From logic programs updates to action description
updates

J. J. Alferes$, F. Bantt, and A. Brog?

! CENTRIA, Universidade Nova de Lisboa, Portugal,
jja |banti@di.fct.unl.pt
2 Dipartimento di Informatica, Universitdi Pisa, Italy,
brogi@di.unipi.it

Abstract. An important branch of investigation in the field of agents has been
the definition of high level languages for representing effects of actions, the pro-
grams written in such languages being usually called action programs. Logic pro-
gramming is an important area in the field of knowledge representation and some
languages for specifying updates of Logic Programs had been defined. Starting
from the update language Evolp, in this work we propose a new paradigm for
reasoning about actions called Evolp action programs.

We provide translations of some of the most known action description languages
into Evolp action programs, and underline some peculiar features of this newly
defined paradigm. One of such feature is that Evolp action programs can easily
express changes in the rules of the domains, including rules describing changes.

1 Introduction

In the last years the concept of agent has became central in the field of Artificial Intelli-
gence. An agent is just something that atf85]. Given the importance of the concept,
ways of representing actions and their effects on the environment have been studied. A
branch of investigation in this topic has been the definition of high level languages for
representing effects of actions [7, 12, 14, 15], the programs written in such languages
being usually calle@ction programsAction programs specify which facts (or fluents)
change in the environment after the execution of a set of actions. Several works exist
on the relation between these action languages and Logic Programming (LP) (e.g. [5,
12, 20]). However, despite the fact that LP has been successfully used as a language for
declaratively representing knowledge, the mentioned works basically use LP for pro-
viding an operational semantics, and implementation, for action programs. This is so
because normal logic programs, and most of their extensions, have no in-built means
for dealing with changes, something that is quite fundamental for action languages.

In recent years some effort was devoted to explore the problem of how to update
logic programs with new rules [3, 8, 10, 18, 19]. Here, knowledge is conveyed by se-
quences of programs, where each program in a sequence is an update to the previous

* This work was partially supported by project FLUX (POSI/40958/SRI1/2001).

ones. For determining the meaning of sequences of logic programs, rules from previ-
ous programs are assumed to hold by inertia after the updates (given by subsequent
programs) unless rejected by some later rule. LP update languages [2, 4, 9, 18], besides
giving meaning to sequences of logic programs, also provide in-built mechanisms for
constructing such sequences. In other words, LP update languages extend LP by pro-
viding means to specify and reason about rule updates. In [5] the authors show, by
examples, a possible use the LP update language LUPS [4] for representing effects of
actions providing a hint for the possibility of using LP updates languages as an action
description paradigm.

However, the work done does not provide a clear view on how to use LP updates for
representing actions, nor does it establishes an exact relationship between this new pos-
sibility and existing action languages. Thus, the eventual advantages of the LP update
languages approach to actions are still not clear.

The present work tries to clarify these points through a more structural approach.
Our investigation starts from the newly defined Evolp language [2]. On top of Evolp
we define a new action description language, called Evolp Action Programs (EAPS),
as a macro language for Evolp. Before developing a complete framework for action
description based on LP updates, in this work we focus on the basic problem in the field,
i.e. the prediction of the possible future states of the world given a complete knowledge
of the current state and the action performed. Our purpose is to check, already at this
stage, the potentiality of an action description language based on the Evolp paradigm.

We illustrate the usage of EAPs by an example involving a variant of the classical
Yale Shooting Problem. An important point to clarify is the comparison of the expres-
sive capabilities of the newly defined language with that of the existing paradigms. We
consider the action language[12], 5 [13] (which is a subset of the language pro-
posed in [14]), and (the definite fragment 6f)15]. We provides simple translations
of such languages into EAPs, hence proving that EAPstdast as expressivas the
cited action languages.

Coming to this point, the next natural question is what are the possible advantages of
EAPs. The underlying idea of action frameworks is to describe dynamic environments.
This is usually done by describing rules that specify, given a set of external actions, how
the environment evolves. In a dynamic environment, however, not only the facts but also
the “rules of the game” can change, in particula rules describing the changekhe
capability of describing such kind ofieta level changds, in our opinion, an important
feature of an action description language. This capability can be seen as an instance of
elaboration tolerance.e. “the ability to accept changes to a person’s or a computer’s
representation of facts about a subject without having to start all ovi@4]. In [15]
this capability is seen as a central point in the action descriptions field and the problem
is addressed in the context of telanguage. The final words of [15] af&inding
ways to further increase the degree of elaboration tolerance of languages for describing
actions is a topic of future work’We address this topic in the context of EAPs and show
EAPs seem, in this sense, more flexible than other paradigms. Evolp provides specific
commands that allow for the specification of updates to the initial program, but also
provides the possibility to specify updates of these updates commands. We show, by

successive elaborations of the Yale shooting problem, how to use this feature to describe
updates of the problem that come along with the evolution of the environment.

