
constructing such sequences. In other words, LP update languages extend LP by pro-
viding means to specify and reason about rule updates. In [5] the authors show, by
examples, a possible use the LP update language LUPS [4] for representing effects of
actions providing a hint for the possibility of using LP updates languages as an action
description paradigm.

However, the work done does not provide a clear view on how to use LP updates for
representing actions, nor does it establishes an exact relationship between this new pos-
sibility and existing action languages. Thus, the eventual advantages of the LP update
languages approach to actions are still not clear.

The present work tries to clarify these points through a more structural approach.
Our investigation starts from the newly defined Evolp language [2]. On top of Evolp
we define a new action description language, called Evolp Action Programs (EAPs),
as a macro language for Evolp. Before developing a complete framework for action
description based on LP updates, in this work we focus on the basic problem in the field,
i.e. the prediction of the possible future states of the world given a complete knowledge
of the current state and the action performed. Our purpose is to check, already at this
stage, the potentiality of an action description language based on the Evolp paradigm.

We illustrate the usage of EAPs by an example involving a variant of the classical
Yale Shooting Problem. An important point to clarify is the comparison of the expres-
sive capabilities of the newly defined language with that of the existing paradigms. We
consider the action languagesA [12], B [13] (which is a subset of the language pro-
posed in [14]), and (the definite fragment of)C [15]. We provides simple translations
of such languages into EAPs, hence proving that EAPs areat least as expressiveas the
cited action languages.

Coming to this point, the next natural question is what are the possible advantages of
EAPs. The underlying idea of action frameworks is to describe dynamic environments.
This is usually done by describing rules that specify, given a set of external actions, how
the environment evolves. In a dynamic environment, however, not only the facts but also
the “rules of the game” can change, in particularthe rules describing the changes. The
capability of describing such kind ofmeta level changesis, in our opinion, an important
feature of an action description language. This capability can be seen as an instance of
elaboration tolerancei.e. “the ability to accept changes to a person’s or a computer’s
representation of facts about a subject without having to start all over”[24]. In [15]
this capability is seen as a central point in the action descriptions field and the problem
is addressed in the context of theC language. The final words of [15] are“Finding
ways to further increase the degree of elaboration tolerance of languages for describing
actions is a topic of future work”. We address this topic in the context of EAPs and show
EAPs seem, in this sense, more flexible than other paradigms. Evolp provides specific
commands that allow for the specification of updates to the initial program, but also
provides the possibility to specify updates of these updates commands. We show, by

successive elaborations of the Yale shooting problem, how to use this feature to describe
updates of the problem that come along with the evolution of the environment.

The rest of the paper is structured as follows. In section 2 we review some back-
ground and notation. In section 3 we define the syntax and semantics of Evolp action
programs, and we illustrate the usage of EAPs by an example involving a variant of
the classical Yale Shooting Problem. In section 4 we establish the relationship between
EAPs and the languagesA, B andC. In section 5 we discuss the possibility of updating
the EAPs, and provide an example of such feature. Finally, in section 6, we conclude
and trace a route for future developments.

2 Background and notation

In this section we briefly recall syntax and semantics ofDynamic Logic Programs[1],
and the syntax and semantics for Evolp [2]. We also recall some basic notions and
notation for action description languages. For a more detailed background on action
languages see e.g. [12].

2.1 Dynamic logic programs and Evolp

The main idea of logic programs updates is to update a logic program by another logic
program or by asequenceof logic programs, also calledDynamic Logic Programs
(DLPs). The initial program of a DLP corresponds to the initial knowledge of a given
(dynamic) domain, and the subsequent ones to successive updates of the domain. To
represent negative information in logic programs and their updates, DLPs require gen-
eralized logic programs (GLPs) [21], which allow for default negationnot A not only
in the premises of rules but also in their heads.

A languageL is any set of propositional atoms. A literal inL is either an atom of
L or the negation of an atom. In general, given any set of atomsF , we denote byFLit

the set of literals overF . Given a literalF , if F = Q, whereQ is an atom, bynot F
we denote the negative literalnot Q. Viceversa, ifF = not Q, by not F we denote
the atomQ. A GLP defined over a propositional languageL is a set of rules of the
form F ← Body, whereF is a literal inL, andBody is a setof literals inL.1 An
interpretationI over a languageL is any set of literals inL such that, for each atomA,
eitherA ∈ I or not A ∈ I. We say a set of literalsBody is true in an interpretationI
(or thatI satisfiesBody) iff Body ⊆ I. In this paper we will use programs containing
variables. As usual when programming within the stable models semantics, a program
with variables stands for the propositional program obtained as the set of all possible
ground instantiations of the rules.

