
Abduction in Well-Founded Semantics and Generalized Stable Models

via Tabled Dual Programs

José Júlio Alferes∗ Lúıs Moniz Pereira† Terrance Swift‡

June 23, 2003

Abstract

Abductive logic programming offers a formalism to declaratively express and solve problems in
areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic program-
ming offers a computational mechanism that provides a level of declarativity superior to that of
Prolog, and which has supported successful applications in fields such as parsing, program analy-
sis, and model checking. In this paper we show how to use tabled logic programming to evaluate
queries to abductive frameworks with integrity constraints when these frameworks contain both
default and explicit negation. The result is the ability to compute abduction over well-founded
semantics with explicit negation and answer sets. Our approach consists of a transformation and
an evaluation method. The transformation adjoins to each objective literal O in a program, an
objective literal not(O) along with rules that ensure that not(O) will be true if and only if O is
false. We call the resulting program a dual program. The evaluation method, Abdual, then op-
erates on the dual program. Abdual is sound and complete for evaluating queries to abductive
frameworks whose entailment method is based on either the well-founded semantics with explicit
negation, or on answer sets. Further, Abdual is asymptotically as efficient as any known method
for either class of problems. In addition, when abduction is not desired, Abdual operating on a
dual program provides a novel tabling method for evaluating queries to ground extended programs
whose complexity and termination properties are similar to those of the best tabling methods for
the well-founded semantics. A publicly available meta-interpreter has been developed for Abdual
using the XSB system.

1 Introduction

Abductive logic programming (see e.g. [21]) is a general non-monotonic formalism whose potential
for applications is striking. As is well known, problems in domains such as diagnosis, planning,
and temporal reasoning can be naturally modeled through abduction. In this paper (which is an
extended and revised version with proofs of [2]), we lay the basis for efficiently computing queries over

∗A.I. Centre, Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2825-516 Caparica, Portugal.
jja@di.fct.unl.pt

†A.I. Centre, Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa, 2825-516 Caparica, Portu-
gal.lmp@di.fct.unl.pt

‡Department of Computer Science, University of Maryland, College Park, MD, USA. tswift@cs.umd.edu

1

ground three-valued abductive frameworks that are based on extended logic programs with integrity
constraints, and whose notion of entailment rests on the well-founded semantics and its partial stable
models. Both the generalized stable models semantics [22] and the answer set semantics [17] are also
captured, their two-valuedness being imposed by means of appropriate integrity constraints.

Our query processing technique, termed Abdual, relies on a mixture of program transformation
and tabled evaluation. In our abductive framework, a transformation removes default negative literals
from both the program over which abduction is to be performed and from the integrity rules. Specif-
ically a dual transformation is used, that defines for each objective literal O and its set of rules R, a
dual set of rules whose conclusion not(O) is true if and only if O is false by R. Tabled evaluation of the
resulting program turns out to be much simpler than for the original program, whenever abduction
over negation is needed. At the same time, termination and complexity properties of tabled evaluation
of extended programs are preserved by the transformation when abduction is not needed.

Regarding tabled evaluation, Abdual is in the line of SLG evaluation [5] which computes queries
to normal programs according to the well-founded semantics. In fact, its definition is inspired by a
simplification, for ground programs, of SLG as reformulated in [33]. To it, Abdual tabled evaluation
adds mechanisms to handle abduction1, and to deal with the dual programs2.

The contributions of this paper are:

• We describe Abdual fully and first consider its use over abductive frameworks whose entail-
ment method is based on the well-founded semantics with explicit negation. Abdual is sound,
complete, and terminating for queries to such frameworks over finite ground programs and in-
tegrity rules. Furthermore, Abdual is ideally sound and complete for countably infinite ground
programs.

• We show that over abductive frameworks whose entailment method is based on the well-founded
semantics with explicit negation, the complexity of Abdual is in line with the best known
methods. In addition, for normal and extended programs — viewed as abductive frameworks
containing no abducibles or integrity constraints — query evaluation has polynomial data com-
plexity.

• We provide a transformation that allows Abdual to compute generalized stable models and
answer sets under a credulous semantics, and show that Abdual provides a sound and com-
plete evaluation method for computing such models. Furthermore, the efficiency of Abdual in
computing generalized stable models is in line with the best known methods.

• Finally, we provide access to an Abdual meta-interpreter, written using the XSB system, illus-
trating how to evaluate Abdual in practice and describe how Abdual can be applied to medical
diagnosis [16], to reasoning about actions [1], and to model-based diagnosis of an electric power
grid [20].

1Namely, by adding abductive contexts to goals, by modifying operations on forests to deal with such contexts, and
by having a new operation to abduce literals.

2Namely by introducing a co-unfounded set removal operation.

2

2 Preliminaries

2.1 Terminology and assumptions

Throughout this paper, we use the terminology of Logic Programming as defined in, e.g. [25], with
the following modifications. An objective literal is either an atom A, or the explicit negation of A,
denoted −A. If an objective literal O is an atom A, the explicit conjugate of O (conjE(O)) is the
atom −A; otherwise if O has the form −A, the explicit conjugate of O is A. A literal either has the
form O, where O is an objective literal, or not(O) the default negation of O. In the first form, where a
literal is simply an objective literal, it is called a positive literal; in the second, where it is of the form
not(O), it is called a negative literal. Default conjugates are defined similarly to explicit conjugates:
the default conjugate (conjD(O)) of an objective literal O is not(O), and the default conjugate of
not(O) is O. Thus, every atom is an objective literal and every objective literal is a literal. A program
P (sometimes also called an extended program), formed over some countable language of function and
predicate symbols LP , is a countable set of rules of the form H :- Body in which H is an objective
literal, and Body is a possibly empty finite sequence of literals. If no objective literals in a program P
contain the explicit negation symbol, P is called normal. In either case, the closure of the set of literals
occurring in P under explicit and default conjugation is termed literals(P), while the closure of the set
of objective literals occurring in P closed under explicit conjugation is termed objective literals(P).

By a three-valued interpretation I of a ground program P we mean a subset of literals(P). We
denote as IT the set of objective literals in I, and as IF the set of literals of the form not(O) in I.
For a ground objective literal, O, if neither O nor not(O) is in I, the truth value of O is undefined.
An interpretation I is consistent if there is no objective literal O such that O ∈ IT and not(O) ∈ IF ;
I is coherent if O ∈ IT implies not(conjE(O)) ∈ IF

3. The information ordering of interpretations is
defined as follows. Given two interpretations, I and J , I ⊆Info J if IF is a subset of JF , and IT is
a subset of JT . Given an interpretation I and a set of objective literals S, I|S , the restriction of I to
S, is {L|L ∈ I and (L ∈ S or (L = not(O) and O ∈ S))}. Any consistent three-valued interpretation
can be viewed as a function from literals(P) to the set {f ,u, t}. Accordingly, for convenience we
assume that the symbols t and not(f) belong to every model, while neither u nor not(u) belong to any
model. For simplicity of presentation, we assume a left-to-right literal selection strategy throughout
this paper, although any of the results presented here will hold for any fixed literal selection strategy.
Finally, because dual programs (introduced below) allow any literal as the head of a rule, the terms
goal, query and literal are used interchangeably.

2.2 The Well-Founded Semantics for Extended Programs

We first recall definitions of the well-founded and stable models for extended programs. The well-
founded model can be seen as a double iterated fixed point whose inner operators determine a set of
true and false literals at each step.

3A coherent interpretation ensures that if some objective literal is explicitly false (resp. true) then it also must be
false (resp. true) by default.

3

Definition 2.1 For a ground program P , interpretation I of P and sets O1 and O2 of ground
objective literals

• TxP
I (O1) = {O : there is a clause O :- L1, ..., Ln ∈ P and for each i, 1 ≤ i ≤ n,Li ∈ I or Li ∈

O1}

• FxP
I (O2) = {O : conjE(O) ∈ I or (for all clauses O :- L1, ..., Lm ∈ P there exists i, 1 ≤ i ≤

m, conjD(Li) ∈ I or Li ∈ O2)}

!

The only addition required for explicit negation beyond similar operators for normal programs is
the check in the operator FxP

I that conjE(O) ∈ I, which is used to ensure coherency. Both TxP
I

and FxP
I can be shown to be monotonic and continuous over the information ordering by the usual

methods (cf. [28]), leading to the following operator.

Definition 2.2 Let P be a ground program, then ωP
ext is an operator that assigns to every interpre-

tation I1 of P a new interpretation I2 such that

I2
T = lfp(TxP

I1(∅))
I2

F = {not(O)|O ∈ gfp(FxP
I1(objective literals(P)))}

!

This latter operation can also be shown to be monotonic over the information ordering of inter-
pretations by the usual methods, leading to the formulation of the well-founded semantics as used in
this paper.

Definition 2.3 [Well-founded Semantics for Extended Programs] Let P be a ground extended
program. WFS(P) is defined as the least fixed point, over the information ordering, of ωP

ext. !

Example 2.1 Let P be the program containing the rules {c :- not(b); b :- a; −b; a :- not(a)}.
Then WFS(P) = {−b, c, not(−a), not(b), not(−c)}. Note that to compute c, coherency must be used
to infer not(b) from −b.

It is important to note that the “model” obtained using ωP
ext may be paraconsistent. Using the

operator ωP
ext it is possible to define a stability operator for extended programs that allows partial,

and possibly paraconsistent models.

Definition 2.4 [Partial Stable Interpretation of an Extended Program] Let P be a ground
extended program. We call an interpretation I a partial stable interpretation of P if I = ωP

ext(I)
!

If an interpretation I contains both O and −O, then through coherency, ωP
ext(I) will contain both

O and not(O) and so will be inconsistent. Thus, by definition an interpretation I can be a partial
stable interpretation even if it is inconsistent. However as we will see, within abductive frameworks
consistency can be ensured by means of integrity constraints — for instance, prohibiting O and −O
to be true for any objective literals O. We use WFS(P) as a basis for abduction in part because
the support of a literal on a contradiction can be detected by simply looking at the paraconsistent
well-founded model. As shown in Sections 6 and 8 of [8] it is the only one of an array of semantics for
extended programs with this property, along with having other desirable structural properties.

4

2.3 Three-Valued Abductive Frameworks

The definitions of three-valued abductive frameworks modify those of [7].

Definition 2.5 [Integrity Rule] An integrity rule for a ground program P has the form

⊥ :- L1, . . . , Ln

where each Li, 1 ≤ i ≤ n is a literal formed over an element of LP . !

Definition 2.6 [Abductive Framework and Abductive Subgoal] An abductive framework is
a triple < P,A, I > where A is a finite set of ground objective literals of LP called abducibles, such
that for any objective literal O, O ∈ A iff conjE(O) ∈ A, I is a set of ground integrity rules, and P is
a ground program such that (1) there is no rule in P whose head is in A; and (2) ⊥ /0 is a predicate
symbol not occurring in LP .

An abductive subgoal S =< L,Set > is a literal L together with a finite set of abducibles, Set,
called the context of S. If the context contains both an objective literal and its explicit conjugate, it
is termed inconsistent and is consistent otherwise. !

Definition 2.6 requires that if an objective literal, say, −O1 is abducible, then O1 must be as well.
This requirement will be used to allow abduction of positive and negative information in a symmetric
manner. An abductive subgoal < L,Set > contains a set, Set, of such abducibles, along with a
subgoal, L which in the dual programs used by Abdual can be a literal. This notation is used to
capture the fact that a solution to L is sought in the context in which the (positive and negative)
objective literals in Set have been abduced to be true. If not(A) is a negative literal, occurring in P
or I, and A is an abducible objective literal, Abdual will provide coherency axioms to propagate the
truth value of −A or A to not(A) if necessary. Thus it is sufficient for the set of abducibles to contain
only objective literals. The requirement that there can be no rule in P whose head is an abducible
leads to no loss of generality, since any program with abducibles can be rewritten to obey it 4.

Definition 2.7 [Abductive Scenario] A scenario of an abductive framework < P,A, I > is a tuple
< P,A,B, I >, where B ⊆ A is such that there is no O ∈ B, such that conjE(O) ∈ B. PB is defined as
the smallest set of rules that contains for each A ∈ A, the rule A :- t iff A ∈ B; and A :- u otherwise.
!

Definition 2.8 [Abductive Solution] An abductive solution is a scenario σ =< P,A,B, I > of an
abductive framework, such that ⊥ is false in M(σ) = WFS(P ∪ PB ∪ I). !

We say that σ =< P,A,B, I > is an abductive solution for a query Q if M(σ) |= Q. σ is minimal, if
there is no other abductive solution σ =< P,A,B′, I > for Q such that WFS(B′) ⊆info WFS(B).

The definition of an abductive solution is three-valued in that (objective) literals in P , A, and I
may be undefined. Given a query and an abductive framework, our goal is to construct a solution σ
such that

M(σ) |= Q

4For instance, if it is desired to make abducible some objective literal A such that A is the head of a rule, one may
introduce a new abducible predicate A′, along with a rule A :- A′. See e.g. [21].

5

and
M(σ) |= not ⊥

In addition, it is desirable to evaluate only those portions of P and I that are relevant to Q and to
construct solutions that are minimal in the sense that as few literals as possible are assigned a value
of true or false. Theorem 3.2 below ensures this minimality condition.

3 Query Evaluation over Abductive Solutions

We informally introduce Abdual through a series of examples (Formal Definitions can be found
in Sections 3.1 and 3.2). Abdual shares similarities with SLG in its propagation of delay literals
through Answer Clause Resolution, in the semantics it attaches to unconditional answers, and
in its simplification of delay literals. The first example illustrates these characteristics.

Example 3.1 We first illustrate how Abdual can be used to compute queries to ground programs
according to the well-founded semantics when neither abduction nor integrity constraints are needed.
Accordingly, consider the abductive framework < P1, ∅, ∅ >, in which the set of abducibles and the
set of integrity rules are both empty, and P1 is

p :- not(q).
p :- not(r).
q :- not(p).