The rest of the paper is structured as follows. In section 2 we review some back-
ground and notation. In section 3 we define the syntax and semantics of Evolp action
programs, and we illustrate the usage of EAPs by an example involving a variant of
the classical Yale Shooting Problem. In section 4 we establish the relationship between
EAPs and the languaget 5B andC. In section 5 we discuss the possibility of updating
the EAPs, and provide an example of such feature. Finally, in section 6, we conclude
and trace a route for future developments.

2 Background and notation

In this section we briefly recall syntax and semanticBghamic Logic Program§l],

and the syntax and semantics for Evolp [2]. We also recall some basic notions and
notation for action description languages. For a more detailed background on action
languages see e.g. [12].

2.1 Dynamic logic programs and Evolp

The main idea of logic programs updates is to update a logic program by another logic
program or by asequencef logic programs, also calleBynamic Logic Programs
(DLPs). The initial program of a DLP corresponds to the initial knowledge of a given
(dynamic) domain, and the subsequent ones to successive updates of the domain. To
represent negative information in logic programs and their updates, DLPs require gen-
eralized logic programs (GLPs) [21], which allow for default negation A not only
in the premises of rules but also in their heads.

A languagel is any set of propositional atoms. A literal ihis either an atom of
L or the negation of an atom. In general, given any set of atéinse denote byFr;;
the set of literals ovefr. Given a literalF, if F' = @, whereQ is an atom, byhot F’
we denote the negative literabt (). Viceversa, ifFF = not @, by not F' we denote
the atom@. A GLP defined over a propositional languages a set of rules of the
form F «— Body, whereF is a literal in £, and Body is a setof literals in £.1 An
interpretation/ over a languagg is any set of literals irC such that, for each ator,
eitherA € I ornot A € I.We say a set of literalBody is true in an interpretatiof
(or that[satisfiesBody) iff Body C I. In this paper we will use programs containing
variables. As usual when programming within the stable models semantics, a program
with variables stands for the propositional program obtained as the set of all possible
ground instantiations of the rules.

Two rulest andn areconflicting(denoted byr < 7) iff the head ofr is the atom
A and the head aof is not A, or viceversa. A Dynamic Logic Program over a language
L is a sequencé; & ... d P, (also denotedbP,") where theP;s are GLPs defined
over L. Therefined stable model semantiogsuch a DLP, defined in [1], assigns to

! Note that, by defining rule bodies as sets, the order and number of occurrences of literals do
not matter.

each sequencE, @ ... @ P, a set of stable models (that is proven there to coincide
with the stable models semantics when the sequence is formed by a single normal [11]
or generalized program [21]). The rationale for the definition of a stable nidded a

DLP is made in accordance with thausal rejection principle [10, 18]: If the body of

arule in a given update is true M, then that rule rejects all rules in previous updates
that are conflicting with it. Such rejected rules are ignored in the computation of the
stable model. In the refined semantics for DLPs a rule may also reject conflicting rules
that belong to the same update. Formally, the set of rejected rules of &B}’Pgiven

an interpretation\/ is:

RejS(@P", M) ={r|T€P;: An€ P;i<j, 7an A Body(n) C M}

Moreover, an atomd is assumed false by default if there is no rule, in none of the
programs in the DLP, with head and a true body in the interpretatidd. Formally:

Default(®P™, M) = {not A | EAHBodyEUP,; A Body C M}

If @P/" is clear from the context, we omit it as first argument of the above functions.

Definition 1. Let®P™ be a DLP over languag€ and M an interpretation.M is a
refined stable model @b P/ iff

M = least ((U P;\ Rej® (M)) U De fault(M)>

whereleast(P) denotes the least Herbrand model of the definite program [22] obtained
by considering each negative literabt A in P as a new atom.

Having defined the meaning of sequences of programs, we are left with the problem
of how to come up with those sequences. This is the subject of LP update languages
[2,4,9,18]. Among the existing languages, Evolp [2] uses a particulary simple syntax,
which extends the usual syntax of GLPs by introducing the special predicater/1.

Given any languagé&, the language ..+ iS recursively defined as follows: every
atom in £ is also inL,ssert; fOr any ruler over L,qsert, the atomassert(r) is in
Lassert; NOthiNg else is inC,s5¢-:. AN Evolp programover L is any GLP overC sser¢-

An Evolp sequencis a sequence (or DLP) of Evolp programs. The rules of an Evolp
program are calle&volp rules

Intuitively an expressiomssert(r) stands for “update the program with the rule
7", Notice the possibility in the language to nest an assert expression in another. The
intuition behind the Evolp semantics is quite simple. Starting from the initial Evolp
sequencebP™ we compute the se§M (& F]™), of the stable models @b P™. Then,
for any elementM in SM(®P™), we update the initial sequence with the program
P,,+1 consisting of the set of rules such that the atomssert(7) belongs toM. In
this way we obtain the sequened]” @ P,, 1. SinceSM (@ P]™) contains, in general,
several models we may have different lines of evolution. The process continues by
obtaining the various M (@P™*!) and, with them, various P, 2. Intuitively, the
program starts at stepalready containing the sequened”™. Then it updates itself

with the rules asserted at step 1, thus obtaining step 2. Then, again, it updates itself with
the rules asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program. If, at a
given stepn, the programs receives the external updaje the rules inE,, are added

to the last self update for the purpose of computing the stable models determining the
next evolution but, in the successive step- 1 they are no longer considered (that’s

why they are calle@vent¥. Formally:

Definition 2. Letn andm be natural numbers. Aavolution interpretatiorof length
n, of an evolving logic prograne P is any finite sequencét = M,,... , M, of
interpretations ovet.,ss.¢. Theevolution traceassociated with\M and & P]™ is the
sequencé’ @ ... P, & Pyi1 ... ® Ppyn_1,Where, forl <i<n

Py ={7|assert(t) € Mp1i_1}

Definition 3. Let®P™ and®E] be any Evolp sequences, aM = M, ..., M, be
an evolving interpretation of length. LetP, & ... & P,,+,—1 be the evolution trace
associated withM and @P™. We say thatM is an evolving stable model afP™
with event sequence £ at stepn iff My is a refined stable model of the program
Pao... @(PkUEk) foranyk,withmg Ek<m+n-—1.

2.2 Action languages

The purpose of an action language is to provide ways of describing how an environment
evolves given a set of external actions. A specific environment that can be modified
through external actions is called aation domainTo any action domain we associate
a pair of sets of atomg& and.A. We call the elements af fluent atomsor simply
fluents and the elements of action atomr simplyactions Basically, the fluents are
the observable in the environment and the actions are, clearly, the external actions. A
fluent literal (resp.action literal) is an element ofF;; (resp. an element ofl ;). In
the following, we will use the lette® to denote a fluent atom, the lettérto denote a
fluent literal, and the letted to denote an action atom. $tate of the worldor simply
astatg is any interpretation oveF. We say a fluent literaF is true at a given state
iff F belongs tos.
Each action language provides ways to describe action domains through sets of ex-
pression calledction programsUsually, the semantics of an action program is defined
in terms of dransition system.e. a function whose argument is any pairk’), where
s is a state of the world anfl” is a subset 0f4, and whose value is any set of states of
the world. Intuitively, given the current state of the world, a transition system specifies
which are the possible resulting states after simultaneously performing all actiéins in
Two kinds of expressions that are common within action description languages are
static and dynamic rulesThe static rulesbasically describe the rules of the domain,
while dynamic rulesdescribe effects of actions. A dynamic rule has a sgtre€ondi-
tions namely conditions that have to be satisfied in the present state in order to have a
particular effect in the future state, apdstconditionglescribing such an effect.

In the following we will consider three existing action languages, namé|ys and
C. The languaged [13] is very simple. It only allows dynamic rules of the form

A causesF if Cond

whereCond is a conjunction of fluent literals. Such a rule intuitively means: performing
the actionA caused to be true in the next state @'ond is true in the current state.
The language [13] is an extension afd which also considers static rules. # static
rules are expressions of the form

Fif Body

whereBody is a conjunction of fluent literals which, intuitively, meansBbdy is true
in the current state, theR' is also true in the current state. A fundamental notion, in
both A andB, is fluent inertia[13]. A fluent F' is inertial if its truth value is preserved
from a state to another, unless itis changed by the (direct or indirect) effect of an action.
For a detailed definition of the semantics4fand’5 see [13].

Static and dynamic rules are also the ingredients of the action languddge 16].
Static rules irC are of the form

causedJ if H
while dynamic rules are of the form
caused/J if H after O

whereJ andH are formulae such that any literal in them is a fluent literal, @nid any
formula such that any literal in it is a fluent or an action literal. The fornle the
precondition of the dynamic rule and the static redeised.J if H is its postcondition.
The semantic of is based ortausal theorigd 5]. Causal theories are sets of rules of
the formcaused.J if H, each such rule meaning: H is true this is an explanation
for J. A basic principle of causal theories is that something is true iff it is caused by
something else. Given any action progrdmm a states and a set of action#’, we
consider the causal theofygiven by the static rules dP and the postconditions of the
dynamic rules whose preconditions are truesiad K. Thens’ is a possible resulting
state iff it is a causal model &f.

3 Evolp action programs

As we have seen, Evolp and action description languages share the idea of a system that
evolves. In both, the evolution is influenced by external events (respectively, updates
and actions). Evolp is actually a programming language devised for representing any
kind of computational problem, while action description languages are devised for the
specific purpose of describing actions. A natural idea is then to develop special kind of
Evolp sequences for representing actions, and then compare such kind of programs with
existing action description languages. We will call this kind of progr&wsip Action
Programs(EAPS).

Following the underlying notions of Evolp, we use the basic constragtrt for
defining special-purpose macros. As it happens with other action description languages,
EAPs are defined over a set of fluetfisand a set of actiongl. In EAPs, a state of the
world is any interpretation oveF. To describe action domains we use an initial Evolp
sequence] & D. The Evolp programD contains the description of the environment,
while I contains some initial declarations, as it will be clarified later. A8iandC,

EAPs contain static and dynamic rules.
A static ruleover (F, A) is simply an Evolp rule of the form

F «— Body

whereF' is a fluent literal and3ody is a set of fluent literals.
A dynamic ruleover (F, A) is a (macro) expression

effect(r) — Cond

wherer is any static rulel’ < Body andCond is any set of fluent or action literals.