Two rulesτ andη areconflicting(denoted byτ ./ η) iff the head ofτ is the atom
A and the head ofη is not A, or viceversa. A Dynamic Logic Program over a language
L is a sequenceP1 ⊕ . . . ⊕ Pm (also denoted⊕Pm

i) where thePis are GLPs defined
overL. The refined stable model semanticsof such a DLP, defined in [1], assigns to

1 Note that, by defining rule bodies as sets, the order and number of occurrences of literals do
not matter.

each sequenceP1 ⊕ . . . ⊕ Pn a set of stable models (that is proven there to coincide
with the stable models semantics when the sequence is formed by a single normal [11]
or generalized program [21]). The rationale for the definition of a stable modelM of a
DLP is made in accordance with thecausal rejection principle [10, 18]: If the body of
a rule in a given update is true inM , then that rule rejects all rules in previous updates
that are conflicting with it. Such rejected rules are ignored in the computation of the
stable model. In the refined semantics for DLPs a rule may also reject conflicting rules
that belong to the same update. Formally, the set of rejected rules of a DLP⊕Pm

i given
an interpretationM is:

RejS(⊕Pm
i ,M) = {τ | τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ ./ η ∧ Body(η) ⊆ M}

Moreover, an atomA is assumed false by default if there is no rule, in none of the
programs in the DLP, with headA and a true body in the interpretationM . Formally:

Default(⊕Pm
i , M) = {not A | 6 ∃ A ← Body ∈

⋃
Pi ∧Body ⊆ M}

If ⊕Pm
i is clear from the context, we omit it as first argument of the above functions.

Definition 1. Let⊕Pm
i be a DLP over languageL andM an interpretation.M is a

refined stable model of⊕Pm
i iff

M = least

((⋃

i

Pi \RejS(M)

)
∪Default(M)

)

whereleast(P) denotes the least Herbrand model of the definite program [22] obtained
by considering each negative literalnot A in P as a new atom.

Having defined the meaning of sequences of programs, we are left with the problem
of how to come up with those sequences. This is the subject of LP update languages
[2, 4, 9, 18]. Among the existing languages, Evolp [2] uses a particulary simple syntax,
which extends the usual syntax of GLPs by introducing the special predicateassert/1.
Given any languageL, the languageLassert is recursively defined as follows: every
atom inL is also inLassert; for any ruleτ over Lassert, the atomassert(τ) is in
Lassert; nothing else is inLassert. An Evolp programoverL is any GLP overLassert.
An Evolp sequenceis a sequence (or DLP) of Evolp programs. The rules of an Evolp
program are calledEvolp rules.

Intuitively an expressionassert(τ) stands for “update the program with the rule
τ ”. Notice the possibility in the language to nest an assert expression in another. The
intuition behind the Evolp semantics is quite simple. Starting from the initial Evolp
sequence⊕Pm

i we compute the set,SM(⊕Pm
i), of the stable models of⊕Pm

i . Then,
for any elementM in SM(⊕Pm

i), we update the initial sequence with the program
Pm+1 consisting of the set of rulesτ such that the atomassert(τ) belongs toM . In
this way we obtain the sequence⊕Pm

i ⊕Pm+1. SinceSM(⊕Pm
i) contains, in general,

several models we may have different lines of evolution. The process continues by
obtaining the variousSM(⊕Pm+1

i) and, with them, various⊕Pm+2
i . Intuitively, the

program starts at step1 already containing the sequence⊕Pm
i . Then it updates itself

with the rules asserted at step 1, thus obtaining step 2. Then, again, it updates itself with
the rules asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program. If, at a
given stepn, the programs receives the external updateEn, the rules inEn are added
to the last self update for the purpose of computing the stable models determining the
next evolution but, in the successive stepn + 1 they are no longer considered (that’s
why they are calledevents). Formally:

Definition 2. Let n and m be natural numbers. Anevolution interpretationof length
n, of an evolving logic program⊕Pm

i is any finite sequenceM = M1, . . . ,Mn of
interpretations overLassert. Theevolution traceassociated withM and⊕Pm

i is the
sequenceP1 ⊕ . . . Pm ⊕ Pm+1 . . . ⊕ Pm+n−1, where, for1 ≤ i < n

Pm+i = {τ | assert(τ) ∈ Mm+i−1}

Definition 3. Let⊕Pm
i and⊕En

i be any Evolp sequences, andM = M1, . . . ,Mn be
an evolving interpretation of lengthn. LetP1 ⊕ . . . ⊕ Pm+n−1 be the evolution trace
associated withM and⊕Pm

i . We say thatM is an evolving stable model of⊕Pm
i

with event sequence⊕En
i at stepn iff Mk is a refined stable model of the program

P1 ⊕ . . . ⊕ (Pk ∪ Ek) for anyk, with m ≤ k ≤ m + n− 1.

2.2 Action languages

The purpose of an action language is to provide ways of describing how an environment
evolves given a set of external actions. A specific environment that can be modified
through external actions is called anaction domain. To any action domain we associate
a pair of sets of atomsF andA. We call the elements ofF fluent atomsor simply
fluents, and the elements ofA action atomsor simplyactions. Basically, the fluents are
the observable in the environment and the actions are, clearly, the external actions. A
fluent literal (resp.action literal) is an element ofFLit (resp. an element ofALit). In
the following, we will use the letterQ to denote a fluent atom, the letterF to denote a
fluent literal, and the letterA to denote an action atom. Astate of the world(or simply
a state) is any interpretation overF . We say a fluent literalF is true at a given states
iff F belongs tos.