WFS(P1) restricted to the objective literals {p, q, r} is {p, not(q), not(r)}. In order to evaluate the
query ?- q through Abdual, we first create the dual form of P1 taken together with a query rule

query :- q, not(⊥).
where the atom query is assumed not to be in LP1 . This rule ensures that integrity constraints are
checked for any abductive solutions that are derived. This dual program, dual(({P1∪query :- q, not(⊥
)}), ∅)) is shown in Figure 1.

p :- not(q). not(p) :- q,r.
p :- not(r).
q :- not(p). not(q) :- p.

not(r).
query :- q,not(⊥). not(query) :- not(q).

not(query) :- ⊥.
not(⊥).

not(p) :- -p. not(-p) :- p.
not(q) :- -q. not(-q) :- q.
not(r) :- -r. not(-r) :- r.

Figure 1: Dual Program for P1 ∪ {query :- q, not(⊥)}

6

Note that in the dual form of a program, P , a rule can have a default literal of the form not(A) as
its head; rules for not(A) are designed to derive not(A) if and only if A is false in WFS(P). The last
three lines of Figure 1 are coherency axioms so-named because they ensure coherency of the model
computed by Abdual. As is usual with tabled evaluations (e.g. [5]), the Abdual evaluation of a
query to the above dual program is represented as a sequence F0, ...,Fi, of forests of Abdual trees.
F0 is the forest consisting of the single tree < query, ∅ > :- |query, which sets up resolution for the
query rule. Given a successor ordinal i+1, a forest Fi+1 is created when an Abdual operation either
adds a new tree to Fi or expands a node in an existing tree in Fi. A forest of trees at the end of one
possible Abdual evaluation of the above query is shown in Figure 2 5. Nodes in Figure 2 are all regular
having the form Abductive subgoal :- DelayList|GoalList, where Abductive subgoal is an abductive
subgoal (Definition 2.6), and GoalList and DelayList are both sequences of literals. Intuitively the
truth of literals in these sequences must be determined in order to prove or fail the abductive subgoal.
When an Abdual evaluation encounters a new literal, S, a tree with root < S, ∅ > :- |S is added to
the forest via the New Subgoal operation. Thus, in Figure 2, when the literal q is selected in node 1,
a New Subgoal operation creates node 2 as a single tree — indeed, all root nodes other than the
initial node 0 are created through one or another application of this operation. Immediate children of
the roots of trees are created via Program Clause Resolution operations, while children of other
nodes can be created by a variety of operations to which we now turn.

0.<query,{}> :- | query 2.<q,{}> :- | q 4.<not(p),{}> :- | not(p) 8.<r,{}> :- | r
| | |

1.<query,{}> :- | q, not(⊥) 3.<q,{}> :- | not(p) 5.<not(p),{}> :- | q, r
| |

6.<q,{}> :- not(p) | 7.<not(p),{}> :- q | r
|

9. fail

Figure 2: Simplified Abdual Evaluation of a query to < P1, ∅, ∅ >

Consider the state of the evaluation after node 5 has been created. The evaluation of q depends on
not(p) and vice-versa. In order to determine the truth of q and not(p) the literal r must be selected
and failed, but this is not possible in a fixed left-to-right selection strategy. The Abdual Delaying
operation allows the fixed selection strategy to be broken by moving a selected negative literal from
the GoalList of a node to its DelayList so that further literals in the node, such as r, may be selected.
Applied to node 3, the Delaying operation produces node 6, < q, ∅ > :- not(p)|. An answer is a
regular leaf node with an empty GoalList. In the subforest of Figure 2 consisting of nodes whose
index is 6 or less, node 6 is an answer. Because its DelayLists is non-empty it is termed a conditional
answer. While node 6 is an answer for q, it is not known at the time node 6 is created whether q
is true or false — its truth value is conditional on that of not(p). Answers are returned to other

5For simplicity of presentation, Figure 2 does not display computation paths that include the coherency axioms, as
they are irrelevant in this example.

7

nodes via the Answer Clause Resolution operation which also combines the abductive contexts
of the answer and the node to ensure consistency. Using this operation, the conditional answer is
resolved against the selected literal of node 5 producing node 7, < not(p), ∅ > :- q|r. Similarly to
SLG, the Answer Clause Resolution operation of Abdual does not propagate DelayLists of
conditional answers, thus the literal added to the DelayList in node 7 is q rather than the literal
originally delayed, not(p). This action is necessary for Abdual to have polynomial complexity for
normal programs in the absence of abduction (cf. Theorem 3.4). If DelayLists of conditional answers
were propagated directly, the number of answers for a given subgoal could be proportional to the
number of its derivations (see [5] for an example of such a program). Thus a literal L can be added
to the DelayList of a node in one of two ways: if L is negative, it can be added through an explicit
Delaying operation; otherwise, L can be added to a DelayList if an Answer Clause Resolution
operation resolves a conditional answer against L regardless of whether L is positive or negative.

Note that after the production of node 8, the evaluation of not(p) and of all the selected subgoals in
the goal list upon which it depends cannot proceed further, and these subgoals cannot produce any new
answers, conditional or otherwise. Such subgoals are termed completely evaluated (Definition 3.3). At
this stage, node 6 contains in its DelayList an atom that is known to be false – i.e. that is completely
evaluated and has no answers. A Simplification operation is applicable to node 6, creating the
failure node, node 8, as its child, so that node 6 is no longer a leaf and hence no longer an answer.
After the production of node 9, neither the tree for q nor that for not(p) has an answer at the end of
the evaluation, corresponding to the fact that both literals are false in WFS(P1).

We now formalize the definitions of some concepts introduced in Example 3.1. For an objective
literal O in a program P , not(O) is defined so that it will be derivable as true iff O is false in WFS(P).
For instance, if there is a fact in P for some objective literal O then the dual has no rule for not(O).
The definition below is somewhat more complicated than the form implicitly used in Example 3.1,
but as explained below, it ensures both that Abdual will be definable on infinite programs and that
it will have an appropriate complexity for finite programs.

Definition 3.1 [Dual Program] Let P be a ground extended program, and A a (possibly empty)
finite set of abducibles. The dual transformation creates a dual program dual(P,A), defined as the
union of P with smallest program containing the sets of rules foldP and cohereP as follows:

1. Let O be an objective literal for which there are no facts in P , and with β ≤ ω rules of the form:

ri : O :- Li,1, ..., Li,n1

for i < ω, where each ni is finite.

(a) Then foldP contains the rule

not(O) :- not(folda
1 O)

along with rules

not(folda
i O) :- not(foldb

i O), not(folda
i+1 O)

8

for all i, 1 ≤ i < β; and
not(folda

β O) :- not(foldb
β O)

if β is finite.

(b) and for 1 ≤ j ≤ maximum{n1, ..., ni}, such that Li,j exists as a literal in ri, foldP contains
a rule:

not(foldb
i O) :- conjD(Li,j)

where folda
k O, foldb

k O are assumed not to occur in LP for any k (such rules are termed folding
rules, and literals formed from objective literals whose predicate symbol is folda

k O or foldb
k O

are called folding literals).

2. Otherwise, if not(O) is in literals(P), but there is no rule with head O in P , then foldP contains
the rule not(O) :- t. If there is a fact for O in P , the rule not(O) :- f may be introduced or
omitted.

3. cohereP consists of axioms of coherence that relate explicit and default negation, defined as:

not(O) :- conjE(O)

For each objective literal not(O) in either literals(P ∪ foldP) or A.

!

Example 3.2 Consider a program fragment in which an objective literal m is defined as:
m :- n1, not(o1).
m :- n2, not(o2).
m :- n3, not(o3).

Note that a naive dualization of m as implicitly used in Example 3.1 (and as defined in Definition A.1)
would produce a rule for each partial truth assignment to the body literals of m that falsifies m, leading
to 8 rules, each with 3 body literals. Indeed, it is easy to see that naive dualization of a predicate
p with β clauses can lead to a predicate for not(p) that has a number of clauses exponential in β,
making the naive dual form unsuitable in terms of complexity for finite programs. Furthermore, the
number of body literals in a clause for not(p) may be linear in β so that if the naive transformation
were used, the dual of an infinite program would not be a program as defined in Section 2.1.

The folding rules in the dual form of m (foldP of Definition 3.1) are shown in Figure 3. In
Definition 3.1, if there are an infinite number of rules defining an objective literal O, there will also be
an infinite number of folding rules defining not(O), but each rule will have a finite sequence of literals
in their body. Also note that in a finite ground program, if an objective literal O is defined by n rules
each of which have m body literals, the size of the rules defining O will be mn + n (see Definition A.4
for a precise definition of the size of rules and programs). In dual(P,A), there will be m ∗ n rules of
the form foldb Oi for some i, each of size 2, along with folding rules of the type folda Oi for some i
so that the size of the rules for not(O) in dual(P,A) is linear in the size of the rules for O in P .

9

not(m) :- not(folda
1 m).

not(folda
1 m) :- not(foldb

1 m),not(folda
2 m).

not(folda
2 m) :- not(foldb

2 m),not(folda
3 m).

not(folda
3 m) :- not(foldb

3 m).

not(foldb
1 m):- not(n1).

not(foldb
1 m):- o1.

not(foldb
2 m):- not(n2).

not(foldb
2 m):- o2.

not(foldb
3 m):- not(n3).

not(foldb
3 m):- o3.

Figure 3: Folded Dual Program for a program clause

While the dual form of Definition 3.1 is necessary for the correctness and complexity results that
follow, examples will use a simpler form without folding literals that is logically equivalent for finite
programs (see Definition A.1 for an exact statement of this simpler form).

Definition 3.2 [Abdual Trees and Forest] An Abdual forest consists of a forest of Abdual
trees. Nodes of Abdual trees are either failure nodes of the form fail, or regular nodes of the form

Abductive Subgoal :- DelayList|GoalList

where Abductive subgoal is an abductive subgoal (Definition 2.6). Both DelayList and GoalList are
finite sequences of literals (also called delay literals and goal literals, respectively).

We call a regular leaf node N an answer when GoalList is empty. If DelayList is also empty, N is
unconditional; otherwise it is conditional. !

Definition 3.9 will ensure that the root node of a given Abdual tree, T , has the form < S, ∅ > :- |S,
where S is a literal. In this case, we say that S is the root goal for T or that T is the tree for S.
Similarly by Definition 3.9, a forest contains a root goal S if the forest contains a tree for S. Literal
selection rules apply to the GoalList of a node; as mentioned in Section 2, we use a fixed left-to-right
order for simplicity of presentation so that the leftmost literal in the GoalList of a node is termed the
selected literal of the node.

Example 3.3 The well-founded semantics captures infinite recursion by means of the concept of
unfounded sets: an atom involved in an unfounded set is assigned a truth-value of false. When a
program undergoes the dual transformation, negative literals involved in infinite recursion must be
made to succeed. As an example of this, consider the abductive framework < P2, ∅, ∅ > in which P2

is defined as:

10

s :- not(p), not(q), not(r).
p :- not(s), not(r), q.
q :- not(p), r.
r :- not(q), p.

Note that WFS(P2) restricted to the objective literals {s, p, q, r} is {s, not(p), not(q), not(r)}. Assum-
ing the query ?- s to < P2, ∅, ∅ >, the dual program dual(({P2 ∪ query :- s, not(⊥)}), ∅) is shown in
Figure 4 6

s :- not(p), not(q), not(r). not(s) :- p.
not(s) :- q.
not(s) :- r.

p :- not(s), not(r), q. not(p) :- s.
not(p) :- r.
not(p) :- not(q).

q :- not(p), r. not(q) :- p.
not(q) :- not(r).

r :- not(q), p. not(r) :- q.
not(r) :- not(p).

query :- s,not(⊥). not(query) :- not(s).
not(query) :- ⊥.
not(⊥).

not(p) :- -p. not(-p) :- p.
not(q) :- -q. not(-q) :- q.
not(r) :- -r. not(-r) :- r.
not(s) :- -s. not(-s) :- s.

Figure 4: Dual Program for P2 ∪ {query :- s, not(⊥)}

An Abdual forest at the end of an evaluation of query is shown in Figure 5. As can be seen
from Figure 5, the evaluation at first proceeds using the same operations as in Example 3.1, where
the roots of non-initial trees are created via New Subgoal operations, the children of roots of
trees created via Program Clause Resolution operations, and other nodes created via Answer
Clause Resolution or Delaying operations. However node 27 is produced by a new operation.
Note that in the subforest of Figure 5 consisting of nodes numbered 26 or less, nodes 24, 25, and 26
are all conditional answers that “depend” on each other through their DelayLists. However, in the
well-founded model of P2, p, q and r should be false as they belong to an unfounded set (based on
the empty interpretation). In order to derive their truth-values Abdual includes a co-unfounded
set removal operation. Nodes 24, 25, and 26 together form an analogue in the dual program to
an unfounded set [35] consisting of p, q, and r in P2. Such an analogue is called a co-unfounded set.
Whereas positive literals in an unfounded set are all false, negative literals in a co-unfounded set are

6The transformation in Definition A.1 is used for simplicity.