The intuitive meaning of such a rule is that the static ruleas to be considerezhlyin

those states whose predecessor satisfies conditiar. Since some of the conditions
literals in Cond may be action atoms, such a rule may describe the effect of a given
set of actions under some conditions. Such an expression stands for the following set of
Evolp rules:

F «— Body, event(F < Body). Q)
assert(event(F «— Body)) <« Cond. 2
assert(not event(F «— Body)) < event(T), not assert(event(F «— Body)) (3)

whereevent(F «— Body) is a new literal. Let us see how the above set of rules fits
with its intended intuitive meaning. Rule (1) is not applicable whenevent(F «—
Body) is false. If at some step, the conditiong”ond are satisfied, then, by rule (2),
event(F «— Body) becomes true at step+ 1. Hence, at step + 1, rule (1) will play

the same role as static rulé < Body. If at stepn + 1 Cond is no longer satisfied,
then, by rule (3) the literadvent(F «— Body) will become false again, and then rule
(1) will be again not effective.

Besides static and dynamic rules, we still need another ingredient to complete our
construction. As we have seen in the description ofZk@nguage, a notable concept is
fluent inertia. This idea is not explicit in Evolp whettee rules(and not the fluents) are
preserved by inertia. Nevertheless, we can show how to obtain fluent inertia by using
macro programming in Evolp. Amertial declarationover(F, A) is a (macro) expres-
sioninertial(), where/C C F. The intended intuitive meaning of such an expression
is that the fluents ifC are inertial. Before defining what this expression stands for, we
state that the above mentioned prograns always of the forminitialize(F), where
initialize(F) stands for the set of rule€g < prev(Q), where@ is any fluent inF, and
prev(F) are new atoms not itF U A. Theinertial declarationinertial() stands for
the set (wheré) ranges oveiC):

assert(prev(Q)) — Q. assert(not prev(Q)) < not Q.

Let us consider the behaviour of this macro. If we do not dealpas an inertial fluent,

the rule@ — prev(Q) has no effect. If we declar@ as an inertial literalprev(Q) is

true in the current state iff in the previous stétevas true. Hence, in this casg,is true

in the current statanlessthere is a static or dynamic rule that rejects such assumption.
Viceversa, ifQ was false in the previous state, th@ris true in the current one iff it is
derived by a static or dynamic rule. We are now ready to formalize the syntax of Evolp
action programs.

Definition 4. LetF and.A be two disjoint sets of propositional atoms. An Evolp action
program (EAP) ovefF, A) is any Evolp sequende® D, wherel = Initialize(F),
and D is any set with static and dynamic rules, and inertial declarations ¢#erA)

Given an Evolp action prograth@ D, the initial state of the world (which, as
stated above, is an interpretation oy€ris passed to the program together with the set
K of the actions performed af as part of an external event. A resulting state is the last
element of any evolving stable model bfs D given the event U K restricted to the
set of fluent literals. l.e:

Definition 5. Let] & D be any EAP ovefF, A), ands a state of the world. Thesf is
a resulting state from given! & D and the set of actionX iff there exists an evolving
stable modelM, M of I D given the external evertU K such thats’ = M, (where
by s’ =7 My we simply mear’ N Fr;; = Ma N Frit).

This definition can be easily generalized to sequences of set of actions.

Definition 6. LetI ¢ D be any EAP and a state of the world. The# is a resulting
state froms givenI @& D and the sequence of sets of actidids..., K, iff there
exists an evolving stable modgl,, ..., M, of I & D given the external everis U
Ky),..., K, such thats’ =x M,,.

Since EAPs are based on the Evolp semantics, which in turn is an extension of
the stable model semantics for normal logic programs, we can easily prove that the
complexity of the computation of the two semantics is the same.

Theorem 1. Let I & D be any EAP ove(F, A), s a state of the world and(C A.
To find a resulting state’ from s givenI @ D and the set of action& is an NP-hard
problem.

It is important to notice that, if the initial statedoes not satisfies the static rules of
the EAP, the correspondent Evolp sequence has no stable model, and hence there will
be no successor state. This is, in our opinion, a good result: The initial state is just a
state as any other. It would be strange if such state would not satisfy the rules of the
domain. If this situation occurs, most likely either the translation of the rules, or the one
of the state, presents some errors. From now onwards we will assume that the initial
state satisfies the static rules of the domain.

To illustrate EAPs, we now show an example of their usage by elaborating on
probably the most famous example of reasoning about actions. The presented elabo-
ration highlights some important features of EAPS, viz. the possibility of handling non-
deterministic effects of actions, non-inertial fluents, non-executable actions, and effects
of actions lasting for just one state.