Each action language provides ways to describe action domains through sets of ex-
pression calledaction programs. Usually, the semantics of an action program is defined
in terms of atransition system, i.e. a function whose argument is any pair(s,K), where
s is a state of the world andK is a subset ofA, and whose value is any set of states of
the world. Intuitively, given the current state of the world, a transition system specifies
which are the possible resulting states after simultaneously performing all actions inK.

Two kinds of expressions that are common within action description languages are
static and dynamic rules. Thestatic rulesbasically describe the rules of the domain,
while dynamic rulesdescribe effects of actions. A dynamic rule has a set ofprecondi-
tions, namely conditions that have to be satisfied in the present state in order to have a
particular effect in the future state, andpostconditionsdescribing such an effect.

In the following we will consider three existing action languages, namely:A, B and
C. The languageA [13] is very simple. It only allows dynamic rules of the form

A causesF if Cond

whereCond is a conjunction of fluent literals. Such a rule intuitively means: performing
the actionA causesF to be true in the next state ifCond is true in the current state.
The languageB [13] is an extension ofA which also considers static rules. InB, static
rules are expressions of the form

F if Body

whereBody is a conjunction of fluent literals which, intuitively, means: ifBody is true
in the current state, thenF is also true in the current state. A fundamental notion, in
bothA andB, is fluent inertia[13]. A fluentF is inertial if its truth value is preserved
from a state to another, unless it is changed by the (direct or indirect) effect of an action.
For a detailed definition of the semantics ofA andB see [13].

Static and dynamic rules are also the ingredients of the action languageC [15, 16].
Static rules inC are of the form

causedJ if H

while dynamic rules are of the form

causedJ if H after O

whereJ andH are formulae such that any literal in them is a fluent literal, andO is any
formula such that any literal in it is a fluent or an action literal. The formulaO is the
precondition of the dynamic rule and the static rulecausedJ if H is its postcondition.
The semantic ofC is based oncausal theories[15]. Causal theories are sets of rules of
the formcausedJ if H, each such rule meaning: IfH is true this is an explanation
for J . A basic principle of causal theories is that something is true iff it is caused by
something else. Given any action programP , a states and a set of actionsK, we
consider the causal theoryT given by the static rules ofP and the postconditions of the
dynamic rules whose preconditions are true ins ∪ K. Thens′ is a possible resulting
state iff it is a causal model ofT .

3 Evolp action programs

As we have seen, Evolp and action description languages share the idea of a system that
evolves. In both, the evolution is influenced by external events (respectively, updates
and actions). Evolp is actually a programming language devised for representing any
kind of computational problem, while action description languages are devised for the
specific purpose of describing actions. A natural idea is then to develop special kind of
Evolp sequences for representing actions, and then compare such kind of programs with
existing action description languages. We will call this kind of programsEvolp Action
Programs(EAPs).

Following the underlying notions of Evolp, we use the basic constructassert for
defining special-purpose macros. As it happens with other action description languages,
EAPs are defined over a set of fluentsF and a set of actionsA. In EAPs, a state of the
world is any interpretation overF . To describe action domains we use an initial Evolp
sequence,I ⊕ D. The Evolp programD contains the description of the environment,
while I contains some initial declarations, as it will be clarified later. As inB andC,
EAPs contain static and dynamic rules.

A static ruleover(F ,A) is simply an Evolp rule of the form

F ← Body

whereF is a fluent literal andBody is a set of fluent literals.
A dynamic ruleover(F ,A) is a (macro) expression

effect(τ) ← Cond

whereτ is any static ruleF ← Body andCond is any set of fluent or action literals.
The intuitive meaning of such a rule is that the static ruleτ has to be consideredonly in
those states whose predecessor satisfies conditionCond. Since some of the conditions
literals in Cond may be action atoms, such a rule may describe the effect of a given
set of actions under some conditions. Such an expression stands for the following set of
Evolp rules:

F ← Body, event(F ← Body). (1)

assert(event(F ← Body)) ← Cond. (2)

assert(not event(F ← Body)) ← event(τ), not assert(event(F ← Body)) (3)

whereevent(F ← Body) is a new literal. Let us see how the above set of rules fits
with its intended intuitive meaning. Rule (1) is not applicable wheneverevent(F ←
Body) is false. If at some stepn, the conditionsCond are satisfied, then, by rule (2),
event(F ← Body) becomes true at stepn + 1. Hence, at stepn + 1, rule (1) will play
the same role as static ruleF ← Body. If at stepn + 1 Cond is no longer satisfied,
then, by rule (3) the literalevent(F ← Body) will become false again, and then rule
(1) will be again not effective.