11

0.<query,{}> :- | query
|

1.<query,{}> :- | s, not(⊥)
|

33.<query,{}> :- | not(⊥)
|

36.<query,{}> :- |

2.<s,{}> :- | s
|

3.<s,{}> :- | not(p), not(q), not(r)
|

30.<s,{}> :- | not(q), not(r)
|

31.<s,{}> :- | not(r)
|

32.<s,{}> :- |

7.<r,{}> :- | r
|

8.<r,{}> :- | not(q), p
|

38.<r,{}> :- | p

4.<not(p),{}> :- | not(p)!!!!!!!
"""""""

5.<not(p),{}> :- | s
|

37.<not(p),{}> :- |

6.<not(p),{}> :- | r 23.<not(p),{}> :- | not(q)
|

24.<not(p),{}> :- not(q) |
|

27.<not(p),{}> :- |

9.<not(q),{}> :- | not(q)"""""""
10.<not(q),{}> :- | p 19.<not(q),{}> :- | not(r)

|
25.<not(q),{}> :- not(r) |

|
28.<not(q),{}> :- |

11.<p,{}> :- | p
|

12.<p,{}> :- | not(s), not(r), q
|

39.<p,{}> :- not(s) | not(r), q
|

40.<p,{}> :- not(s) | q

13.<not(s),{}> :- | not(s)!!!!!!!
"""""""

14.<not(s),{}> :- | p 15.<not(s),{}> :- | q 18.<not(s),{}> :- | r

16.<q,{}> :- | q
|

17.<q,{}> :- | not(p), r
|

41.<q,{}> :- | r

20.<not(r),{}> :- | not(r)"""""""
21.<not(r),{}> :- | q 22.<not(r),{}> :- | not(p)

|
26.<not(r),{}> :- not(p) |

|
29.<not(r),{}> :- |

34.<not(⊥),{}> :- | not(⊥)
|

35.<not(⊥),{}> :- |

Figure 5: Simplified Abdual Evaluation of a query to < P2, ∅, ∅ >

12

all true. When an answer is determined to belong to a co-unfounded set, it is made unconditionally
true. In this example the co-unfounded set removal operation creates the unconditional answer,
node 27, while Simplification operations produce nodes 28 and 29. Subsequently, Answer Clause
Resolution resolves the (unconditional) answer <not(p),∅ > :- | against the selected literal of
node 3 to create node 30 through Answer Clause Resolution, and subsequent applications of this
operation produce nodes 31-34, 36-38, 40 and 41.

We summarize some of the elements of the previous two examples. Intuitively, the distinction between
goal literals and delay literals is that goal literals are currently selected within a node or are yet to
be selected. As a result, there is an answer for S if there is a regular leaf node N in a tree for S
that has no goal literals. If N does not contain delay literals, it is an unconditional answer and S has
an abductive solution defined by the context of the abductive subgoal of N ; if N does contain delay
literals, then it is a conditional answer and the abductive context for N is not yet determined by the
evaluation to make N either true or false. Finally, a completely evaluated subgoal (Definition 3.3) that
has no answers at all is interpreted to be false for all abductive contexts. At an operational level, as
described in Definition 3.9, goal literals may be resolved away via an Answer Clause Resolution
operation, abduced, or delayed. Literals in the DelayList were not resolved away when they were
selected, but rather their resolution was postponed. Delay literals are subject to the co-unfounded
set removal operation mentioned in Example 3.3, and also to Simplification operations mentioned
in Example 3.1. Maintaining both delay literals and goal literals within an evaluation is useful as it is
necessary to identify unfounded sets of objective literals within the well-founded semantics, as well as
co-unfounded sets of objective literals within the dual form of a program. Determining (co-)unfounded
sets is expensive in practical terms, so that restricting such an operation to delay literals can form an
important optimization (cf. [11]).

The notion of a set of Abdual trees being completely evaluated was introduced in Example 3.1
to capture the concept of when a set of trees in a forest has returned all of the answers in the model
of a program. This can happen in one of two ways. First, a tree may contain an unconditional answer
whose abductive context is empty, in which case further evaluation will not produce any more minimal
abductive answers. Second, a tree may have had all possible Abdual operations performed on the
selected literal in the GoalList of each of its nodes. For this condition to occur, all possible answers
must have been returned to the selected literals so that a tree is not completely evaluated unless all
trees that it depends on (through the selected literal of each of its nodes) are completely evaluated as
well. An example of this occurs in Example 3.3, where the trees for p, q, and r are mutually dependent
and may only be evaluated together.

Definition 3.3 [Completely Evaluated] Given an Abdual forest F , a set T of Abdual trees is
completely evaluated iff at least one of the following conditions is satisfied for each tree T ∈ T :

1. T contains an unconditional answer whose abductive subgoal context is empty; or

2. For each node N in T with selected goal literal SL

• The tree for SL belongs to a set S′ of completely evaluated trees; and

13

• No New Subgoal, Program Clause Resolution, Answer Clause Resolution,
Delaying, or Abduction operations (Definition 3.9) are applicable to N .

A literal L is completely evaluated in F if the tree for L belongs to a completely evaluated set in F .
!

Finally, we turn to an example to illustrate how Abdual can evaluate queries to general abductive
frameworks.

Example 3.4 Consider the abductive framework < P3,A3, I3 >, in which P3 is the program
p :- not(q*).
q :- not(p*).

A3 = {p∗, q∗,−p∗,−q∗}, and I3 is the program
⊥ :- p constr
⊥ :- q constr
p constr :- p, -p*.
q constr :- q, -q*.

So that the (ground) integrity constraints represent an abductive interpretation of default negation.
Let the query rule be

query :- q,not(⊥).
The dual program with coherency axioms (simplified for presentation by using the transformation of
Definition A.1, which does not include folding predicates.) is shown in Figure 6.

p :- not(q*). not(p) :- q*.
q :- not(p*). not(q) :- p*.
⊥ :- p constr not(⊥) :- not(p constr),not(q constr)
⊥ :- q constr
p constr :- p, -p*. not(p constr) :- not(p)

not(p constr) :- not(-p*).
q constr :- q, -q*. not(q constr) :- not(q)

not(q constr) :- not(-q*).
query :- q,not(⊥). not(query) :- not(q).

not(query) :- ⊥.

not(-p) :- p. not(p) :- -p.
not(-q) :- q not(q) :- -q
not(-p*) :- p* not(p*) :- -p*
not(-q*) :- q* not(q*) :- -q*
not(-p constr) :- p constr not(p constr) :- -p constr
not(-q constr) :- q constr not(q constr) :- -q constr

Figure 6: Dual program for P3 ∪ {query :- q, not(⊥)} ∪A ∪ I

14

0.<query,{}> :- | query
|

1.<query,{}> :- | q, not(⊥)
|

5.<query,{-p*}> :- | not(⊥)
|

30.<query,{-p*q*}> :- |

2.<q,{}> :- | q
|

3.<q,{}> :- | not(p*)
|

4.<q,{-p*}> :- |

6.<not(⊥),{p*}> :- | not(⊥)
|

7.<not(⊥),{p*}> :- | not(p constr), not(q constr)#####
$$$$$

11.<not(⊥),{p*}> :- | not(q constr)#####
$$$$$

15.<not(⊥),{p*,q*}> :- | 21.<not(⊥),{p*}> :- |

27.<not(⊥),{q*}> :- | not(q constr)#####
$$$$$

28.<not(⊥),{q*,p*}> :- | 29.<not(⊥),{q*}> :- |

8.<not(p constr),{}> :- | not(p constr)#####
$$$$$

9.<not(p constr),{}> :- | not(-p*) 22.<not(p constr),{}> :- | not(p)
| |

10.<not(p constr),{p*}> :- | 26.<not(p constr),{q*}> :- |

23.<not(p),{}> :- | not(p)
|

24.<not(p),{}> :- q*|
|

25.<not(p),{q*}> :- |

12.<not(q constr),{}> :- | not(q constr)#####
$$$$$

13.<not(q constr),{}> :- | not(-q*) 16.<not(q constr),{}> :- | not(q)
| |

14.<not(q constr),{q*}> :- | 20.<not(q constr),{p*}> :- |

17.<not(q),{}> :- | not(q)
|

18.<not(q),{}> :- p*|
|

19.<not(q),{p*}> :- |

Figure 7: Simplified Abdual evaluation of a query to < P3,A3, I3 >.

15

Figure 7 illustrates a forest of trees created by an Abdual evaluation of this initial query. For
purposes of space, it does not depict derivations stemming from coherency axioms. When an abductive
framework contains a non-trivial set of abducibles, provision must be made for when the selected literal
of a given node is an abducible, as well as for propagating abducibles among abductive subgoals. In
the first case, if the selected literal of a node N is an abducible, and the addition of the selected
literal to the context of the abductive subgoal of N does not make the context inconsistent (Definition
2.6), an Abduction operation is applicable to N . For instance, Abduction operations are used to
produce nodes 25 and 19. The figure also illustrates cases in which abducibles are propagated through
Answer Clause Resolution. Node 5 is produced by resolving the answer <q,{-p*}> :- | against
the selected literal, q of node 1, to produce the (consistent) context {−p∗}. Abducibles therefore differ
from delay literals in that the abducibles are propagated into the context of an abductive subgoal,
while delayed literals are not propagated into delay lists. Propagating abducibles through Answer
Clause Resolution operations is common in this derivation, producing in a similar manner, nodes
20, 4, 11, 27, 15, 21, 28, 29, 9, 26, and 14.

Certain of these nodes are created using the coherency axioms, which are not shown in Figure 7.
For instance in producing node 4, <q,{-p*}> :- |, a New Subgoal operation creates a new tree
for the selected literal, not(p∗) of node 3. This tree uses the rule not(p*) :- -p* for Program
Clause Resolution, and then abduces -p*, propagating the abducible to the context of node 4.
In propagating abducibles, the Answer Clause Resolution operation enforces the restriction that
the context of the answer must be consistent with the context of the abductive subgoal of the node
to which the answer is returned. For instance, of the two unique abductive solutions to not(⊥) only
one can be returned to the node <query,{-p*}> :- | not(⊥), namely <not(⊥),{q*}>.

The final definitions for Abdual are now provided, beginning with the unfounded and co-
unfounded sets.

3.1 Unfounded and Co-unfounded Sets

One of the ideas behind of the well-founded semantics of normal programs is to assign the value of
false to atoms that are contained in unfounded sets. Intuitively these sets can be seen as including
atoms whose derivations lead to positive loops or to infinite chains of dependencies among subgoals.
Unfounded sets for extended logic programs are defined as follows:

Definition 3.4 [Unfounded Set of Objective Literals] Let P be a ground extended logic pro-
gram, and I a coherent interpretation of P . Then a set of objective literals S ⊆ literals(P) is an
unfounded set of P with respect to I if for each rule rs with head H ∈ S one of the following conditions
hold:

1. for some body literal Li in rs, the default conjugate of Li is in I.

2. for some positive body literal Li in rs, Li ∈ S.

A literal that makes either condition true is called a witness of unusability for rule rs with respect to
I. !

16

A witness of unusability in I may be a literal that is false in I, or a positive literal whose proof
depends on positive literals that are neither contained in I nor are provable from literals in I. For
instance, in the program {p :- q, q :- p} both p and q are unfounded when I = ∅. In a dual program,
there is also the dual notion of a co-unfounded set of literals.

Definition 3.5 [Co-unfounded set of literals] Let P be a ground extended program, A a set
of abducibles, and I a coherent interpretation of dual(P,A). Then a set of negative literals S ⊆
literals(dual((P,A)) is a co-unfounded set with respect to I if for each H ∈ S, there is a rule
H :- Body such that for each Li ∈ Body:

1. Li is true in I; or

2. Li ∈ S.

!

Just as unfounded sets of objective literals are false in a program, co-unfounded sets of negative
literals are true in the dual of a program (cf. Lemma A.1). Because any selected negative literal can be
delayed, Abdual need only take account of co-unfounded sets of literals that occur in DelayLists of
nodes. For instance, evaluation of the program in Example 3.3 required detection of a co-unfounded set
among literals in the DelayLists of nodes 24,25, and 26. A co-unfounded set of answers corresponds
to a co-unfounded set of literals that arises in a Abdual evaluation, and is defined as:

Definition 3.6 [Co-unfounded Set of Answers] Let F be an Abdual forest, and S a non-empty
set of answers in F . Then S is a co-unfounded set in F iff

1. Each literal Si, such that < Si, Ci > is the abductive subgoal of an answer in S, is a completely
evaluated negative literal. Further, Si is contained in the DelayList of some answer in S.

2. The set
Context =

⋃
{Ci| < Si, Ci > :- DL| is an answer in S}

is consistent; and

3. For each answer < Si, Ci > :- DLi| ∈ S

(a) DLi is non-empty; and

(b) for each Sj ∈ DLi, there exists an answer < Sj , Contextj > :- DLj | ∈ S.

!

The requirement in condition 1 of Definition 3.6 that the literals be completely evaluated is for
convenience, so that an evaluation need not detect co-unfounded sets of answers when more direct
derivations may still be possible.

Analogous to a co-unfounded set of answers are the non-supported objective literals. Intuitively,
non-supported literals in an Abdual forest correspond to unfounded objective literals under a given
interpretation.

17

Definition 3.7 [Supported Objective Literals] Let F be a forest, and S a positive literal that
is the root goal for a tree T in F . Then S is supported in F iff

1. T is not completely evaluated; or

2. T contains an answer < S,Context > :- DL| in T with no positive delay literals in DL; or

3. T contains an answer < S, Context > :- DL| in T such that, every positive delay literal L1

in DL is supported in F .

!

A tree in a forest is thus supported if it is not completely evaluated, if it contains an unconditional
answer, if it contains an answer with a delayed negative literal, or if it contains an answer containing
positive literals all of which are themselves supported. The Simplification operation of Definition 3.9
removes an answer of an unfounded literal from a forest by creating a failure node as a child of the
answer.

3.2 Abdual Evaluations and Operations

An Abdual evaluation consists of a (possibly transfinite) sequence of Abdual forests 7. In order to
define the behavior of an Abdual evaluation at a limit ordinal, we define a notion of a least upper
bound for a set of Abdual trees. Any rooted tree can be viewed as a partially ordered set in which
each node N is represented as {N,P} in which P is a tuple representing the path from N to the root
of the tree. When represented in this manner, it is easily seen that when T1 and T2 are rooted trees,
T1 ⊆ T2 iff T1 is a subtree of T2, and furthermore, that if T1 and T2 have the same root, their union can
be defined as their set union, for T1 and T2 taken as sets. However, we will sometimes abuse notation
in our definitions and refer to trees using the usual graph-theoretic terminology.