3.1 An elaboration of the Yale shooting problem

In the original Yale shooting problem [26], there is a single-shot gun which is initially
unloaded, and a turkey which is initially alive. One can load the gun and shoot the
turkey. If one shoots, the gun becomes unloaded and the turkey dies. We consider a
slightly more complex scenario where there are several turkeys, and where the shooting
action refers to a specific turkey. Each time one shoots as specific turkey, one either
hits and kills the bird, or misses it. Moreover, the gun becomes unloaded and there is
a bang. It is not possible to shoot with an unloaded gun. We also add the property that
any turkey moves iff it is not dead.

For expressing that an action is not executable under some conditions, we make
use of a well known behaviour of the stable model semantics. Suppose a given EAP
contains a dynamic rules of the foreffect(u < not u) < Cond, whereu is a literal
which does not appear elsewhere (in the following, for representing such rules, we use
the notatioreffect(L) < Cond). With such a rule, itCond is true in the current state,
then there is no resulting state. This happens because, as it is well known, programs
containingu < not u, and no other rules far, have no stable models.

To represent the problem, we consider the flugatsi(X), moving(X), hit(X),
missed(X), loaded, bang, plus the auxiliary fluent;, and the actionshoot(X) and
load (where theX's range over the various turkeys). The flueftsd(X') andloaded
are inertial fluents, since their truth value should remain unchanged until modified by
some action effect. The fluentaissed(X), hit(X) and bang are not inertial. The
problem is encoded by the EAP® D, where

I = initialize(dead(X), moving(X), missed(X), hit(X), loaded, bang, u)

andD is the following set of expressions

effect(L) « shoot(X), not loaded inertial(loaded)
moving(X) <« not dead(X) inertial(dead(X))
effect(dead(X) < hit(X)) « shoot(X) effect(oaded) < load

effect(hit(X) <« not missed(X)) < shoot(X) effectpang) «— shoot(X)
effect(missed(X) < not hit(X)) < shoot(X) effect(not loaded.) — shoot(X)

Let us analyze this EAP. The first rule encodes the impossibility to execute the action
shoot(X) when the gun is unloaded. The static rut@ving(X) «— not dead(X)
implies that, for any turkey, moving(X) is true ifdead(X) is false. Since this is the

only rule formoving(X), it further holds thatnoving(X) is true iff dead(X) is true.

Notice that declaringnoving(tk) as inertial, would result, in our description, in the
possibility of having a moving dead turkey! This is why fluenisving(X) have not

been declared as inertial. In fact, suppose we irisertial(moving(X)) in the EAP
above. Suppose further thabving(tk) is true at state, that one shoots ak and kills

it. Sincemoving(tk) is an inertial fluent, in the resulting statlead(tk) is true, but
moving(tk) remains true by inertia. Also notable is how effects that last only for one
state, like the noise provoked by the shoot, are easily encoded. The last three dynamic
rules on the left encode a non deterministic behaviour: each shoot action can either hit
and kill a turkey, or miss it.

To see how this EAP encodes the desired behaviour of this domain, consider the
following example of evolution. In this example, to lightening the notation, we omit the
negative literals belonging to interpretations. Let us consider the initial §fgighich
means that all fluents are false). The state will remain unchanged until some action is
performed. If one load the gun, the program is updated with the external gvent.

In the unique successor state, the flukiatled is true and nothing else changes. The
truth value ofloaded remains then unchanged (by inertia) until some other action is
performed. The same applies to fluedtad(X). The fluentang, missed(X), and
hit(X) remain false by default. If one shoots at a specific turkey, say Smith, and the
program is updated with the evesitoot(smith), several things happen. Firsbaded
becomes false, artding becomes true, as an effect of the action. Moreover, the rules:

hit(smith) «— not missed(smith)
missed(smith) «— not hit(smith)
dead(smith) «— hit(smith)

are considered as rules of the domain for one state. As a consequence, there are two
possible resulting states. In the first omejssed(smith) is true, and all the others
fluents are false. In the second dne(smith) is true,missed(smith) is false and, by

the ruledead(smith) — hit(smith), the fluentdead(smith) becomes true. In both

the resulting states, nothing happens to the truth value of the fldemi$X), hit(X),
anddead(X) for X # smith.

4 Relationship to existing action languages

In this section we show embeddings into EAPs of the action languBgmsd (the
definite fragment ofif2. We will assume that the considered initial states are consistent
wrt the static rules of the program, i.e. if the body of a static rule is true in the considered
state, the head is true as well.

Let us consider first th8 language. The basic ideas of static and dynamic rules are
very similar in3 and in EAPs. The main difference between the two is th#t ail the
fluents are inertial, whilst in EAPs only those that are declared as such are inertial. The
translation of3 into EAPs is then straightforward: All fluents are declared as inertial
and then the syntax of static and dynamic rules is adapted. In the following we use,
with abuse of notation3ody andCond both for conjunctions of literals and for sets of
literals.

Definition 7. Let P be any action program if8 with set of fluentsF. The translation
B(P, F) is the pair (¥ @ DBF | FB) where:F5 = F, I® = initialize(F) and DB?
contains exactly the following rules:

— inertial(Q) for each fluent) € F
— arule F' «— Body for any static ruleF' if Body in P.

2 The embedding of languagé is not explicitly exposed here sincé is a (proper) subset of
the B language.

— aruleeffect(f’) — A, Cond. for any dynamic ruled causesF' if Cond in P.

