Update-programs can update programs
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Abstract. In the recent literature the issue of program change via up-
dating rules (also known as revision rules) has been reduced to the issue
of obtaining a new set of models, by means of the update rules, from
each of the models of an initial program. Any program whose models
are exactly the new set of models will count as an update of the original
program. Following the classical approaches to theory updating, it is of
course essential to start by specifying precisely how a program’s models
are to change, before even attempting to specify program change. But
to stop there is to go only halfway.

Another limitation of existing approaches to logic program updating con-
cerns their not dealing with 3-valuedness, i.e. with partial models. The
limitation is twofold: on the one hand, only programs under 2-valued
semantics are approachable; on the other, when there are contradictory
update rules, in lieu of leaving undefined the effects of the contradictory
rules and keeping those of the others, no update is possible at all.

In this paper, we generalize the notion of justified update to partial (or
3-valued) interpretations and expound a correct transformation on nor-
mal programs which, from an initial program, produces another program
whose models enact the required change in the initial program’s models,
as specified by the update rules. Forthwith, we generalize our approach
to logic programs as well as update programs extended with explicit
negation.

1 Introduction

Logic program evolution by specifying update rules has hardly been studied. As
the world changes so must programs that represent knowledge about it. Whereas
simple fact by fact updates have long been addressed [9, 10, 6], providing tran-
sitional rules to govern the change of one program into another is still a blind
spot in the research literature. The overall purpose of this paper is to show how
transition rules for updating a logic program can be specified by some other logic
program.

Program updating is distinct from program revision, where a program accom-
modates, perhaps non-monotonically by revising assumptions, additional infor-
mation about a static world state. Work on program revision (or contradiction
removal) has received more attention (e.g. in [1, 8, 2, 19, 18]) then transitional
updating. The following realistic situation chisels the differences between pro-
gram update and revision crisply.



Ezample 1. My secretary has just booked me on a flight from here to London on
wednesday but can’t remember to which airport, Gatwick or Heathrow. Clearly,
this statement can be represented by:

booked_for_gatwick V booked_for_heathrow

Now someone tells me there never are flights from here to Gatwick on wednesday,
i.e. I'm told =booked_for_gatwick. I conclude that T'll be flying to Heathrow,
i.e. booked_for_heathrow. This is knowledge revision. The state of the world
hasn’t changed with respect to the flight information, but on obtaining more
information I have thereby revised accordingly my knowledge about that same
state of the world.

Alternatively, I hear on the radio that all flights to Gatwick on wednesday
have been canceled, i.e. the world changed such that now —booked_for_gatwick
holds. I'm at a loss regarding whether I still have a flight to London on wednes-
day. This is knowledge update. The world of flights has changed, and refining
my knowledge about its previous state is inadequate: I cannot conclude that I'm
booked to fly to Heathrow (booked_for_heathrow). I have obtained knowledge
about the new world state but it doesn’t help me to disambiguate the knowledge
I had about its previous state. What I can do is pick up the phone and book me
a flight to Heathrow on wedsunesday, on any airline. That will change my flight
world and at the same time update my knowledge about that change. However,
I'm now unsure whether I might not have two flights booked to Heathrow. But
if my secretary suddenly remembers he had definitely booked me to Gatwick,
then I will no longer believe I have two flights to Heathrow on wednesday.

Notice how updating may produce models that are further refinable by revi-
sion. Another example of revision is when assumptions are revised in the light
of new information about the same world state. For example, the reader may
have presupposed that the secretary in this example is a woman till we used the
giveaway pronoun “he”.

Knowledge or theory update is usually performed “model by model” [17, 11],
where a set of formulae Ty is a theory update of T, following an update request
U, iff the models of Ty result from updating each of the models of T by U. Thus
a theory update is determined by the update of its models.

The same idea can be applied to logic programming: a program Py is a pro-
gram update of P, following an update request U, iff the models of Py (according
to some logic program semantics &) are the result of updating each of the models
of P (given by semantics §) by U. So, to obtain Py, first compute all models of
P according to a given semantics S; to each of these models apply the update
request U to obtain a new set of models M; Py is then any logic program whose
models are exactly M. This process can be depicted as in Figure 1.