Besides static and dynamic rules, we still need another ingredient to complete our
construction. As we have seen in the description of theB language, a notable concept is
fluent inertia. This idea is not explicit in Evolp wherethe rules(and not the fluents) are
preserved by inertia. Nevertheless, we can show how to obtain fluent inertia by using
macro programming in Evolp. Aninertial declarationover(F ,A) is a (macro) expres-
sion inertial(K), whereK ⊆ F . The intended intuitive meaning of such an expression
is that the fluents inK are inertial. Before defining what this expression stands for, we
state that the above mentioned programI is always of the forminitialize(F), where
initialize(F) stands for the set of rulesQ ← prev(Q), whereQ is any fluent inF , and
prev(F) are new atoms not inF ∪ A. The inertial declarationinertial(K) stands for
the set (whereQ ranges overK):

assert(prev(Q)) ← Q. assert(not prev(Q)) ← not Q.

Let us consider the behaviour of this macro. If we do not declareQ as an inertial fluent,
the ruleQ ← prev(Q) has no effect. If we declareQ as an inertial literal,prev(Q) is
true in the current state iff in the previous stateQ was true. Hence, in this case,Q is true
in the current stateunlessthere is a static or dynamic rule that rejects such assumption.
Viceversa, ifQ was false in the previous state, thenQ is true in the current one iff it is
derived by a static or dynamic rule. We are now ready to formalize the syntax of Evolp
action programs.

Definition 4. LetF andA be two disjoint sets of propositional atoms. An Evolp action
program (EAP) over(F , A) is any Evolp sequenceI ⊕D, whereI = Initialize(F),
andD is any set with static and dynamic rules, and inertial declarations over(F ,A)

Given an Evolp action programI ⊕ D, the initial state of the worlds (which, as
stated above, is an interpretation overF) is passed to the program together with the set
K of the actions performed ats, as part of an external event. A resulting state is the last
element of any evolving stable model ofI ⊕D given the events ∪K restricted to the
set of fluent literals. I.e:

Definition 5. LetI ⊕D be any EAP over(F ,A), ands a state of the world. Thens′ is
a resulting state froms givenI ⊕D and the set of actionsK iff there exists an evolving
stable modelM1,M2 of I⊕D given the external events∪K such thats′ ≡F M2(where
bys′ ≡F M2 we simply means′ ∩ FLit = M2 ∩ FLit).

This definition can be easily generalized to sequences of set of actions.

Definition 6. Let I ⊕D be any EAP ands a state of the world. Thens′ is a resulting
state froms given I ⊕ D and the sequence of sets of actionsK1 . . . , Kn iff there
exists an evolving stable modelM1, . . . , Mn of I ⊕ D given the external event(s ∪
K1), . . . , Kn such thats′ ≡F Mn.

Since EAPs are based on the Evolp semantics, which in turn is an extension of
the stable model semantics for normal logic programs, we can easily prove that the
complexity of the computation of the two semantics is the same.

Theorem 1. Let I ⊕ D be any EAP over(F ,A), s a state of the world andK ⊆ A.
To find a resulting states′ from s givenI ⊕D and the set of actionsK is an NP-hard
problem.

It is important to notice that, if the initial states does not satisfies the static rules of
the EAP, the correspondent Evolp sequence has no stable model, and hence there will
be no successor state. This is, in our opinion, a good result: The initial state is just a
state as any other. It would be strange if such state would not satisfy the rules of the
domain. If this situation occurs, most likely either the translation of the rules, or the one
of the state, presents some errors. From now onwards we will assume that the initial
state satisfies the static rules of the domain.

To illustrate EAPs, we now show an example of their usage by elaborating on
probably the most famous example of reasoning about actions. The presented elabo-
ration highlights some important features of EAPs, viz. the possibility of handling non-
deterministic effects of actions, non-inertial fluents, non-executable actions, and effects
of actions lasting for just one state.

3.1 An elaboration of the Yale shooting problem

In the original Yale shooting problem [26], there is a single-shot gun which is initially
unloaded, and a turkey which is initially alive. One can load the gun and shoot the
turkey. If one shoots, the gun becomes unloaded and the turkey dies. We consider a
slightly more complex scenario where there are several turkeys, and where the shooting
action refers to a specific turkey. Each time one shoots as specific turkey, one either
hits and kills the bird, or misses it. Moreover, the gun becomes unloaded and there is
a bang. It is not possible to shoot with an unloaded gun. We also add the property that
any turkey moves iff it is not dead.

For expressing that an action is not executable under some conditions, we make
use of a well known behaviour of the stable model semantics. Suppose a given EAP
contains a dynamic rules of the formeffect(u ← not u) ← Cond, whereu is a literal
which does not appear elsewhere (in the following, for representing such rules, we use
the notationeffect(⊥) ← Cond). With such a rule, ifCond is true in the current state,
then there is no resulting state. This happens because, as it is well known, programs
containingu ← not u, and no other rules foru, have no stable models.