Theorem 2. Let P be anyB program with set of fluent&, (I” @ DBF, F) its trans-
lation, s a state andK any set of actions. Thesi is a resulting state froms given P
and the set of actionk iff it is a resulting state frons givenI” @& D5 and the set of
actionskK.

Let us consider now the action languageGiven a complete description of the cur-
rent state of the world and performed actions, the problem of finding a resulting state
is a problem of the satisfiability of a causal theory, which is known toZb%—hard

(cf. [15]). So, this language belongs to a category with higher complexity than EAPs
whose satisfiability is NP-hard. However, only a fragment @ implemented and the
complexity of such fragment i8” P. This fragment is known as tréefinite fragment

of C [15]. In this fragment, static rules are expressions of the foasedF' if Body
whereF is a fluent literal andBody is a conjunction of fluent literals, while dynamic
rules are expressions of the fowausednot F' if Body after Cond whereCond is

a conjunction of fluent or action liter&lsFor this fragment it is possible to provide a
translation into EAPs.

The main problem of the translation 6finto EAPs lies in the simulation of causal
reasoning with stable model semantics. The approach followed here to encode causal
reasoning with stable models is in line with the one proposed in [20]. We need to intro-
duce some auxiliary predicates and define a syntactic transformation of rulesS Heet
a set of fluents, and 16 denote the set of fluents U {F | F € F}. We add, for
eachF’ € F, the constraints:

— not F,not Fy. 4)
Let F be a fluent and3ody = F1, ... , I, a conjunction of fluent literals. We will use
the following notation:F’ = not Fiy, not F' = not F andBody = F1i,... , F,

Definition 8. Let P be any action program in the definite fragmentdofvith set of
fluentsF. The translationC(P, F) is the pair (¢ @ DCP, 7¢) where: F is defined
as above/¢ = initialize(F¢) and D" consists exactly of the following rules:

a rule effect(® «— Body) «— Cond, for any dynamic rule inP of the form
causedF' if Body after Cond,

a rule effect(ty «— Body) «— Cond, for any dynamic rule inP of the form
causednot F'if Body after Cond,

arule F' — Body, for any static rule inP of the formcausedF' if Body;

arule Fy < Body, for any static rule inP of the formcausednot F if Body;
The rules (4) and (5), for each flueAte F.

For this translation we obtain a result similar to the one obtained for the translations of
the B language:

3 The definite fragment defined in [15] is (apparently) more general, allo@ingd and Body
to be arbitrary formulae. However, it is easy to prove that such kind of expressions are equiv-
alent to a set of expressions of the form described above

Theorem 3. Let P be any action program in the definite fragmentivith set of
fluentsF, (I¢ @ DCF, F°) its translation,s a state,s¢ the interpretation ovetF“
defined as followss® = s U{Q | Q € s} U {not Q | not Q € s} andK any set of
actions. Then* is a resulting state frora® givenI® @ D and the set of action&’
iff there existss’ such thats’ is a resulting state from, givenP and the sef.

By showing translations of the action languad®and the definite fragment @f into
EAPs, we proved that EAPs aatleast as expressivas such languages. Moreover, the
translations above are quite simple: basically one EAP static or dynamic rule for each
static or dynamic rule in the other languages. The next natural question is: Are they
more expressive

5 Updates of action domains

Action description languages describe the rules governing a domain where actions are
performed, and the environment changes. In practical situations, it may happen that
the very rules of the domain change with time too. When this happens, it would be
desirable to have ways of specifying the necessary updates to the considered action
program, rather than to have to write a new one. EAPs are just a particular kind of
Evolp sequences. So, as in general Evolp sequences they can be updated by external
events.

When one wants to update the existing rules with a rulall that has to be done is
to add the factissert(7) as an external event. This way, the rulés asserted and the
existing Evolp sequence is updated. Following this line, we extend EAPs by allowing
the external events to contain facts of the farssert(7), wherer is an Evolp rule, and
we show how they can be used to express updates to EAPs. For simplicity, below we use
the notatiorussert(R), whereR is a set of rules, for the set of expressiansert(r)
wherer € R.

To illustrate how to update an EAP, we come back to the example of section 3.1. Let
1® D be the EAP defined in that section. Let us now consider that after some shots, and
dead turkeys, rubber bullets are acquired. One can now either load the gun with normal
bullets or with a rubber bullets, but not with both. If one shoots with a rubber loaded
gun, the turkey is not killed.

To describe this change in the domain, we introduce a new inertial fluent repre-
senting the gun being loaded with rubber bullets. We have to express that, if the gun is
rubber-loaded, one can not kill the turkey. For this purpose we introduce the new macro:

not effect(F' — Body) «— Cond

whereF, is a fluent literal Body is a set of fluents literals andond is a set of fluent
or action literals. We refer to such expressiongféacts inhibitionsThis macro simply
stands for the rule

assert(not event(F «— Body)) « Cond

whereevent(F «— Body) is as before. The intuitive meaning is that, if the condition
Cond is true in the current state, any dynamic rule whose effect is theftule Body
is ignored.