Definition 3.8 [Abdual Evaluation] Let < P,A, I > be an abductive framework and Q a query.
An Abdual evaluation E of Q to < P,A, I > is a sequence of Abdual forests F0,F1, ...,Fn operating
on the ground instantiation of dual((P ∪ I ∪ {query :- not(⊥), Q}),A) such that:

• F0 is the forest containing the single tree, < query, ∅ > :- |query,

• For each successor ordinal n + 1, Fn+1 is obtained from Fn by applying an Abdual operation
from Definition 3.9.

• For each limit ordinal α, Fα is defined such that T ∈ Fα iff

– The root node of T , < S, ∅ > :- |S is the root node of some tree in a forest Fi, i < α;

– T = ∪i<α({Ti|Ti ∈ Fi and Ti has root < S, ∅ > :- |S)

If no operation is applicable in Fn, then it is called a final forest of E . !

7Our definition here follows that of [33] for generalized SLG trees.

18

In accordance with Definition 3.8, the following Abdual operations operate on dual programs.

Definition 3.9 [Abdual Operations] Let Fn be an Abdual forest for an evaluation of a query
Q to an abductive framework < P,A, I >, and suppose n + 1 is a successor ordinal. Then Fn+1 may
be produced by one of the following operations

1. New Subgoal: Let Fn contain a non-root node

N =< S, Context > :- DL|L,GoalList.

If L is not an abducible and Fn contains no tree with root goal L, add the tree: < L, ∅ > :- |L.

2. Program Clause Resolution: Let Fn contain a root node

N =< S, ∅ > :- |S

and let there be a clause S :- Body in the dual program. If in Fn, N does not have a child:

Nchild =< S, ∅ > :- |Body

then add Nchild as a child of N .

3. Answer Clause Resolution: Let Fn contain a non-root node

N =< S, Context1 > :- DL0|L,Body

and suppose that Fn contains an answer node < L,Context2 > :- DL1|, such that Context1 ∪
Context2 is consistent. Let DL2 = DL0, L if DL1 is not empty, and DL2 = DL0 otherwise.
Finally, if in Fn, N does not have a child

Nchild =< S, Context1 ∪ Context2 > :- DL2|Body

then add Nchild as a child of N .

4. Delaying: Let Fn contain a non-root leaf node

N =< S, Context > :- DL|not(L), Body

where L is not an abducible, and where Fn contains a tree for not(L), but no answer of the form
< not(L), ∅ > :- |. Then add: < S,Context > :- DL,not(L)|Body as a child of N .

5. Simplification: Let N =< S, Context1 > :- DL| be a node for a tree with root goal S, and
let D be a delay literal in DL. Then

• if Fn contains an unconditional answer node < D,Context2 > :- |, and if Context1 ∪
Context2 is consistent, let DL1 = DL−D. If

Nchild =< S,Context1 ∪ Context2 > :- DL1|

is not a descendant of N in F , add Nchild as a child of N .

19

• if the tree for D is completely evaluated and contains no answers whose context is consistent
with C1; or if D is a positive literal that is non-supported, then create a child fail of N .

6. co-unfounded set removal: Let

N =< S, ContextS > :- DL|

be an answer in Fn, such that there is a minimal co-unfounded set of answers S in Fn containing
N together with answers < Li, Contexti > :- DLi| for all literals Li ∈ DL. Let

Contextunion = ContextS ∪
⋃

<Li,Contexti> :- DLi∈S
Contexti

Then if N does not have a child Nchild =< S, Cunion > :- |, create a child Nchild of N .

7. Abduction: Let
N =< S, Context > :- DL|A,Body

where A is an abducible and suppose that {A}∪Context is consistent. Finally, assume that in
Fn, N does not have a child

Nchild =< S, Context ∪ {A} > :- DL|Body

Then add Nchild as a child of N .

!

For a discussion of the similarities between definitions of Abdual and those of SLG see Section 5.

3.3 Soundness and Completeness of Abdual

The first result on the correctness of Abdual concerns the correctness of the dual transformation
itself (Definition 3.1). To show this, we introduce fixed point operators for dual programs that are
analogous to those of Section 2.2, and show that they can be used to construct the well-founded
semantics. As before, there are two sets of operators. The first operators form the inner fixed point
for dual programs, and are analogous to the operators of Definition 2.1.

Definition 3.10 For a ground program P and set A of abducibles, let dual(P,A) be the dual
program formed by applying the dual transformation to P and A. Let O1 be a set of ground objective
literals formed over dual(P,A) and L1 be a set of ground negative literals formed over dual(P,A).

• Tddual(P,A)
I (O1) = {O|O is an objective literal and there is a clause O :- L1, ..., Ln ∈

dual(P,A) and for each 1 ≤ i ≤ n,Li ∈ I or Li ∈ O1}

• Fddual(P,A)
I (L1) = {not(O)|O is an objective literal and there is a clause not(O) :- L1, ..., Ln ∈

dual(P,A) and for each 1 ≤ i ≤ n,Li ∈ I or Li ∈ L1}

20

!

The operator Tddual(P,A)
I is essentially the same as the operator TxP

I of Definition 2.1; however
the operator Fddual(P,A)

I differs significantly from its analogue, since negative literals are defined by
clauses in the dual program that are to be made true. As before, these operators can be shown to be
monotonic by the usual methods, leading to the following operator which is used in the outer fixed
point.

Definition 3.11 For a ground program P and set A of abducibles, let dual(P,A) be the dual
program formed by applying the dual transformation to P and A. Let

Sdual(P,A) = {not(O)|not(O) ∈ literals(dual(P,A))}

ωdual(P,A)
d is an operator that assigns to every interpretation I1 of P a new interpretation I2 such that

I2
T = lfp(TdP

I1(∅))
I2

F = gfp(FdP
I1(Sdual(P,A)))

!

In the above definition, the use of the greatest fixed point of the operator FdP
I1(Sdual(P,A)) captures

the fact that co-unfounded sets need to be made true when evaluating the dual program. The following
theorem shows the correctness of the dual transformation.

Theorem 3.1 For a ground program P and empty set of abducibles, let dual(P, ∅) be the dual program
formed by applying the dual transformation to P . Then for any literal L ∈ literals(P),

L ∈ WFS(P) ⇐⇒ L ∈ lfp(ωdual(P,∅)
d)

where the least fixed point of lfp(ωdual(P,∅)
d) is taken with regard to the information ordering of inter-

pretations.

Recall that for a query Q to an abductive framework, an Abdual evaluation as stated in Defini-
tion 3.8 represents solutions to Q that are consistent with the integrity rules by means of a query rule
query :- Q,not(⊥). The following theorem shows that the Abdual operations, acting on the dual
program correctly compute abductive solutions.

Theorem 3.2 Let < P,A, I > be an abductive framework, and E be an Abdual evaluation of Q
against < P,A, I >. Then

• E will have a final forest Eβ;

• if < query, Set > :- | is an answer in Eβ, σ =< P, A, Set, I > is an abductive solution for
< P,A, I >;

• if < P,A, Set, I > is a minimal abductive solution for Q, then < query, Set > :- | is an answer
in Eβ.

Proof: The proof is contained in the Appendix. ♦

21

3.4 Finite Termination and Complexity of Abdual for Extended Programs

Termination of Abdual evaluations is guaranteed under the following conditions.

Theorem 3.3 Let < P,A, I > be an abductive framework such that P and I are finite ground extended
programs, and A is a finite set of abducibles. Let E be an Abdual evaluation of a query Q against
< P,A, I >. Then E will reach a final forest after a finite number of Abdual operations.

Proof: The proof is contained in the Appendix. ♦

It is known that the problem of query evaluation to abductive frameworks is NP-complete, even
for those frameworks in which entailment is based on the well-founded semantics [14]. More precise
results can be obtained for Abdual, as shown in the following theorem, which uses a summation over
abductive contexts (using of the combinatorial selection function “choose”) to determine the cost of
an Abdual evaluation. The following theorem relies on a definition of size that is made precise in
Definition A.4.

Theorem 3.4 Let F be the final forest in an Abdual evaluation E of a query Q against a finite
ground abductive framework < P,A, I >. Let Ccontext be the maximal cardinality of the context of
any abductive subgoal in F , and Cabducibles be the cardinality of A. Then F can be constructed in
M × 2× size(dual((P ∪ I),A)) steps, where

M =
∑

i≤Ccontext

(
Cabducibles

i

)

Proof: The proof is given in the Appendix. ♦

Intuitively, this theorem states that the complexity of an Abdual evaluation is proportional to
the maximal number of abducibles in any abductive subgoals, and to the number of abducibles in
the framework. If the number of either of these factors can be reduced, then the complexity of the
evaluation will be reduced. Since the size of a dual program is linear in the size of an abductive
framework (cf. Lemma A.5), a corollary of Theorem 3.4 is that if the set of abducibles and integrity
rules are both empty, the final forest of a Abdual evaluation requires a number of operations that
is linear in the size of the input program. It is important to note, however, that Abdual operations
may not be implementable with constant cost. In particular, some operations such as co-unfounded
set removal or removal of a non-supported answers may require a cost that is linear in the size of a
program so that the cost of evaluating a program with empty abducibles and integrity rules may not
be linear but will remain polynomial (see [11] for an extended discussion of costs of tabling normal
programs).

Theorem 3.4 can be used to show that abduction over the well-founded semantics is fixed-parameter
tractable [12]. Recall that a decision problem Pr can be defined as a question to be answered with
a “yes” or “no”. This question has several input parameters. If particular values of these input
parameters I are given, an instance of the problem, PrI is given. Informally, a parameterized decision
problem Pr(k) (and its instances) can be defined by designating a certain input parameter k so that
its complexity is an explicit function of this parameter. With this background, the following definition

22

is adapted from [18].

Definition 3.12 Let Pr(k)I be an instance of a parameterized decision problem Pr(k) and PrI

the instance of the non-parameterized version of Pr(k). Then Pr(k) is (strongly uniformly) fixed-
parameter tractable if there is an algorithm that decides whether Pr(k)I is a yes-instance of Pr(k)
in time f(ks)O(nc) where n is the size of PrI , ks is an integer parameter, c is a constant and f a
recursive function. !

In order to show that abduction over the well-founded semantics is fixed-parameter tractable,
consider the decision problem of whether Q is contained in the abductive solution (Definition 2.8)
to a finite, ground abductive framework, < P, A, I >. Then, since Ccontext of Theorem 3.4 is not
greater than Cabducibles, ks can be set to Cabducibles and f(ks) the summation, M , in Theorem 3.4 with
Ccontext replaced by Cabducibles. Furthermore, size(dual((P ∪ I),A)) is linear in the size of P ∪ A ∪ I
by Lemma A.5, so that when the maximal size of an abductive context is factored out, evaluation of
Q requires a number of Abdual operations linear in the size of P ∪A ∪ I.

The above considerations lead to the following Theorem.

Theorem 3.5 Let Q be a query to a finite ground abductive framework < P,A, I >, and let Cabducibles

be the size of the set A. Then the problem of deciding whether Q is contained in an abductive solution
to < P, A, I > is fixed-parameter tractable with respect to Cabducibles.

There are, of course other means for parameterizing abduction over the well-founded semantics.
For instance, an estimate of the maximum cardinality of contexts of abductive subgoals could be made
via a suitably defined dependency graph, so that the input parameter Cabducibles could be replaced by
this parameter. Alternately, Abdual might be adapted so that a restriction were placed on the size
of all abductive contexts. Such an approach might be relevant to using Abdual to solve model-based
diagnosis problem, where attention was restricted to identifying single or double faults in the model.

4 Construction of Generalized Stable Models through Abdual

The three-valued abductive frameworks of Section 2 are not the only semantics used for abduction:
Generalized Stable Models [22] provide an important alternative. In [7] it was shown that the abductive
framework of Section 2 has the same expressive power as generalized stable models. In this section,
we reformulate these results to show that Abdual can be used to evaluate abductive queries over
generalized stable models. By allowing all positive literals to be inferred through abduction, Abdual
can be used to construct partial stable interpretations (Definition 2.4). By choosing appropriate
integrity constraints, these interpretations can be constrained to be consistent and total. We begin by
adapting the concept of a generalized stable model to the terminology of Section 2.

Definition 4.1 [Generalized Partial Stable Interpretation and Model] Let < P,A, I > be
an abductive framework, with a scenario σ =< P,A,B, I >. Then M(σ) is a generalized partial stable
interpretation of < P,A, I > if

• M(σ) is a partial stable interpretation of < P ∪ PB ∪ I >; and

23

• ⊥ is false in M(σ).

If in addition M(σ) is an answer set of < P ∪PB ∪ I >, σ is a generalized stable model of < P,A, I >.
!

Generalized stable models can be computed by adding additional program rules, abducibles, and
integrity constraints to abductive frameworks and computing the solution to these frameworks as per
Definition 2.8.

Definition 4.2 Let < P,A, I > be an abductive framework. Then let S be the smallest set
containing a new objective literal, abd O, not in literals(P ∪ I ∪ A) for each objective literal O in
literals literals(P ∪ I ∪A). A literal formed over an element of S is called a shadow literal. Let

R = O :- Body

be a rule in P ∪ I. Then a shadow rule for R is a rule

Rshadow = O :- Bodyabd

in which each literal of the form not(O′) in Body is replaced by not(abd O′). The shadow rules are
denoted Shadow(P) for a program P . Corresponding to these shadow rules are shadow constraints
(Ishadow) of the form

⊥ :- O, not(abd O).
⊥ :- not(O), abd O.

for each abd O such that not(abd O) ∈ literals(Shadow(P)).