To represent the problem, we consider the fluentsdead(X), moving(X), hit(X),
missed(X), loaded, bang, plus the auxiliary fluentu, and the actionsshoot(X) and
load (where theXs range over the various turkeys). The fluentsdead(X) andloaded
are inertial fluents, since their truth value should remain unchanged until modified by
some action effect. The fluentsmissed(X), hit(X) and bang are not inertial. The
problem is encoded by the EAPI ⊕D, where

I = initialize(dead(X),moving(X),missed(X), hit(X), loaded, bang, u)

andD is the following set of expressions

effect(⊥) ← shoot(X), not loaded inertial(loaded)
moving(X) ← not dead(X) inertial(dead(X))
effect(dead(X) ← hit(X)) ← shoot(X) effect(loaded) ← load
effect(hit(X) ← not missed(X)) ← shoot(X) effect(bang) ← shoot(X)
effect(missed(X) ← not hit(X)) ← shoot(X) effect(not loaded.) ← shoot(X)

Let us analyze this EAP. The first rule encodes the impossibility to execute the action
shoot(X) when the gun is unloaded. The static rulemoving(X) ← not dead(X)
implies that, for any turkeyX, moving(X) is true ifdead(X) is false. Since this is the
only rule formoving(X), it further holds thatmoving(X) is true iff dead(X) is true.
Notice that declaringmoving(tk) as inertial, would result, in our description, in the
possibility of having a moving dead turkey! This is why fluentsmoving(X) have not
been declared as inertial. In fact, suppose we insertinertial(moving(X)) in the EAP
above. Suppose further thatmoving(tk) is true at states, that one shoots attk and kills
it. Sincemoving(tk) is an inertial fluent, in the resulting statedead(tk) is true, but
moving(tk) remains true by inertia. Also notable is how effects that last only for one
state, like the noise provoked by the shoot, are easily encoded. The last three dynamic
rules on the left encode a non deterministic behaviour: each shoot action can either hit
and kill a turkey, or miss it.

To see how this EAP encodes the desired behaviour of this domain, consider the
following example of evolution. In this example, to lightening the notation, we omit the
negative literals belonging to interpretations. Let us consider the initial state{} (which
means that all fluents are false). The state will remain unchanged until some action is
performed. If one load the gun, the program is updated with the external event{load}.
In the unique successor state, the fluentloaded is true and nothing else changes. The
truth value ofloaded remains then unchanged (by inertia) until some other action is
performed. The same applies to fluentsdead(X). The fluentsbang, missed(X), and
hit(X) remain false by default. If one shoots at a specific turkey, say Smith, and the
program is updated with the eventshoot(smith), several things happen. First,loaded
becomes false, andbang becomes true, as an effect of the action. Moreover, the rules:

hit(smith) ← not missed(smith)
missed(smith) ← not hit(smith)

dead(smith) ← hit(smith)

are considered as rules of the domain for one state. As a consequence, there are two
possible resulting states. In the first one,missed(smith) is true, and all the others
fluents are false. In the second onehit(smith) is true,missed(smith) is false and, by
the ruledead(smith) ← hit(smith), the fluentdead(smith) becomes true. In both
the resulting states, nothing happens to the truth value of the fluentsdead(X), hit(X),
anddead(X) for X 6= smith.

4 Relationship to existing action languages

In this section we show embeddings into EAPs of the action languagesB and (the
definite fragment of)C2. We will assume that the considered initial states are consistent
wrt the static rules of the program, i.e. if the body of a static rule is true in the considered
state, the head is true as well.

Let us consider first theB language. The basic ideas of static and dynamic rules are
very similar inB and in EAPs. The main difference between the two is that inB all the
fluents are inertial, whilst in EAPs only those that are declared as such are inertial. The
translation ofB into EAPs is then straightforward: All fluents are declared as inertial
and then the syntax of static and dynamic rules is adapted. In the following we use,
with abuse of notation,Body andCond both for conjunctions of literals and for sets of
literals.

Definition 7. Let P be any action program inB with set of fluentsF . The translation
B(P,F) is the pair (IB ⊕DBP ,FB) where:FB ≡ F , IB = initialize(F) andDBP

contains exactly the following rules:

– inertial(Q) for each fluentQ ∈ F
– a ruleF ← Body for any static ruleF if Body in P .

2 The embedding of languageA is not explicitly exposed here sinceA is a (proper) subset of
theB language.

– a ruleeffect(F) ← A, Cond. for any dynamic ruleA causesF if Cond in P .

Theorem 2. Let P be anyB program with set of fluentsF , (IB ⊕DBP ,F) its trans-
lation, s a state andK any set of actions. Thens′ is a resulting state froms givenP
and the set of actionsK iff it is a resulting state froms givenIB ⊕DBP and the set of
actionsK.

Let us consider now the action languageC. Given a complete description of the cur-
rent state of the world and performed actions, the problem of finding a resulting state
is a problem of the satisfiability of a causal theory, which is known to be

∑2
P -hard

(cf. [15]). So, this language belongs to a category with higher complexity than EAPs
whose satisfiability is NP-hard. However, only a fragment ofC is implemented and the
complexity of such fragment isNP . This fragment is known as thedefinite fragment
of C [15]. In this fragment, static rules are expressions of the formcausedF if Body
whereF is a fluent literal andBody is a conjunction of fluent literals, while dynamic
rules are expressions of the formcausednot F if Body after Cond whereCond is
a conjunction of fluent or action literals3. For this fragment it is possible to provide a
translation into EAPs.