To encode the changes described above, we update the EAP with the external event
E, consisting of the factsssert(I;) wherel; = (initialize(rubber_loaded)). Then, in
the subsequent state, we update the program with the external updatessert(D;)
whereD; is the set of rules

inertial(rubber_loaded)

effect(rubber_loaded) < rubber_load.

effect(not rubber_loaded) «— shoot(X).

effect(L) < rubber_loaded, load.

effect(L) < loaded, rubber_load.

not effect(dead(X) « hit(X)) < rubber_loaded.

Let us analyze the proposed updates. First, the flugbiter _loaded is initialized. It is
important to initialize any fluent before starting to use it. The newly introduced fluent
is declared as inertial, and two dynamic rules are added specifying that load actions are
not executable when the gun is already loaded in a different way. Finally we use the
new command to specify that the effeletad(X) «— hit(X) does not occurs if, in the
previous state, the gun was loaded with rubber bullets. Since this update is more recent
than the original ruleeffect(dead(X) «— hit(X)) < shoot(X), the dynamic rule is
updated.

It is also possible to update static rules and the descriptions of effects of an ac-
tion rather than their preconditions. Suppose the cylinder of the gun becomes dirty
and, whenever one shoots, the gun may either work properly or fail. If the gun fails,
the actionshoot has no effect. We introduce two new fluents in the program with
the eventussert(ly) wherel, = initialize(fails, work)). Then, we assert the event
E5 = assert(Dsy) whereDs is the following EAP

effect(fails — not work) « shoot(X). not bang «— fails.
effectwork — not fails) «— shoot(X). not unloaded «— fails.
not missed «— fails.
not missed «— fails.

This last example is important since it shows how to update the effects of a dynamic
rule via a new static rule. It is also possible to update the effects of a dynamic rule via
another dynamic rule. To illustrate, we now show a possible evolution of the updated
system. Suppose currently the gun is not loaded. One loads the gun with a rubber bullet,
and then shoots at the turkey named Trevor. The initial stafg.iSThe first set of
actions is{rubber_load} The resulting state after this actionsis= {rubber_loaded}.
Suppose one performs the actiend. Since the EAP is updated with the dynamic rule
effect(L) < rubber_loaded, load. there is no resulting state. This happens because
we have performed a non executable action. Suppose, instead, the second set of actions
is {shoot(trevor)}. There are three possible resulting states. In one the gun fails. In
this case, the resulting state is, agaih,In the second, the gun works but the bullet

*In the remainder, we usessert(U), whereU is a set of macros (which are themselves sets of
Evolp rules), to denote the set of all faetssert(7) such that there exists a maefin U with
T €.

misses Trevor. In this case, the resulting stat€'iss {missed(trevor)}. Finally, the
gun works and the bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still
alive. In this case the resulting statesis= {hit(trevor)}.

The events may introduce changes in the behaviour of the original EAP. This opens
a new problem. In classical action languages we do not care about the prieigitoug
of the world: If the current state of the world is the computation of the resulting
states is not affected by the states betora the case of EAPs the situation is different,
since external updates can change the behaviour of the considered EAP. Fortunately,
we do not have to care about tiwiolehistory of the world, but just about those events
containing new initializations, inertial declarations, effects inhibitions, and static and
dynamic rules.

It is possible to have a compact description of an EAP that is updated several times
via external events. For that we need to further extend the original definition of EAPs.

Definition 9. AnupdatedEvolp action program ove(F, A) is any sequencé® D; &

... ® D, wherel is initialize(F), and the variousD;, are sets consisting of static
rules, dynamic rules, inertial declarations and effects inhibitions such that any fluent
appearing inDj, belongs taF

In general, if we update an Evolp action progrdn® D with the subsequent events
assert(11), assert(D;), wherel; @ D, is another EAP, we obtain the equivalent up-
dated Evolp action prograd U I;) & D & D; Formally:

Theorem 4. LetI & Dy & ... ® Dy, be any update EAP ovérF, A). Letép E* be a
sequence of events such th&y: = K; U s, wheres is any state of the world anf{; is
any set of actions; and the othefss are any set of action&,, or any setnitialize(F3)
whereFz C F, orany D; with 1 < ¢ < k. Thens' is a resulting state frons given
I® D @...® Dy and the sequence of sets of actigpsi, iff there exists an evolving
stable modelV/y, ..., M, of I & D with event sequend® E!* such that\,, =x s

For instance, the updates to the original EAP of the example in this section are equiva-
lent to the updated EAR,.,,.,, ® D & D, & Do, wherely,.,, =1 U I; U Iy, I andD
are as in the example of section 3.1, andfseandD;s are as described above.

Yet one more possibility opened by updated Evolp action programs is to cater for
successive elaborations of a program. Consider an initial problem described by an EAP
I® D. If we want to describe an elaboration of the program, insteaevafiting I & D
we can simplyupdateit with new rules. This gives a new answer to the problem of
elaboration tolerance [24] and also open the new possibilitgusématically update
action programs by other action programs.