The consistency constraints (Iconsist) for < P,A, I > consist of the shadow constraints along with
integrity rules of the form

⊥ :- O,not(O).

for O ∈ literals(P ∪ I).

The totality rules (Itotal) for < P,A, I > have the form

⊥ :- not(definedO)
definedO :- O
definedO :- not(O)

for each O ∈ literals(P ∪ I). !

Example 4.1 Consider the abductive framework consisting of the program P3:
p :- not q.
q :- not p.

with an empty set of abducibles and integrity constraints. In order to compute the partial stable
interpretations of P3 via abductive solutions, shadow rules must be added along with integrity and
consistency constraints. For simplicity, we ignore coherency rules below. The shadow rules of P ,
Shadow(P) are

24

p :- not abd q.
q :- not abd p.

While the shadow constraints, Ishadow, include the rules
⊥ :- p, not abd p
⊥ :- q, not abd q
⊥ :- not p, abd p
⊥ :- not q, abd q

and the consistency constraints, Iconsist, include all instantiations of the schemata
⊥ :- O, not O
⊥ :- O, -O

for O ∈ literals(P ∪ I). Let A be the set {abd O or − abd O|not(abd O) ∈ literals(Shadow(P)}.
Then the abductive framework

< (P ∪ Shadow(P)), A, (Ishadow ∪ Iconsist) >:

has solutions
σ1 = {abd q, abd p}
σ2 = {−abd q}
σ3 = {−abd p}

These solutions correspond to the following generalized partial stable interpretations of < P, ∅, ∅ >,
whose restrictions to the atoms of P are:

M(σ1)|{p,q} = ∅
M(σ1)|{p,q} = {p}
M(σ1)|{p,q} = {q}

Note that, in accordance with the definitions of Section 2, positive and negative objective literals are
abduced, and coherency propagates negation from abduced objective literals to negative literals. In
order to derive the generalized stable models of < P, ∅, ∅ >, the totality constraints of Definition 4.2
must also be added. In the above example, the totality constraints would prevent the first scenario,
σ1, from being an abductive solution.

Example 4.1 illustrates the following theorem.

Theorem 4.1 Let F =< P,A, I > be an abductive framework, and σ =< P, A,B, I > be an abductive
scenario for F . Let Shadow(P ∪ I) be the set of shadow rules for P ∪ I, and let Ishadow, Iconsist, and
Itotal be the shadow, consistency, and totality constraints for F as in Definition 4.2. Let Ashadow =
{abd O|not(abd O) ∈ Shadow(P ∪ I)}. Then

1. M(σ) is a generalized partial stable interpretation of < P,A, I > iff there exists an abductive
solution

σ′ =< (P ∪ Shadow(P ∪ I)), (A ∪Ashadow),B, (I ∪ Ishadow) >

such that M(σ) = M(σ′).

25

2. M(σ) is a generalized stable model of < P, A, I > iff there exists an abductive solution

σ′ =< (P ∪ Shadow(P ∪ I)), (A ∪Ashadow),B, (I ∪ Ishadow ∪ Iconsist ∪ Itotal >

such that M(σ) = M(σ′).

Proof: This result is straightforward from Definition 4.1 and the results of [7]. ♦

Theorem 4.1 has several implications. First, since the paraconsistent well-founded model of a pro-
gram is a partial stable interpretation, use of the shadow program and constraints includes computation
of the paraconsistent well-founded model as a special case. In addition, because Theorem 3.2 states
that Abdual can be used for query evaluation to abductive frameworks based on WFS, Abdual can
be used to compute queries to generalized partial stable interpretations and generalized stable models.
The cost of this computation, of course, includes the cost of potentially evaluating shadow rules and
the various additional integrity constraints. It is known that the problem of deciding the answer to
a ground query to an abductive framework is NP-complete when the entailment method is based on
the well-founded semantics [14], as is the problem of deciding whether an abductive framework has a
generalized stable model. The lack of polynomial data complexity of Abdual for arbitrary abductive
frameworks is therefore understandable, given the power of these frameworks. Finally, we note that
computation of consistent answer sets can also be obtained via the transformation in Definition 4.2.

5 Discussion

5.1 A Meta-interpreter for Abdual and its Applications

Currently the Abdual system is implemented on top of the XSB System [34]. It consists of a prepro-
cessor for generating the dual program, plus a meta-interpreter for the tabled evaluation of abductive
goals, and is available from http://www.cs.sunysb.edu/~tswift. This meta-interpreter has the ter-
mination property of Theorem 3.3, but does not have the complexity property of Theorem 3.4. Work
is currently being done in order to migrate into the XSB engine some of the tabling mechanisms of
Abdual now taken care by the meta-interpreter, such as the co-unfounded set removal operation.

Psychiatric Diagnosis Abdual was originally motivated by a desire to implement psychiatric
diagnosis [16]. Knowledge about psychiatric disorders is codified by DSM-IV [10] sponsored by the
American Psychiatric Association. Knowledge in DSM-IV can be represented as a directed graph with
positive links to represent relations from diagnoses to sub-diagnoses or to symptoms. These graphs
also have negative links, called exclusion links that represent symptoms or diagnoses that must shown
false in order to derive the diagnosis. The DSM-IV graph requires both abduction and non-stratified
negation, as can be seen by considering the diagnosis of Adjustment Disorder ([10], pg. 626). One
criterion for this diagnosis is

Once the stressor (or its consequences) has terminated, the symptoms do not persist for more than
an additional 6 months.

26

Thus, to diagnose a patient as presently undergoing adjustment disorder, a physician must hypothesize
about events in the future — a step naturally modeled with abduction. Adjustment disorder requires
an exclusion criterion

The stress-related disturbance does not meet the criteria for another specific Axis I disorder and is
not merely an exacerbation of a preexisting Axis I or Axis II disorder.

that admits the possibility of a loop through negation between adjustment disorder and another
diagnosis. This can in fact occur, for instance with Alzheimer’s Dementia ([10], pg. 142-143). If,
as far as a physician can tell, a patient fulfills all criteria for adjustment disorder besides the above
criterion, as well as all criteria for Alzheimer’s (besides the criterion that the disturbance is not better
accounted for by another disorder), the physician will essentially be faced with the situation:

The patient has an Adjustment Disorder if he does not have Alzheimer’s Dementia, and has
Alzheimer’s Dementia of the patient does not have an Adjustment Disorder.

Use of abduction over DSM-IV must therefore handle non-stratified programs. The current user
interface of the Diagnostica system (http://medicinerules.com) uses abduction in a simple but
clinically relevant way to allow for hypothetical diagnosis: when there is not enough information
about a patient for a conclusive diagnosis, the system allows for hypothesizing possible diagnosis on
the basis of the limited information available.

Model-based Diagnosis Abdual has also been employed to detect specification inconsistencies
in model-based diagnosis system for power grid failure [4]. Here abduction is used to attempt to
abduce hypothetical physically possible events that might cause the diagnosis system to come up with
a wrong diagnosis, violating the specification constraints. It is akin to model verification: one strains
to abduce a model, comprised of abduced physical events, which attempts to make the diagnostic
program inconsistent. If this cannot be done, the power grid can be certified to be correct. The
attempt is conducted by trying to abduce hypothetical real world events which would lead to a proof
of falsum, the atom reserved for the purpose of figuring in the heads of integrity constraints having
the form of denials.

In this case, the application concerns a real electrical power grid network in Portugal, which is being
monitored in real time by a pre-existing model-based logic programming diagnosis system (SPARSE)8

that receives time-stamped event report messages about the functioning or malfunctioning of the grid.
The aim of our abductive application was to certify that a given expert system diagnosis module
was provably correct with respect to foreseen physical events. To wit, the diagnosis logic program
was executed under Abdual in order to establish that no sequence of (abduced) physically coherent
events (i.e. monitoring messages) could be conducive to a diagnosis violating the (temporal) constraints
expected of a sound diagnosis.

This approach proved to be feasible, though it required us to introduce a constructive negation
implementation of Abdual, not yet reported elsewhere, because the abduced message events had to
be time-stamped with temporally constrained conditions with variable parameters, and often these

8cf. http://www.cim.isep.ipp.pt/Projecto-SATOREN/

27

occurred under default negated literals (and hence the need for applying constructive negation on
those variables), to the effect that no supervening event took place in some time related interval. The
system, the application, and its use are described in detail in [4].

Four steps were involved in this process:

• Translation of the SPARSE rules into a syntactical form suitable for abduction.

• Preprocessing of the translated rules for use by our Abdual implementation.

• Obtaining abductive event solutions for diagnosis goals.

• Checking for physical consistency of the abductive solutions.

The most difficult and critical step was the first one, as the pre-existing SPARSE expert system
rules had been written beforehand by their developers, with no abductive use in mind at all. Specific
tools were developed to automate this step. The pre-existing Abdual implementation (comprising
constructive negation) mentioned at step three (which required minimal adaptation), and the dual-
ization preprocessor, mentioned at step two, both functioned to perfection. Step four was enacted by
constructing tools to automate the analysis of the physical meaningfulness of the abduced solutions.

A number of open problems worthy of exploration remain in this class of problems, susceptible of
furthering the use of the general abductive techniques employed.

Reasoning about Actions Abdual has been applied as well to model and reason about actions
[3]. For this the Abdual system was integrated with Dynamic Logic Programming (DLP) Updates
system [1].

DLP considers sequences of logic programs P1⊕P2⊕ . . . Pn, whose intended meaning is the result
of updating the logic program P1 with the rules in P2, then updating the resulting knowledge base
with . . . , and then updating the resulting knowledge base with Pn. In [1] a declarative semantics
for DLP is presented. In order to ease the implementation of DLP, [1] also presents an alternative,
equivalent, semantics which relies on a transformation of such sequences of programs into a single
logic program in a meta-language. This transformation readily provides an implementation of DLP
(obtainable via http://centria.di.fct.unl.pt/~jja/updates). For this implementation the use
of tabling is of importance. In fact, the transformation relies on the existence of inertia rules for
literals in the language, stating that some literal is true at some state if it was true before and is
not overridden at that present state. Tabling is important for the efficiency of the implementation by
avoiding repetition of computation for past states.

DLP has been used in applications for reasoning about actions [3]. In this setting actions are coded
as logic programs updates which may have pre-conditions and post-conditions. For these applications
the possibility of having programs with loops over negation is crucial. In fact, rules involved in such
loops are used to model for instance unknown initial conditions and unknown outcomes of actions. For
a concrete example, if one wants to state that initially it is not known whether or not the individual
a was alive, one may write, in the first program P1, the rules:

28

alive(a) ← not¬alive(a)
¬alive(a) ← not alive(a)

Reasoning about actions in a scenario is performed by a well-founded evaluation of the sequence
of updated programs. Abductive reasoning is used for planning in the actions scenario. In fact, in
this update setting, abducing updates (which code actions) in order to fulfill some goal of some future
state amounts to plan which actions need to be execute in order to make that goal true. For this,
a system with tabling, ability to deal with programs with loops over negation, and abduction was
needed. Abdual includes all these ingredients, and was successfully employed for this purpose.

5.2 Comparisons with Other Methods

The use of dual programs to compute the well-founded semantics of normal programs was introduced
in [27], but this method has several limitations compared with Abdual: it does not handle abduction
or explicit negation; and it can have exponential complexity for some queries. Many of the definitions
of Abdual are derived from SLG [5] (as reformulated in [33]) which computes queries to normal
programs according to the well-founded semantics. For normal programs, Abdual shares the same
finite termination and polynomial complexity properties as SLG. Abdual adds the capability to
handle abduction (by adding abductive contexts to goals, modifying operations on forests to deal with
such contexts, and by adding the Abduction operation), adds the use of the dual transformation
for extended programs and the co-unfounded set removal operation, but Abdual does not allow
evaluation of a non-ground program as does SLG. Unfortunately, performance trade-offs of Abdual
and SLG are not yet available, due to the lack of an engine-level implementation of the co-unfounded
set removal operation of Abdual.

The main contribution of Abdual is its incorporation of abduction. We are not aware of any
other efforts that have added abduction to a tabling method. Indeed, it is the use of tabling that is
responsible for the termination and complexity results of Sections 3.4 and 4. Furthermore, Abdual
evaluations are confluent in the sense that Theorem 3.2 holds for any ordering of applicable Abdual
operations. The complexity and termination for WFS distinguishes Abdual from approaches such as
the IFF proof procedure [15] and SLDNFA [9]. At the same time, these approaches do allow variables
in rules which Abdual does not. The methods of [6] and [19] compute abductive explanation based
on some form of two-valued rule completion for non-abducible predicates (the former based on Clark’s
completion, and the latter based on the so-called transaction programs). This is similar to our use of
the dual program9. In both methods, abductive explanations are computed by using the only-if part
of the completion in a bottom-up fashion. However, both methods have a severe restriction on the
class of programs: they apply generally only to acyclic programs. This restriction is due to their being
based on completion so that from an Abdual perspective, these methods do not require operational
analogs to the Delaying and Simplification operations to evaluate unfounded sets of objective
literals, or the co-unfounded set removal operation to evaluate co-unfounded sets. The pay-off of

9Note that the dual for non-abducible predicates in acyclic programs is the same as the completion.

29

adding these operations is that Abdual is based on the well-founded semantics, and does not impose
any restriction on cycles in programs.

The restriction on cycles is also not imposed by methods based on the stable models semantics,
such as [30, 31, 23]. As Abdual, the method of [30] also requires a prior program transformation. In
this case, an abductive programs is translated into a normal logic program, such that the stable models
of the latter correspond to the abductive solutions of the former. This method has some drawbacks.
Most importantly, by doing so, one may obtain abductive solutions with atoms that are not relevant
for the abductive query. To avoid this drawback, in [31] the method is improved by incorporating
a top-down procedure to determine the relevance of the abducible to the query. The ACLP system
of [23] is based on Generalized Stable Models, but it also integrates in a single framework abduction
and constraint programming. Again the complexity results for WFS, when compared to that for the
stable models semantics, distinguishes Abdual from these approaches.