The main problem of the translation ofC into EAPs lies in the simulation of causal
reasoning with stable model semantics. The approach followed here to encode causal
reasoning with stable models is in line with the one proposed in [20]. We need to intro-
duce some auxiliary predicates and define a syntactic transformation of rules. LetF be
a set of fluents, and letFC denote the set of fluentsF ∪ {FN | F ∈ F}. We add, for
eachF ∈ F , the constraints:

← not F, not FN . (4)

← F, FN . (5)

Let F be a fluent andBody = F1, . . . , Fn a conjunction of fluent literals. We will use
the following notation:F = not FN , not F = not F andBody = F1, . . . , Fn

Definition 8. Let P be any action program in the definite fragment ofC with set of
fluentsF . The translationC(P,F) is the pair (IC ⊕DCP ,FC) where:FC is defined
as above,IC ≡ initialize(FC) andDCP consists exactly of the following rules:

– a rule effect(F ← Body) ← Cond, for any dynamic rule inP of the form
causedF if Body after Cond;

– a rule effect(FN ← Body) ← Cond, for any dynamic rule inP of the form
causednot F if Body after Cond;

– a ruleF ← Body, for any static rule inP of the formcausedF if Body;
– a ruleFN ← Body, for any static rule inP of the formcausednot F if Body;
– The rules (4) and (5), for each fluentF ∈ F .

For this translation we obtain a result similar to the one obtained for the translations of
theB language:

3 The definite fragment defined in [15] is (apparently) more general, allowingCond andBody
to be arbitrary formulae. However, it is easy to prove that such kind of expressions are equiv-
alent to a set of expressions of the form described above

Theorem 3. Let P be any action program in the definite fragment ofC with set of
fluentsF , (IC ⊕ DCP ,FC) its translation,s a state,sC the interpretation overFC

defined as follows:sC = s ∪ {Q | Q ∈ s} ∪ {not Q | not Q ∈ s} andK any set of
actions. Thens∗ is a resulting state fromsC givenIC ⊕DCP and the set of actionsK
iff there existss′ such thats′ is a resulting state froms, givenP and the setK.

By showing translations of the action languagesB and the definite fragment ofC into
EAPs, we proved that EAPs areat least as expressiveas such languages. Moreover, the
translations above are quite simple: basically one EAP static or dynamic rule for each
static or dynamic rule in the other languages. The next natural question is: Are they
more expressive?

5 Updates of action domains

Action description languages describe the rules governing a domain where actions are
performed, and the environment changes. In practical situations, it may happen that
the very rules of the domain change with time too. When this happens, it would be
desirable to have ways of specifying the necessary updates to the considered action
program, rather than to have to write a new one. EAPs are just a particular kind of
Evolp sequences. So, as in general Evolp sequences they can be updated by external
events.

When one wants to update the existing rules with a ruleτ , all that has to be done is
to add the factassert(τ) as an external event. This way, the ruleτ is asserted and the
existing Evolp sequence is updated. Following this line, we extend EAPs by allowing
the external events to contain facts of the formassert(τ), whereτ is an Evolp rule, and
we show how they can be used to express updates to EAPs. For simplicity, below we use
the notationassert(R), whereR is a set of rules, for the set of expressionsassert(τ)
whereτ ∈ R.

To illustrate how to update an EAP, we come back to the example of section 3.1. Let
I⊕D be the EAP defined in that section. Let us now consider that after some shots, and
dead turkeys, rubber bullets are acquired. One can now either load the gun with normal
bullets or with a rubber bullets, but not with both. If one shoots with a rubber loaded
gun, the turkey is not killed.

To describe this change in the domain, we introduce a new inertial fluent repre-
senting the gun being loaded with rubber bullets. We have to express that, if the gun is
rubber-loaded, one can not kill the turkey. For this purpose we introduce the new macro:

not effect(F ← Body) ← Cond

whereF , is a fluent literal,Body is a set of fluents literals andCond is a set of fluent
or action literals. We refer to such expressions aseffects inhibitions. This macro simply
stands for the rule

assert(not event(F ← Body)) ← Cond

whereevent(F ← Body) is as before. The intuitive meaning is that, if the condition
Cond is true in the current state, any dynamic rule whose effect is the ruleF ← Body
is ignored.

To encode the changes described above, we update the EAP with the external event
E1 consisting of the factsassert(I1) whereI1 = (initialize(rubber loaded)). Then, in
the subsequent state, we update the program with the external updateE2 = assert(D1)
whereD1 is the set of rules4

inertial(rubber loaded)
effect(rubber loaded) ← rubber load.
effect(not rubber loaded) ← shoot(X).
effect(⊥) ← rubber loaded, load.
effect(⊥) ← loaded, rubber load.
not effect(dead(X) ← hit(X)) ← rubber loaded.