In the recent literature [12, 13, 3, 16], the issue of program change via up-
dating rules (also known as revision rules) has been reduced, rather simply, to
the issue of obtaining a new set of models by means of the update rules, from
each of the models of the given program (i.e. only the part of the above picture
which is inside the box). Any program whose models are exactly the new set of
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Fig. 1. Model by model theory update

models will count as an update of the original program. However, no procedure
is set forth by the cited authors for obtaining one. (Except in the trivial case
where the original and final programs are just sets of facts [3, 16].) Following
[17, 11], it is of course essential to start by specifying precisely how a program’s
models are to change, before even attempting to specify program change. But
to stop there is to go only halfway.

Another limitation of these first inroads into the problems of logic program
change concerns their not dealing with 3-valuedness, i.e. with partial models. The
limitation is twofold: on the one hand, only programs under 2-valued semantics
are approachable; on the other, when there are contradictory update rules, in
lieu of leaving undefined the effects of the contradictory rules and keeping those
of the others, no update is possible at all. Furthermore, these authors have not
considered models comprising explicit negation.

In the sequel, we hegin with a short overview of previous work on interpreta-
tion updating in what concerns its basic definitions, and move on to generalize
the latter to partial interpretations. Next we expound a correct transformation
on normal programs which, from an initial program, produces another program
whose models enact the required change in the initial program’s models, as speci-
fied by the update rules. Forthwith, we generalize our approach to logic programs
as well as update programs extended with explicit negation. In the end we draw
some conclusions.

2 Overview of Interpretation Updates

For more detailed motivation and background to this section of the present
paper the reader is referred to [12, 16]. For the purpose of our generalization we
prefer the basic definitions as deployed in [12], which we will adapt: on account
of the required distinction between revison and update, we will speak instead
of update rule, update program, and justified update, rather than use those
authors’ vocabulary of revision rule, revision program, and justified revision.
Otherwise the definitions are the same.

The language used is similar to that of logic programming: update programs
are collections of update rules, which in turn are built of atoms by means of the



special operators: «, in, out, and “,”.
Definition 1 (Update rules for atoms). Let U be a countable set of atoms.
An update in-rule or, simply, an wn-rule, is any expression of the form:

in(p) —in(q1),...,in(gm), out(s1),...,out(sy,) (1)

where p, ¢;, 1 <1 <m,and s;, 1 <j <mn,areallin U, and m,n > 0.
An update out-rule or, simply, an out-rule, is any expression of the form:

out(p) — in(q1),....in(¢qm), out(s1),...,out(s,) (2)

where p;, ¢;, 1 <i <m, and s;, 1 < j < n,areallin U, and m,n > 0.
Intuitively, update programs can be regarded as operators which, given some
initial interpretation I;, produce its updated version I,.

Ezxample 2. Let P be the update program:

in(a) — 0111(())
in(b) — out(a)

Assume the initial 2-valued interpretation I; = ({}; {a,b})*. There are two viable

2-valued updated interpretations: I, = ({a}; {b}) and I, = ({b}; {a}).

Exzample 3. Let P = {out(a) «— in{a)} and let I; = ({a};{}) be the initial
interpretation. No interpretation can be regarded as the update of I; by P. For
example, imagine I, = {{};{a}) were such an update. Making « false could
ouly be justified on the basis of the single update rule. But the body of that
rule requires a to be true in the final interpretation for the rule to take effect.
Similarly, I,, = I; cannot be an update as well.

Definition 2 (Necessary change). Let P be an update program with least
(2-valued) model M = (Tas; Fpr). The necessary change determined by P is the
pair (Ip,Op), where:

Ip={a:in(a) €Ty}

Op ={a:out(a) € Ty}

If Ip N Op = {} then P is said coherent.

Intuitively, the necessary change determined by a program P specifies those
atoms that must be added and those atoms that must be deleted, whatever the
initial interpretation.

Ezample 4. Take the update program P = {out(b) « out{a); in(b); out(a)}.
The necessary changes are irreconcilable and P is incoherent.

% In the sequel, an interpretation I will be represented as a pair I = (T; F), where T
and F' are disjoint sets of atoms. Atoms in 7" are true in [; atoms in F are false in [;
all other atoms are undefined in I. An interpretation I is dubbed 2-valued (or total)
iff there are no undefined atoms.



Definition 3 (Justified update’). Let P be an update program and I; =
(T;; F;) and I, = (T,,; F,) two (total) interpretations, whose true and false atoms
are made explicit. The reduct P; |;, with respect to I; and I, is obtained by the
following operations:

Removing from P all rules whose body contains some in(a) and a € Fy;
— Removing from P all rules whose body contains some out(a) and a € T,,;
— Removing from the body of remaining rules of P all in{a) such that a € Tj;
Removing from the body of remaining rules of P all out(a) such that a € F;.