We have shown in this article how ABDUAL can be mustered to compute Generalized Stable
Models, and thus Stable Models in particular. Some words are in order on comparing it to other
Stable Model implementations, such as DLV [13], and S-Models [32]. These implementations are
specialized toward Stable Model evaluation, and are restricted to finite ground programs without
functional symbols, though some preprocessors can help to do the grounding where possible and
domain information is available. Naturally, their efficiency for the specific purpose of computing
Stable Models is better than that of a general procedure like ABDUAL, even though the complexity
remains the same.

Abduction can also be carried out by those specialized implementations by means of known program
transformations, such as the ones shown in [24, 29]. Though one common problem to those approaches
is that, because of the non-relevancy character of Stable Models, and also of abducibles being two-
valued in them, all possible (non-minimal) abductions are potentially generated, and not just those
relevant for a top goal.

With respect to stratified programs, where the well-founded and stable models semantics coincide,
ABDUAL is able to deal with function symbols and non-ground programs in infinite domains, and
perform demand driven abduction. Moreover, if abduction is not after all required, then the complex-
ity, we have seen, remains polynomial, and no unnecessary abductions are made, in contradistinction
to the two-valued approach, which requires for all abducibles to be abduced either as true or as false.

In summary, the two approaches are designed for different purposes, and each should excel in its
own territory. Proctracted attempts to have ABDUAL compute a relevant residual program that
would be passed on to an implementation of stable models have failed, as most of the work ends up
having to be done on the ABDUAL side, without the desired sharing of specialized effort.

Generalizing Abdual to Programs with Variables Generalizing Abdual for non-ground cov-
ered programs10 with ground queries is not a difficult task: as in Clark’s completion, consider rule
heads with free variables, and explicitly represent unifications in the body; the dual is then obtained
from these rules as usual, where the negation of = is \=. Allowing non-ground queries in covered

10A program is covered iff all variables appearing in the body of rules also appear in the corresponding head.

30

programs can be obtained by considering as abducibles all terms of the form X \= T, and by adding
an appropriate method for verifying consistency of sets of such inequalities. Such a method could
greatly benefit from an integration of Abdual with constraint programming, where the consistency of
the inequalities would be checked by a constraint solver. The integration of abduction and constraint
programming, as is already done for other systems (viz. SLDNFAC [26] and ACLP [23]), is in our
research agenda.

The most difficult step in order to fully generalize Abdual to deal with non-ground programs is to
abandon the restriction of covered programs. This is so because free variables in the body of program
rules introduce universally quantified variables in the body of rules in the dual program — a problem
similar to that of floundering in normal programs. Work is underway to generalize Abdual to deal
with non-ground non-covered programs using constructive negation methods.

A practical advantage of Abdual is that it allows the easy propagation of abducibles through both
positive and negative literals. As an abductive answer is returned to an abductive subgoal, contexts
can be immediately checked for consistency, regardless of whether the subgoal is positive or negative,
and regardless of how many levels of negation were needed to produce the answer.

Acknowledgements This work was partially supported by NSF grants CCR-9702581, EIA-
97-5998, and INT-96-00598. The authors also thank PRAXIS XXI projects FLUX and FLAD-NSF
project REAP for their support. Finally, the presentation of this paper was considerably improved
with the help of detailed comments from an anonymous reviewer.

References

[1] J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic updates of
non-monotonic knowledge bases. Journal of Logic Programming, 45(1-3):43–70, 2000.

[2] J. Alferes, L. M. Pereira, and T. Swift. Well-founded abduction via tabled dual programs. In
International Conference on Logic Programming, pages 426–440, 1999.

[3] J. J. Alferes, J. A. Leite, L. M. Pereira, and P. Quaresma. Planning as abductive updating. In
D. Kitchin, editor, Procs. of AISB 2000, 2000.

[4] J.F. Castro and L.M. Pereira. Abductive validation of a power-grid diagnoser, 2002. English
version of Master’s thesis Verificação Abdutiva de um Sistema de Diagnóstico Baseado em Regras.
Available at http://www.cs.sunysb.edu/˜tswift.

[5] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs. Journal
of the ACM, 43(1):20–74, January 1996.

[6] L. Console, D. Dupré, and P. Torasso. On the relationship between abduction and deduction.
Journal of Logic and Computation, 1(5):661–690, 1991.

31

[7] C. Damásio and L. M. Pereira. Abduction over 3-valued extended logic programs. In International
Conference on Logic Programming and Non-Monotonic Reasoning, pages 29–42. Springer-Verlag,
1995. LNAI 1265.

[8] C. V. Damásio and L. M. Pereira. A survey on paraconsistent semantics for extended logic
programas. In D.M. Gabbay and Ph. Smets, editors, Handbook of Defeasible Reasoning and
Uncertainty Management Systems, volume 2, pages 241–320. Kluwer Academic Publishers, 1998.

[9] M. Denecker and D. De Schreye. SLDNFA: An abductive procedure for normal abductive pro-
grams. J. Logic Programming, 34(2):111–167, 1998.

[10] Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association, Wash-
ington,DC, 4th edition, 1994. Prepared by the Task Force on DSM-IV and other committees and
work groups of the American Psychiatric Association.

[11] J. Dix and T. Swift. Linear subclasses of the well-founded semantics, 2002. In preparation.

[12] R. G. Downey and M.R. Fellows. Fixed parameter tractability and completeness I: Basic results.
SIAM J. Computing, 24:873–921, 1995.

[13] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for nonmonotonic
reasoning. In J. Dix, U. Furbach, and A. Nerode, editors, Logic Programming and Nonmonotonic
Reasoning, volume 1265 of LNAI. Springer, 1997.

[14] Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction From Logic Programs: Semantics
and Complexity. Theoretical Computer Science, 189(1-2):129–177, December 1997.

[15] T. Fung and R. Kowalski. The IFF proof procedure for abductive logic programming. Journal of
Logic Programming, 33(2):151–165, 1997.

[16] J. Gartner, T. Swift, A. Tien, L. M. Pereira, and C. Damásio. Psychiatric diagnosis from the view-
point of computational logic. In Lloyd et. al, editor, International Conference on Computational
Logic, pages 1362–1376. Springer-Verlag, 2000. LNAI 1861.

[17] M. Gelfond and V. Lifshitz. Logic programs with classical negation. In International Conference
on Logic Programming, pages 579–597. MIT Press, 1990.

[18] G. Gottlob, F. Scarcello, and M. Sideri. Fixed parameter complexity in AI and nonmonotinic
reasoning. In International Conference on Logic Programming and Non-Monotonic Reasoning,
pages 1–18, 1999.

[19] K. Inoue and C. Sakama. Computing extended abduction through transaction programs. Annals
of Mathematics and Artificial Intelligence, 25(3-4):339–367, 1999.

[20] J.F.Castro. Verificação abdutiva de um sistema de diagnóstico baseado em regras (Abductive
verification of a rule based diagnosis system). Master’s thesis, Universidade Nova de Lisboa,
December 2000. In Portuguese. Available at http://www.cs.sunysb.edu/˜tswift.

32

[21] A. Kakas, R. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic and Com-
putation, 2(6):719–770, 1993.

[22] A. Kakas and P. Mancarella. Generalized stable models: A semantics for abduction. In ECAI,
pages 385–391. Morgan-Kaufmann, 1990.

[23] A. C. Kakas and C. Mourlas. ACLP: Flexible solutions to complex problems. In International
Conference on Logic Programming and Non-Monotonic Reasoning, pages 387–399. Springer, 1997.
LNAI 1265.

[24] V. Lifshitz and H. Turner. From disjunctive programs to abduction. In J. Dix, L. M. Pereira,
and T. Przymusinski, editors, Nonmonotonic Extensions of Logic Programming, volume 927 of
LNAI, pages 23–42. Springer, 1995.

[25] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin Germany, 1984.

[26] B. Van Nuffelen and M. Denecker. Problem solving in ID-logic with agregates: some experiments.
In 8th Int. Workshop on Non-Monotonic Reasoning (NMR’2000), pages 9–11, 2000. Available
via www.cs.kuleuven.ac.be.

[27] L. M. Pereira, J. Apaŕıcio, and J. Alferes. Derivation procedures for extended stable models. In
International Joint Conference on Artificial Intelligence, 1991.

[28] T.C. Przymusinski. Every logic program has a natural stratification and an iterated least fixed
point model. In ACM Principles of Database Systems, pages 11–21. ACM Press, 1989.

[29] C. Sakama and K. Inoue. Abducitve logic programming and disjunctive logic programming: Their
relationship and transferability. Journal of Logic Programming, 44(1-3):71–96, 2000.

[30] K. Satoh and N. Iwayama. Computing abduction by using the TMS. In International Conference
on Logic Programming, pages 505–518. MIT Press, 1991.

[31] K. Satoh and N. Iwayama. Computing abduction by using TMS and top-down expectation. J.
Logic Programming, 44(1-3):179–206, 2000.

[32] Smodels, 2003. Home page: http://www.tcs.hut.fi/Software/smodels.

[33] T. Swift. A new formulation of tabled resolution with delay. In Recent Advances in Artifiial In-
telligence, pages 163–177. Springer-Verlag, 1999. Available at http://www.cs.sunysb.edu/̃ tswift.

[34] The XSB Logic Programming System version 2.5, 2002. http://xsb.sourceforge.net.

[35] A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

33

A Appendix: Proofs of Theorems

A.1 Proof of Theorems in Section 3.3

Theorem 3.1 For a ground program P and empty set of abducibles, let dual(P, ∅) be the dual program
formed by applying the dual transformation to P . Then for any literal L ∈ literals(P),

L ∈ WFS(P) ⇐⇒ L ∈ lfp(ωdual(P,∅)
d)

Proof:

As mentioned in Section 3, if P is a countable set of rules, each with a finite number of literals in
their bodies, dual(P, ∅) will be also.

The inner fixed point of ωdual(P,∅)
d depends on two operators: Tddual(P,∅)

I and Fddual(P,∅)
I (Defini-

tion 3.10). Tddual(P,∅)
I is essentially the same as the inner fixed point operator, TxP

I (Definition 2.1)
used to construct WFS(P). Combining this observation with the initial sets used to construct the
fixed points of Definitions 2.2 and 3.11, the proof can be reduced to showing that for an element O in
objective literals(P),

O ∈ gfp(FxP
I (objective literals(P))) ⇐⇒ not(O) ∈ gfp(Fddual(P,∅)

I (Sdual(P,∅)))

If this is so, since TxP
I equals Tddual(P,∅)

I restricted to the objective literals in P , then it is a trivial
induction on the operators of Definitions 2.2 and 3.11 to show that ωP

ext equals ωdual(P,∅)
d restricted to

the literals in P .

Note that the initial set used to construct the fixed point of FxP
I in Definition 2.2 is

objective literals(P), while in Definition 3.11 the initial set used for Fddual(P,∅)
I is

Sdual(P,A) = {not(O)|not(O) ∈ literals(dual(P,A))}

and thus by the dual transformation an objective literal O occurring in P , O is in objective literals(P)
iff not(O) is in Sdual(P,A).

(⇒) We first prove that for O ∈ objective literals(P):

O ∈ gfp(FxP
I (objective literals(P))) ⇒ not(O) ∈ gfp(Fddual(P,∅)

I (Sdual(P,∅)))

Induction is on the number n of applications of FxP
I in constructing the fixed point. The base

case, where n = 0 was handled in the previous paragraph, so consider first the case in which n is
greater than 0. In other words, the two operators have been applied n− 1 times, with applications of
FxP

I producing the set O1 and applications of Fddual(P,∅)
I producing the set O2. It remains to prove

that for the nth application:

O ∈ FxP
I (O1)) ⇒ not(O) ∈ Fddual(P,∅)

I (O2)

Suppose an objective literal O is in FxP
I (O1). Then either (1) conjE(O) ∈ I; or for every rule rO

j of
the form O :- L1, ..., Ln in P , there is a literal Lj,i, 1 ≤ i ≤ n, such that either (2a) conjD(Lj,i) ∈ I or
(2b) Lj,i is in O1. Consider each of these cases in turn.

34

1. For the first case, if conjE(O) ∈ I then, by the rule not(O) :- conjE(O) in dual(P, ∅), not(O)
belongs to Fddual(P,∅)

I (O2).

2. For the second case, consider a witness of unusability, Lj,i for a rule rO
j for O. (2a) Suppose first

that conjD(Lj,i) ∈ I. Then there is a folding rule not(foldb
j O) :- conjD(Lj,i) constructed by the

dual transformation of Definition 3.1, so that not(foldb
j O) will be included in Fddual(P,∅)

I (O2).
(2b) Alternately, if Lj,i ∈ O1, then not(Lj,i) ∈ O2 so that not(Lj,i) and all literals in the
heads of the folding rules that depend on it will be regenerated. In either case (2a) or (2b), by
monotonicity of the operators, if O ∈ FxP

I (O1)), then O ∈ O1, and by the induction hypothesis,
not(O) ∈ O2. By definition of Fddual(P,∅)

I , for this to happen each rule for O in P must have a
witness of unusability. This means that the literal not(folda Ok) must also be in O2 for each
rule k for O in P . Thus each of the literals not(foldb Ol) and not(foldb Ok) will be regenerated,
so that not(O) ∈ Fddual(P,∅)

I′ (O2).