The possibility to elaborate on an action program is also discussed in [15] in the
context of theC language. The solution proposed there, is to congligeograms whose
rules have one extra fluent atom in their bodies, all these extra fluents being false by
default. The elaboration of an action progrdfris the programP U U whereU is a
new action program. The rules i can defeat the rules i by changing the truth
value of the extra fluents. An advantage of EAP over that approach is that, in EAPs the
possibility of updating rules is a built-in feature rather then a programming technique
involving manipulation of rules and introduction of new fluents. Moreover, in EAPs we

can simply encode the new behaviours of the domain by new rules and then let these
new rules update the previous ones.

6 Conclusions and future work

In this paper we have explored the possibility of using logic programs updates lan-
guages as action description languages. In particular, we have focused our attention on
the Evolp language. As a first point, we have defined a new action language paradigm,
christened Evolp action programs, defined as a macro language over Evolp. We have
provided an example of usage of this language, and compared Evolp action programs
with action languages!, 13 and the definite fragment ¢f, by defining simple transla-

tions into Evolp of programs in these languages. Finally, we have also shown and argued
about the capability of EAPs to handle changes in the domain during the execution of
actions.

Several important topics are not touched here, and will be subject of future work.
Important fields of research are how to deal, in the Evolp context, with the problem of
planning prediction and postdiction [23], when dealing with incomplete knowledge of
the state of the world. Yet another topic involves the possibility of concurrent execu-
tion of actions. Nevertheless, we have not fully explored this topic, and confronted the
results with extant works [6, 17].

The development of implementations for Evolp and EAPs is another necessary step.
Finally EAPs have to be tested in real and complex contexts.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic programming:
a principled based approach. Tth Int. Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7yolume 1730 oL.NAI. Springer, 2004.

2. J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca,
S. Greco, N. Leone, and G. lanni, editodsh European Conf. on Logics in Al (JELIA'Q2)
volume 2424 oLNAI, pages 50-61. Springer, 2002.

3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dynamic
updates of non-monotonic knowledge basd$e Journal of Logic Programmingt5(1—
3):43-70, September/October 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for
updating logic programdAtrtificial Intelligence 132(1 & 2), 2002.

5. J.J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma. Preliminary
exploration on actions as updates. In M. C. Meo and M. V. Ferro, edilonst Conference
on Declarative Programming (AGP-99)999.

6. C. Baral and M. Gelfond. Reasoning about effects of concurrent actimsnal of Logic
Programming 31:85-118, 1997.

7. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, observations
and hypotheseslournal of Logic Programming31, April-June 1997.

8. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheritance. In D. De
Schreye, editorProceedings of the 1999 International Conference on Logic Programming
(ICLP-99) Cambridge, November 1999. MIT Press.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative update spec-

ifications in logic programs. In Bernhard Nebel, edit®rpceedings of the seventeenth In-
ternational Conference on Artificial Intelligence (IJCAI-Qppges 649—-654, San Francisco,
CA, 2001. Morgan Kaufmann Publishers, Inc.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on causal
rejection. Theory and Practice of Logic Programming;711-767, November 2002.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. A. Bowen, editor&th International Conference on Logic Program-
ming, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Representing actions and change by logic progrdousnal

of Logic Programming17:301-322, 1993.

M. Gelfond and V. Lifschitz. Action languageElectronic Transactions on AL6, 1998.

E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing actions in logic
programs and default theories: a situation calculus apprdactinal of Logic Programming
31:245-298, 1997.

E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theo-
ries. Artificial Intelligence 153:49-104, 2004.

E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary
report. INAAAI'98, pages 623—-630, 1998.

J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In William Nebel,
Bernhard; Rich, Charles; Swartout, editBroc. IJCAI-03 pages 1079-1084, Cambridge,
MA, 2003. To Appear.

J. A. Leite. Evolving Knowledge Basgegolume 81 ofFrontiers in Atrtificial Intelligence and
Applications IOS Press, 2003.

J. A. Leite and L. M. Pereira. Generalizing updates: from models to prograrh®KR’'97:
workshop on Logic Programming and Knowledge Representati@®i7.

V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspectdlapter Action lan-
guages, answer sets and planning, pages 357-373. Springer Verlag, 1999.

V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary
report). In B. Nebel, C. Rich, and W. Swartout, editd?syceedings of the 3th International
Conference on Principles of Knowledge Representation and Reasoning (KR&2)an-
Kaufmann, 1992.

John Wylie Lloyd. Foundations of Logic Programmingspringer,, Berlin, Heidelberg, New
York,, 1987.

J. McCarthy. Programs with commons sensePioceedings of Teddington Conference on
The Mechanization of Thought Procepages 75-91, 1959.

J. McCarthy.Mathematical logic in artificial intelligencepages 297-311. Daedalus, 1988.
S. Russel and P. NorvigAtrtificial Intelligence A Modern Approacipage 4. Artificial
Intelligence. Prentice Hall, 1995.

D. McDermott S. Hanks. Nonmonotonic logic and temporal projectidrtificial Intelli-
gence 33:379-412, (1987).