Let us analyze the proposed updates. First, the fluentrubber loaded is initialized. It is
important to initialize any fluent before starting to use it. The newly introduced fluent
is declared as inertial, and two dynamic rules are added specifying that load actions are
not executable when the gun is already loaded in a different way. Finally we use the
new command to specify that the effectdead(X) ← hit(X) does not occurs if, in the
previous state, the gun was loaded with rubber bullets. Since this update is more recent
than the original ruleeffect(dead(X) ← hit(X)) ← shoot(X), the dynamic rule is
updated.

It is also possible to update static rules and the descriptions of effects of an ac-
tion rather than their preconditions. Suppose the cylinder of the gun becomes dirty
and, whenever one shoots, the gun may either work properly or fail. If the gun fails,
the actionshoot has no effect. We introduce two new fluents in the program with
the eventassert(I2) whereI2 = initialize(fails, work)). Then, we assert the event
E2 = assert(D2) whereD2 is the following EAP

effect(fails ← not work) ← shoot(X). not bang ← fails.
effect(work ← not fails) ← shoot(X). not unloaded ← fails.

not missed ← fails.
not missed ← fails.

This last example is important since it shows how to update the effects of a dynamic
rule via a new static rule. It is also possible to update the effects of a dynamic rule via
another dynamic rule. To illustrate, we now show a possible evolution of the updated
system. Suppose currently the gun is not loaded. One loads the gun with a rubber bullet,
and then shoots at the turkey named Trevor. The initial state is{}. The first set of
actions is{rubber load} The resulting state after this action iss′ ≡ {rubber loaded}.
Suppose one performs the actionload. Since the EAP is updated with the dynamic rule
effect(⊥) ← rubber loaded, load. there is no resulting state. This happens because
we have performed a non executable action. Suppose, instead, the second set of actions
is {shoot(trevor)}. There are three possible resulting states. In one the gun fails. In
this case, the resulting state is, again,s′. In the second, the gun works but the bullet

4 In the remainder, we useassert(U), whereU is a set of macros (which are themselves sets of
Evolp rules), to denote the set of all factsassert(τ) such that there exists a macroη in U with
τ ∈ η.

misses Trevor. In this case, the resulting state iss′′1 ≡ {missed(trevor)}. Finally, the
gun works and the bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still
alive. In this case the resulting state iss′′2 ≡ {hit(trevor)}.

The events may introduce changes in the behaviour of the original EAP. This opens
a new problem. In classical action languages we do not care about the previoushistory
of the world: If the current state of the world iss, the computation of the resulting
states is not affected by the states befores. In the case of EAPs the situation is different,
since external updates can change the behaviour of the considered EAP. Fortunately,
we do not have to care about thewholehistory of the world, but just about those events
containing new initializations, inertial declarations, effects inhibitions, and static and
dynamic rules.

It is possible to have a compact description of an EAP that is updated several times
via external events. For that we need to further extend the original definition of EAPs.

Definition 9. AnupdatedEvolp action program over(F ,A) is any sequenceI⊕D1⊕
. . . ⊕ Dn whereI is initialize(F), and the variousDk are sets consisting of static
rules, dynamic rules, inertial declarations and effects inhibitions such that any fluent
appearing inDk belongs toF
In general, if we update an Evolp action programI ⊕ D with the subsequent events
assert(I1), assert(D1), whereI1 ⊕D1 is another EAP, we obtain the equivalent up-
dated Evolp action program(I ∪ I1)⊕D ⊕D1 Formally:

Theorem 4. Let I ⊕D1 ⊕ . . .⊕Dk be any update EAP over(F ,A). Let
⊕

En
i be a

sequence of events such that:E1 = K1 ∪ s, wheres is any state of the world andK1 is
any set of actions; and the othersEis are any set of actionsKα, or any setinitialize(Fβ)
whereFβ ⊆ F , or anyDi with 1 ≤ i ≤ k. Thens′ is a resulting state froms given
I⊕D1⊕ . . .⊕Dk and the sequence of sets of actions

⊕
Kα iff there exists an evolving

stable modelM1, . . . , Mn of I ⊕D with event sequence
⊕

En
i such thatMn ≡F s

For instance, the updates to the original EAP of the example in this section are equiva-
lent to the updated EAPIsum ⊕D ⊕D1 ⊕D2, whereIsum ≡ I ∪ I1 ∪ I2, I andD
are as in the example of section 3.1, and theIis andDis are as described above.

Yet one more possibility opened by updated Evolp action programs is to cater for
successive elaborations of a program. Consider an initial problem described by an EAP
I⊕D. If we want to describe an elaboration of the program, instead ofrewriting I⊕D
we can simplyupdateit with new rules. This gives a new answer to the problem of
elaboration tolerance [24] and also open the new possibility ofautomatically update
action programs by other action programs.