(⇐) To complete the proof we need to show that for O ∈ objective literals(P):

O ∈ gfp(FxP
I (objective literals(P))) ⇐ not(O) ∈ gfp(Fddual(P,∅)

I (Sdual(P,∅)))

The proof of this statement is complicated by the fact that, due to folding rules, there is no exact
correspondance between the iteration in which an objective literal is removed from a set by FxP

I and
when its analog is rmoved by Fddual(P,∅)

I . Accordingly, we restate this case as

O /∈ gfp(FxP
I (objective literals(P))) ⇒ not(O) /∈ gfp(Fddual(P,∅)

I (Sdual(P,∅)))

Consider a literal O′ in

objective literals(P)− gfp(FxP
I (objective literals(P)))

Because FxP
I is monotonic and continuous, there is an application n such that O′ ∈

gfp(FxP n−1

I (objective literals(P))) and O′ /∈ gfp(FxP n

I (objective literals(P))). We call n the re-
moval level of O.

Thus we prove by induction on n that any objective literal with removal level n is not in
gfp(Fddual(P,∅)

I (Sdual(P,∅))). The base case (where n = 0) that for O ∈ objective literals(P),
O ∈ objective literals(P) ⇐⇒ not(O) ∈ Sdual(P,∅) was handled above. Assume that the prop-
erty holds for objective literals in P whose removal level is less than n, and that the set produced by
the first n− 1 applications of FxP

I is O1.

Consider a literal O with removal level n. By Definition 2.1, O will not persist after the nth
application of FxP

I iff conjE(O) /∈ I and there exists a rule rk
O with body L1, ..., Lm such that for all

1 ≤ i ≤ m, conjD(Li) /∈ I and Li /∈ O1.

First note that conjE(O) /∈ I means that an axiom of coherence will not be used to derive not(O)
in gfp(Fddual(P,∅)

I (Sdual(P,∅))). Next, by Definition 3.1, there is a folding rule

not(foldb
k O) :- conjD(Li)

35

for each Li in the body of rk
O. Note that conjD(Li) is not in I (otherwise O would not have a removal

level). If Li /∈ O1, then the removal level of Li is less than n so by the induction assumption, there will
be some application of Fddual(P,∅)

I that does not regenerate conjD(Li). Accordingly, there will be an
application of Fddual(P,∅)

I in which not(foldb
k O) is not regenerated via its ith clause. For O to have a

removal level, each literal in the body of rk
O must have similar conditions to Li, and not(foldb

k O) is not
regenerated. By Definition 3.1, regeneration of not(foldb

k O) is required to regenerate not(folda
k O).

In future iterations, then, not(folda
j O) will not be regenerated for 1 ≤ j ≤ k, so that O will not be

in gfp(Fddual(P,∅)
I (Sdual(P,∅))).

♦

In addition to Theorem 3.1, several lemmas and definitions will be needed to prove the correctness
of Abdual. One of these is a simpler definition of the dual transformation, which is convenient to use
in the proofs. This definition was implicitly used in Examples 3.1, 3.3 and 3.4.

Definition A.1 [Unfolded dual Program] Let P be a ground extended program, and A a (pos-
sibly empty) set of finite abducibles. Then the unfolded dual transformation creates a dual program
udual(P,A), defined as union of P with the smallest program containing the sets of rules R1 and R2

defined as follows:

1. If P contains a rule with non-empty body

O :- L1,1, ..., L1,n1

:
O :- Lm,1, ..., Lm,nm

Then, R1 contains the rules

not(O) :- conjD(L1,j1), ..., conjD(Lm,jm).

for each j, 1 ≤ ji ≤ im, 1 ≤ i ≤ m, and where conjD(L) represents the default conjugate of L.

2. Otherwise, if not(O) is in literals(P), but there is no rule with head O in P , then R1 contains
the rule not(O) :- t.

3. R2 consists of axioms of coherence that relate explicit and default negation, defined as:

not(O) :- conjE(O)

For each objective literal not(O) in either literals(P ∪R1) or A.

!

Because the dual transformation of Definition 3.1 differs from that of Definition A.1 only insofar
as no folding rules are defined, it is straightforward to see that they are equivalent with respect to
literals(P) for finite ground programs. While Definition A.1 is simpler than Definition 3.1 and useful

36

for correctness results, Definition 3.1 is necessary for proving correctness of programs with an infinite
number of rules and for the complexity results that follow.

We next make explicit the relation between unfounded sets of objective literals in P and co-
unfounded sets of answers in the dual program. In order to do so, we present the definition of an
interpretation induced by the state of an Abdual evaluation, and of the delay dependency graph.

Definition A.2 Given an Abdual forest F , the interpretation induced by F , or Iinduced(F) is defined
as the smallest interpretation containing

• A literal O for each unconditional answer node < O, ∅ > :- | in F ;

• A literal not(O) for each objective literal O ∈ F such that the tree for O is completely evaluated
in F and contains no answers.

!

The definition of a delay dependency graph is convenient for several of the following proofs.

Definition A.3 [Delay Dependency Graph] Let F be an Abdual forest. A goal S1 has a direct
delay dependency on a goal S2 in F iff S2 is contained in the DelayList of an answer in the tree T for
S1. The delay dependency graph of F , DDG(F), is a directed graph {V,E} in which V is the set of
root goals for trees in F and (Si, Sj) ∈ E iff Si has a direct delay dependency on Sj . !

Also for convenience, if S is a co-unfounded set of answers,

heads(S) = {S| < S, Context > :- DL| ∈ S}

Part (1) of Lemma A.1 relates a co-unfounded set of answers (Definition 3.6) obtained in the Abd-
ual evaluation of a ground extended program to an unfounded set of objective literals (Definition 3.4)
in the well-founded semantics (with explicit negation). Intuitively, part (2) ensures that when an
Abdual forest can be constructed to capture an interpretation I of a ground extended program, then
the forest can be extended to determine the truth value of each objective literal in the unfounded sets
with respect to I.

Lemma A.1 Let < P,A, I > be an abductive framework in which A and I are empty.

1. Let F be a forest in a Abdual evaluation E of a query Q to < P,A, I >, and SA be a co-
unfounded set of answers in F . Then there is a minimal unfounded set of objective literals SO

for P in Iinduced(F) such that {Si|not(Si) ∈ heads(SA)} ⊆ SO.

2. Let SO be a minimal unfounded set of objective literals for P with respect to an interpretation I
and let F be an Abdual forest of any query to < P,A, I > such that

(a) for each Si ∈ SO, there is a tree for not(Si) in F ;

(b) for all L ∈ I, if < L, ∅ > is the root of a tree in F , then L ∈ Iinduced(F);

(c) no Abdual operations are applicable to F .

37

Then, for each Si ∈ SO, there will be an unconditional answer for each not(Si) in F .

Proof: For simplicity of presentation, we first restrict our attention to finite programs, in which class
the dual program, udual(P, ∅), formed via Definition A.1 can be used. We then indicate how the
arguments can be extended to the dual form of Definition A.1 which is necessary for infinite programs.

1. Let Nleaf =< not(Si), ∅ > :- DL| be an answer in some co-unfounded set of answers SA in F .
By clause 3 of Definition 3.6, DL must be non-empty. By the construction of Definition A.1
and by the definitions of Abdual it can easily be seen that the node < not(Si), ∅ > :- DL| is
a descendant of a non-root node N =< not(Si), ∅ > :- L1, ..., Ln produced by application of a
Program Clause Resolution operation of a rule ru in udual(P, ∅) (this situation is presented
schematically in Figure 8) ru is constructed so that for each rule rj with head Si in P , Lj is a
default conjugate of some literal in the body of rj . Now we consider two classes of the literals
L1, ..., Ln in the (GoalList of the) node N : those that are contained in the DelayList of Nleaf

and those that are not, and consider the latter first.

:

i

::
: :

i

n

i

i 1

<not(S),{}>:− DL |

<not(S),{}>:− |L ,...,L

<not(S),{}>:− |S

N :

N:

leaf

Figure 8: Schematic portion of an Abdual tree

(a) Literals that are in N but not in the DelayList of Nleaf . By assumption, since the set
of abducibles A is empty, there can be no Abduction operations in E ; thus a literal
Li in N but not in Nleaf can have been resolved away either through Answer Clause
Resolution, or through Delaying and subsequent Simplification. Note that Li cannot
be created through a direct application of co-unfounded set removal as that operation
acts only on leaf nodes, and removes all elements in a DelayList, contradicting the fact
that DL is empty. In other words, Li could be resolved away only via an Answer Clause
Resolution or Simplification operation, and these operations would be possible only if
Li were in the interpretation induced by a previous forest, say Fi. Furthermore, since no
Abdual operation in Definition 3.9 allows operations on an unconditional answer node, all
answers in Fi will persist in F , so that Li must be in Iinduced(F). It is then straightforward
from Definitions A.1 and 3.4 that if Li ∈ Iinduced(F), then its conjugate will form a witness
of unusability for some rule for Si in P .

(b) Literals that are in N and in the DelayList of Nleaf . Because Nleaf ∈ SA, each literal,
Li ∈ DL is such that < Li, Ci > :- DLi| ∈ SA, by Definition 3.6.

38

Taken together, the above two cases show that, given an conditional answer < not(Si), ∅ >
:- DL ∈ SA, a witness of unsuitability can be obtained for every rule ri for Si in P . This

can occur because ri contains some literal conjD(L) that is true in Iinduced(F), corresponding
to condition (1) of Definition 3.4; or it can occur because the literal belongs to heads(SA),
corresponding to condition (2) of Definition 3.4. Thus, in SA, a witness of unusability can
be obtained for every rule for Si, so that {Si|not(Si) ∈ heads(SA)} is an unfounded set for
Iinduced(F) in P .

2. Since SO is a minimal unfounded set of objective literals, no objective literal O1 in I can have
its default conjugate in SO (otherwise, SO − {O1} would also be minimal). Let Si be an ob-
jective literal in SO, and let Li, 1 ≤ i ≤ n, be witnesses of unusability for each of its (n) rules.
By the construction of Definition A.1, there is a rule rSi = not(Si) :- conjD(L1), ..., conjD(Ln)
in udual(P, ∅). By assumption (a), F contains a tree for not(Si). By assumption (c) and
Definition 3.9, this tree must have children, otherwise there would be Program Clause Res-
olution operations applicable for F . In particular, there must be a node N ′ =< not(Si), ∅ >
:- conjD(L1), ..., conjD(Ln), that is a child of the root node for not(Si).

Now consider each conjD(Li). Since Li is a witness of unusability for SO, Li is either be false
in I or unfounded but not false in I.

(a) If Li is false in I, then by assumption (b) conjD(Li) is true in Iinduced(F), and either
an Answer Clause Resolution or Simplification (after previous Delaying) will be
applicable, by assumption (c) these will have been performed and there will be a descendant
of N ′ in which conjD(Li) is resolved away.

(b) Next, consider the case in which Li is unfounded but not false in I, and by assump-
tion is in SO. Because Li is in an unfounded set it is a positive literal, and conjD(Li)
can be written as not(Li). Consider the node N ′ mentioned above: < not(Si), ∅ >
:- conjD(L1), ..., conjD(Ln) for which not(Li) is a body literal. For 1 ≤ i ≤ n, each
conjD(Li) is either in Iinduced(F) (by assumption (b)) and resolved away by (assumption
(c)); or its default conjugate is unfounded in I and thus a negative literal, so that there is a
node not(Si) :- DL in a previous forest Fprev of F in E , and not(Li) ∈ DL (by assumption
(b)).
We must show that a co-unfounded set removal operation was applicable that removed
not(Li) from DL. For this to happen, we must show that not(Li) was part of a co-unfounded
set of answers for some previous forest Fprev in E . Condition (2) of the definition of a co-
unfounded set of answers (Definition 3.6) is trivially satisfied since the set of abducibles
is empty, while condition (1) of Definition 3.6, stating that goals in the co-unfounded
set of answers be completely evaluated, is satisfied by assumption (c). Condition (3) of
Definition 3.6 remains, and we must show that there is a co-unfounded set of answers inFprev

containing an answer, NLi = not(Li) :- DLi| for not(Li). We begin by showing that NLi

exists. Assumption (c) ensures that a tree for not(Li) exists in F (by the argument above,
not(Li) was selected, and assumption (c) ensures that a New Subgoal is performed when
not(Li) was selected). Furthermore, assumption (c) implies that there are no applicable

39

Abdual operations for this tree. Furthermore, DL1 contains all literals of a rule in the
unfolded dual of P that gave rise to NL, but which are not themselves in I. Extending this
argument for all elements in the transitive closure of not(Li) in the delay dependency graph
of N (Definition A.3), shows that Li is contained in an unfounded set of objective literals.
Thus a co-unfounded set removal operation was applicable to Fprev which made the
answer for some not(Sj), Sj ∈ S′ unconditional, and it can be easily seen that this operation
made further Simplification operations applicable based on the unconditional answer for
not(Sj). Furthermore, by Definition 3.9 each Simplification operation for literal L and
conditional answer Ans ∈ S made applicable after the co-unfounded set removal
operation will remain applicable until L is removed from the DelayList of Ans. Because
the set of unconditional answers for a forest only grows monotonically, the statement holds.

Extending the proofs to the dual of infinite programs means that the dual transformation of
Definition 3.1 must be used. In the case of infinite programs, there may be an infinite number of
witnesses of unusability for a given objective literal O and interpretation I. Unlike the situation
presented above for finite programs, the witnesses of unusability may be distributed among different
folding trees. With this complication the argument for part 1 of the lemma can be straightforwardly
extended to the situation where folding rules are used. In part 2, note that assumptions 2a and 2b
together imply that if O is an objective literal in P , then F will also contain the appropriate folding
literals for not(O). Again, the argument can be straightforwardly extended to this new situation. ♦

Lemma A.2 Let < P, ∅, ∅ > be an abductive framework. Let E be a Abdual evaluation of a query Q
against udual(P, ∅), whose final forest is Fβ. Finally, let WFS(P)|Eβ denote the well-founded model
of P restricted to goals in Fβ. Then

Iinduced(Fβ) = WFS(P)|Fβ

Proof:

(Sketch) Given Theorem 3.1 this is equivalent to showing that

Iinduced(Fβ) = lfp(ωdual(P,∅)
d)|Fβ .