The possibility to elaborate on an action program is also discussed in [15] in the
context of theC language. The solution proposed there, is to considerC programs whose
rules have one extra fluent atom in their bodies, all these extra fluents being false by
default. The elaboration of an action programP is the programP ∪ U whereU is a
new action program. The rules inU can defeat the rules inP by changing the truth
value of the extra fluents. An advantage of EAP over that approach is that, in EAPs the
possibility of updating rules is a built-in feature rather then a programming technique
involving manipulation of rules and introduction of new fluents. Moreover, in EAPs we

can simply encode the new behaviours of the domain by new rules and then let these
new rules update the previous ones.

6 Conclusions and future work

In this paper we have explored the possibility of using logic programs updates lan-
guages as action description languages. In particular, we have focused our attention on
the Evolp language. As a first point, we have defined a new action language paradigm,
christened Evolp action programs, defined as a macro language over Evolp. We have
provided an example of usage of this language, and compared Evolp action programs
with action languagesA, B and the definite fragment ofC, by defining simple transla-
tions into Evolp of programs in these languages. Finally, we have also shown and argued
about the capability of EAPs to handle changes in the domain during the execution of
actions.

Several important topics are not touched here, and will be subject of future work.
Important fields of research are how to deal, in the Evolp context, with the problem of
planning prediction and postdiction [23], when dealing with incomplete knowledge of
the state of the world. Yet another topic involves the possibility of concurrent execu-
tion of actions. Nevertheless, we have not fully explored this topic, and confronted the
results with extant works [6, 17].

The development of implementations for Evolp and EAPs is another necessary step.
Finally EAPs have to be tested in real and complex contexts.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic programming:
a principled based approach. In7th Int. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), volume 1730 ofLNAI. Springer, 2004.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors,8th European Conf. on Logics in AI (JELIA’02),
volume 2424 ofLNAI, pages 50–61. Springer, 2002.

3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dynamic
updates of non-monotonic knowledge bases.The Journal of Logic Programming, 45(1–
3):43–70, September/October 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for
updating logic programs.Artificial Intelligence, 132(1 & 2), 2002.

5. J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma. Preliminary
exploration on actions as updates. In M. C. Meo and M. V. Ferro, editors,Joint Conference
on Declarative Programming (AGP-99), 1999.

6. C. Baral and M. Gelfond. Reasoning about effects of concurrent actions.Journal of Logic
Programming, 31:85–118, 1997.

7. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, observations
and hypotheses.Journal of Logic Programming, 31, April–June 1997.

8. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheritance. In D. De
Schreye, editor,Proceedings of the 1999 International Conference on Logic Programming
(ICLP-99), Cambridge, November 1999. MIT Press.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative update spec-
ifications in logic programs. In Bernhard Nebel, editor,Proceedings of the seventeenth In-
ternational Conference on Artificial Intelligence (IJCAI-01), pages 649–654, San Francisco,
CA, 2001. Morgan Kaufmann Publishers, Inc.

10. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on causal
rejection.Theory and Practice of Logic Programming, 2:711–767, November 2002.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. A. Bowen, editors,5th International Conference on Logic Program-
ming, pages 1070–1080. MIT Press, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.Journal
of Logic Programming, 17:301–322, 1993.

13. M. Gelfond and V. Lifschitz. Action languages.Electronic Transactions on AI, 16, 1998.
14. E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing actions in logic

programs and default theories: a situation calculus approach.Journal of Logic Programming,
31:245–298, 1997.

15. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theo-
ries. Artificial Intelligence, 153:49–104, 2004.

16. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary
report. InAAAI’98, pages 623–630, 1998.

17. J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In William Nebel,
Bernhard; Rich, Charles; Swartout, editor,Proc. IJCAI-03, pages 1079–1084, Cambridge,
MA, 2003. To Appear.

18. J. A. Leite.Evolving Knowledge Bases, volume 81 ofFrontiers in Artificial Intelligence and
Applications. IOS Press, 2003.

19. J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. InLPKR’97:
workshop on Logic Programming and Knowledge Representation, 1997.

20. V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspective, chapter Action lan-
guages, answer sets and planning, pages 357–373. Springer Verlag, 1999.

21. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary
report). In B. Nebel, C. Rich, and W. Swartout, editors,Proceedings of the 3th International
Conference on Principles of Knowledge Representation and Reasoning (KR-92). Morgan-
Kaufmann, 1992.

22. John Wylie Lloyd.Foundations of Logic Programming. Springer,, Berlin, Heidelberg, New
York,, 1987.

23. J. McCarthy. Programs with commons sense. InProceedings of Teddington Conference on
The Mechanization of Thought Process, pages 75–91, 1959.

24. J. McCarthy.Mathematical logic in artificial intelligence, pages 297–311. Daedalus, 1988.
25. S. Russel and P. Norvig.Artificial Intelligence A Modern Approach, page 4. Artificial

Intelligence. Prentice Hall, 1995.
26. D. McDermott S. Hanks. Nonmonotonic logic and temporal projection.Artificial Intelli-

gence, 33:379–412, (1987).