Since by assumption abduction is not needed, and since the case of co-unfounded sets was handled in
Lemma A.1, proving that Abdual computes the fixed points specified by these operators is similar to
(transfinite) inductions for soundness and completeness of other tabled evaluations of the well-founded
semantics. [33] and other papers contain detailed inductions that show that the interpretation induced
by the final forest of a tabled evaluation is equivalent to the model preoduced by the least fixed point
of the operator ωP

ext. Given Theorem 3.1 and Lemma A.1, extending such a proof to abdual is tedious
but straightforward. ♦

The next step is to extend the results of Lemma A.1 to arbitrary abductive frameworks with
non-empty sets of abducibles and integrity rules. The results must now prove equivalences to models
based on abductive scenarios. In the definition of abductive scenarios (Definition 2.7) a program PB

40

is constructed based on a subset of abducible objective literals. A subset B of the abducibles of an
abductive framework σ can be obtained directly from the context, Context, of an abductive subgoal;
and a program PB can be generated from B as in Definition 2.7. In the following lemma, we refer to
the program produced by the construction of Definition 2.7 on the objective literals of Context simply
as PContext, and to Context seen as an interpretation as IContext.

Lemma A.3 Let < P,A, Int > be an abductive framework.

1. Let F a forest in an Abdual evaluation of a query Q against < P,A, Int >; SA be a co-
unfounded set of answers in F ; and let Context =

⋃
{Ci| < Si, Ci > :- DL| ∈ SA}. Then there

is a minimal unfounded set SO for P ∪PContext∪ Int with respect to (Iinduced(F)∪IContext) such
that {Si|not(Si) ∈ heads(SA)} ⊆ SO.

2. Let < P,A,B, Int > be an abductive scenario, and I an interpretation of P ∪ PB ∪ Int, such
that I|A is consistent. Let SO be an unfounded set of objective literals with respect to I. Let F
be a Abdual forest of any query to < P,A, Int > such that

(a) for each Si ∈ SO, there is a tree for not(Si) in F ;

(b) for all L ∈ I, if < L, ∅ > is the root of a tree in F , then L ∈ Iinduced(F); and

(c) no Abdual operations are applicable to F .

Then F will contain an unconditional answer

< not(Si), Ci > :- |

for each Si ∈ SO, such that P∪i∈Si
Ci ⊆ PB.

Proof: As in Lemma A.1 we first restrict our attention to finite programs, for all of which the dual
program, udual(P,A), formed via Definition A.1 can be used. We then indicate how the arguments
can be extended to the dual form of Definition A.1 which is necessary for infinite programs.

1. Let Nleaf =< not(Si), Ci > :- DL| be an answer in the co-unfounded set of answers SA. By
the construction of unfolded dual transformation (Definition A.1), and by the definitions of
Abdual it can also be seen that the node < not(Si), Ci > :- DL| is a descendant of a node
N =< not(Si), > :- L1, ..., Ln in which, for each rule rj with head Si in P ∪ I, Lj is a default
conjugate of some literal in the body of rj . (The situation is analogous to that depicted in
Figure 8). Now we consider the classes of goal literals in the node N . Those that are in N
but not in the DelayList, were not resolved away via an Abduction operation, and were
not resolved away via an Answer Clause Resolution resolution using an answer with a
non-abductive context form witnesses of unusability for some rule for Si in P ∪ I by the same
argument as in case (1a) in the proof of Lemma A.1. Similarly, those literals in the DelayList
of Nleaf form witnesses of unusability by the same argument as in case (1b) of that proof. This
leaves literals that were resolved away via Abduction operations, or were resolved away via an
Answer Clause Resolution resolution with an answer with a non-abductive context. Either

41

operation will union the abductive context of a parent node with new objective literals to produce
a new child node. We first note that by Definition 3.6, the union of the contexts of all answers
in any co-unfounded set is consistent so that the single abductive context, Ci, must also be
consistent. Let Oi ∈ Ci be a given abducible objective literal. In the first case, Oi is the explicit
conjugate of some literal in a rule rj of Si in P ∪ I added to Ci directly through an Abduction
operation. In the second case, Oi is necessary to derive an answer that was used via Answer
Clause Resolution with a coherency axiom or other program or integrity rules to remove a
literal from rj , and so form a witness of unusability. Since abductive contexts must be consistent,
Oi is true in IContext (i.e. the interpretation induced by the union of abductive contexts of all
answers in SA), iff it is a witness of unusability for ri with respect to Iinduced ∪ Icontext.

2. Again, for the case of finite abductive scenarios, the argument is essentially similar to that of
Lemma A.1, but with the addition of abducibles. The only difference is to ensure that the union
of contexts of all nodes in the co-unfounded set of answers corresponding to SO is consistent,
which fact follows from Definition 2.7 which implies that the interpretation of abducibles in an
abductive scenario gives rise to a consistent interpretation of these abducibles once their truth
values are propagated to default literals through coherency.

Extending the proofs to the case of infinite programs means taking account of folding rules created by
the use of the dual transformation of Definition 3.1, as discussed in Lemma A.1. It is straightforward
to see that the folding rules ensure do not affect consistency of abductive contexts. In addition, since
abducibles are propagated through folding rules (and all other rules), and since there can only be a
finite number of abducibles to be propagated, extension of the rest of the argument is straightforward.
♦

We next prove a restricted form of Theorem 3.2, which assumes that the final forests exist for
an Abdual evaluation of a query to these forests. It uses the notion of the model M(σ) of ab-
ductive solution σ as introduced in Definition 2.8, and of a rule query :- not(⊥), Q as introduced in
Definition 3.8.

Lemma A.4 Let E be an Abdual evaluation of a query Q against an abductive framework <
P,A, Int >, whose final forest is Eβ. Then < query, Set > :- | is an answer in Eβ iff σ =<
P,A, Set′, I > is an abductive solution such that M(σ) |= Q and Set ⊆ Set′.

Proof: (Sketch) Given Lemmas A.3 and Lemma A.2 the proof is straightforward. Soundness (⇒) is
shown by an induction on the length of the Abdual evaluation, such that each literal in the induced
interpretation of the Abdual forest is also in the well-founded model. Completeness (⇐) is shown
by a double induction on construction of M(σ), the well-founded model of an abductive scenario with
the the operators of Definition 3.10 used in the inner induction, and the operator of Definition 3.11
used in the outer induction. ♦

Theorem 3.2 Let < P,A, I > be an abductive framework, and E be an Abdual evaluation of Q
against < P,A, I >. Then

1. E will have a final forest Eβ;

42

2. if < query, Set > :- is an answer in Eβ σ =< P,A, Set, I > is an abductive solution for
< P,A, I >;

3. if < P,A, Set, I > is a minimal abductive solution for Q, then < query, Set > :- is an answer
in Eβ.

Proof: (Sketch)

1. The first statement follows from an argument similar to that made for extended SLG trees in
[33]. Briefly recapitulated, it can be seen that all Abdual trees are of finite depth, therefore
they must have at most a countably infinite number of nodes (e.g. see H. Rogers, Theory of
Recursive Functions and Effective Computations, MIT press, 1987 Section 16.3). Furthermore
there are at most a countably infinite number of Abdual trees in a Abdual forest. Now at each
successor ordinal of a Abdual evaluation, each Abdual operation either creates a new tree or
adds at least one node to an existing tree. At each limit ordinal the union of all forests indexed
by lower ordinals is taken. Therefore, a Abdual evaluation can have at most a countably infinite
number of states. Thus, the ordinal β is reachable via the transfinite induction of Definition 3.8.

2. Both the second and third statements are immediate from Lemma A.4.

♦

A.2 Proof of Theorems in Section 3.4

Definition A.4 Let P be a program or dual program that is finite and ground. size(P) denotes
the sum, for each rule R in P of 1 plus the number of body literals in R; size(P |L) denotes the size
of rules in P whose head is the literal L. heads(P) denotes the set of literals that occur as heads of
rules in P . !

The following lemma shows that the size of the program produced by the dual transformation is
linear in the size of the original program. The bound provided is not the tightest possible.

Lemma A.5 Let P be a finite ground extended program and A a finite set of abducibles. Then
size(dual(P ∪A)) < 9size(P) + 2|A|.
Proof: Let O be an objective literal for which there are m > 0 rules in P with total size size(P |O).

1. Case (1) of Definition 3.1. There will be m + 2 rules with folda
i O in their heads or bodies

produced by case (1a) of Definition 3.1 for a total size of 3m + 4. The total size of rules with
heads of the form not(foldb

i O) produced by (1b) will be 2(size(P |O) − m), so that the total
number of folding rules for O will be 2size(P |O)+m+4. Summed up over rules for all objective
literals in P , this is 2size(P) + 4heads(P) + rules(P), where rules(P) is the number of rules in
P .

2. Case (2). The size of the rules produced by case (2) is bounded by 2(literals(P)− heads(P)).

43

3. Case (3) Finally, the size of the axioms of coherence is bounded by |literals(P)| + 2|A|, where
|literals(P)| is the number of literals in P .

Note that |literals(P)| ≤ size(P), as is |heads(P)| and |rules(P)|, so that size(dual(P)) <
9size(P) + 2|A|. ♦

Lemma A.6 Let P be a finite ground extended program, and < P, ∅, ∅ > be an abductive framework.
Let E be an Abdual evaluation of a non-abductive query Q against dual(P), whose final forest is Fβ.
Then Fβ can be constructed in at most 2size(dual(P)) + literals(P) steps.

Proof: It takes at most one Abdual operation to create a node in Fβ: thus the number of nodes
in this forest is an upper bound on the number of Abdual operations required to evaluate Q. In Fβ

there is at most one tree for each literal in literals(dual(P)). The root node NL for a literal L in
dual(P, ∅) has one child for each rule for L in P . Consider a child NR of NL formed by Program
Clause Resolution using a rule R. Then there are at most 2LR descendants of NR in Fβ where LR

are the number of body literals in R. To see this, first note that the number of goal literals in NR is
LR. Further, since dual(P, ∅) is ground and the set of abducibles is empty, any descendant ND of NR

can have at most one child for each of the operations in Definition 3.9. Also consider that any child
Nchild of ND

1. has the same number of goal literals as ND and fewer delay literals; (e.g. if Nchild was produced
by Simplification or co-unfounded set removal); or

2. has the same number of delay literals as ND and one fewer goal literal (e.g. if Nchild was produced
by Answer Clause Resolution); or

3. has one more delay literal than ND and one fewer goal literal than ND (e.g. if Nchild was
produced by Delaying); or

4. is a failure node (e.g. if Nchild was produced by Simplification).

In cases (1) and (2) above the size of ND is reduced; in case 3 we note that by Definition 3.9 a literal
can be delayed only once in any path from a root of a tree to a leaf. In case 4, we note that no
operations are applicable to a failure node. Thus the length of the path from NO to the unique leaf
descendant of NR in Fβ is at most 2LR, leading to the bound in the statement. ♦

Theorem 3.3 Let < P,A, I > be an abductive framework such that P and I are finite ground extended
programs, and A is a finite set of abducibles. Let E be an Abdual evaluation of a query Q against
< P,A, I >. Then E will have a final forest that is produced by a finite number of Abdual operations.

Proof: By Lemma A.5, dual((P ∪ I),A) is finite if < P,A, I > is finite, so we need only consider the
direct evaluation of dual((P ∪ I),A). In the case in which A is empty, the statement is immediate
from Lemma A.6. In the case in which |A| = n, n > 0, then the abduction operation must be taken
into consideration. As in the proof of Lemma A.6, the total number of trees in any forest of E is
bounded by literals(dual((P ∪ I),A)). Let NL be the root node of a tree for L in a forest F of E , and

44

NR be a child of NL produced by Program Clause Resolution using a rule R. As in the proof of
Lemma A.6, path to any descendant of NR is at most 2LR, where LR is the number of body literals in
R. This is immediate Lemma A.6 since the abduction operation reduces the number of goal literals
in any node by 1. However, unlike the case in Lemma A.6 where the set of abducibles is empty, the
number of children of LR or its descendants can be greater than one, depending on the number of
abductive solutions for a goal literal or set of delay literals. However, the number of these solutions is
always finite, so that F will have a finite number of nodes. As before, each node is produced by a single
Abdual operation, so that F can be produced by a finite number of operations. Since an arbitrary
forest F must be finite, a final forest must be produced by a finite number of Abdual operations. ♦

Theorem A.7 Let F be the final forest in a Abdual evaluation E of a query Q against an abductive
framework < P,A, I >. Let Ccontext be the maximal cardinality of the context of any abductive subgoal
in F , and Cabducibles be the cardinality of A. Then F can be constructed in at most M×2size(dual((P∪
I),A) steps, where

M =
∑

i≤Ccontext

(
Cabducibles

i

)

Proof: Let NL be a root node of a tree for a literal L in F . As noted in the proof for Lemma A.6,
there is one child for NL for every rule R for L in dual((P ∪ I),A). Such a node, NR has a number of
leaf descendants that is bounded by the number of abductive solutions that are possible to return, via
Answer Clause Resolution, to the descendants of NR. By construction, this bound is M . Again
by the considerations in Lemma A.6, the length of the path from NR to any leaf is at most 2RL where
RL is the number of body literals in the rule that produced NR. Further, the length of the path from
NL to any leaf is 2RL + 1, which is 2 times the size of R minus 1. so that the number of nodes in the
tree rooted by NL is bounded by 2Msize(P |L). Summing this for all literals in dual((P ∪ I),A), the
bound of the statement is obtained. ♦

45