Whenever P is coherent, I, is a P-justified update of I; if the two update stability
conditions hold:

T, =(T; - Of’rum) Ulpr, s,

F,= (F, - Ipzu‘u,.) U OPIM\Ii

The first two operations delete rules which are useless given I, = (Tu; F,,,).
Because of stability, the initial interpretation is preserved as much as possible in
the final one. The last two rules achieve this because any exceptions to preserva-
tion are explicitly dealt with by the union and difference operations in the two
stability conditions.

With its insistance on total interpretations, the above definition runs into
problems:

Example 5. Let I; = ({a,b};{c}). Let P = {in(c) —; out(b) —}. Clearly, the
meaning of this program is that ¢ must be made true and b must be made false.
Hence I, = {{a,c}; {b}). Now add to P the rule out(a) < in(a). There is no
longer any justified update, even though we might want to retain the results
concerning b and ¢ while remaining undecided about a, i.e. obtain the partial
interpretation {{c}; {b}).

Ezample 6. Consider again the update program P of Example 2 and the same
initial interpretation, I; = ({};{a,b}). There is no P-justified update of I; cor-
responding to the final empty interpretation I, = {{};{}), even though it would
be desirable to have an update result that remained undecided between the
alternatives of making a or making b true.

Furthermore, the insistance on total interpretations allows less freedom in
the modelling of knowledge about the world since, often, our knowledge about
it is incomplete to start with.

3 Updates of Partial Interpretations

To remedy the above shortcomings we have generalized the definitions of nec-
essary update and justified update to cope with partial interpretations, whilst
preserving their results in the case of total ones.

* This slightly different formulation is clearly equivalent to the original one.



Example 7. Counsider the following logic program P:

gatwick <« not heathrow
heathrow «— not gatwick

representing two conflicting defaults about a flight being booked for Gatwick or
Heathrow, and consider also the update request {out(gatwick)}.
The stable models of P are:

({gatwick}; {heathrow}) and ({heathrow}; {gatwick})

the latter stating that the flight is booked for Heathrow and not for Gatwick,
and the former that the flight is booked for Gatwick and not for Heathrow.
The P-justified updates of these models by {out(gatwick)} are, respectively,
{}; {heathrow, gatwick}) and {({heathrow}; {gatwick}), the former stating that
the flight is booked for neither Heathrow nor Gatwick, and the latter as before.

If the well-founded semantics is used instead, another model of P exists, viz.
({}:{}), stating that one remains undecided about the flight being booked either
for Gatwick or for Heathrow. Intuitively, one expects that the above update
request should not modify this model of P in what regards heathrow, but should
falsify gatwick. However, the definitions presented before cannot come to this
conclusion, since they do not apply to partial models.

Ezample 8. Consider the initial interpretation ({};{heathrow,gatwick}), and
the update program:

in(gatwick) «— out(heathrow)
in(heathrow) «— out(gatwick)

stating that, in the final interpretations, if the flight is not booked for Heathrow
then it must be booked for Gatwick, and if the flight is not booked for Gatwick,
then it must be booked for Heathrow.

The previous definition yields two updated interpretations:

({gatwick}; {heathrow}) and ({heathrow}; {gatwick})

whose readings can be found in Example 7. Intuitively, the partial interpretation
{};{}), stating that one is undecided about both the flight being booked for
Gatwick or for Heathrow, is also expectable as a result of the update. In fact,
before the update one is sure that the flight is booked for neither airport. After
the update, because of the conflict between the update rules, one expectable
situation is to be undecided whether the flight is booked for Heathrow or for
Gatwick.

This example shows that update programs should desirably be able to unde-
fine atoms, i.e. it might then happen that a P-justified update of a model I has
more undefined atoms than I: an update may cause additional undefinedness.
To cater for this possible behaviour, the definition of necessary change must be
modified. Before, necessary change was simply determined by a set of atoms that



must become true (Ip), and a set of atoms that must become false (Op). In the
generalization below, necessary change is also defined by a set of atoms, NIp,
that cannot remain true (even if they do not become false), and a set of atoms,
NOp, that cannot remain false (even if they do not become true).

Definition 4 (3-valued necessary change). Let P be an update program
with least 3-valued model M = (Tw; Fr).
The necessary change determined by P is the tuple (Ip,Op, NIp, NOp), where

Ip ={a:in(a) € Tas}

Op ={a: out(a) € Ty}
NIp={a:out(a) € Fu}
NOp ={a:in(a) & Fy}

Atoms in Ip (resp. Op) are those that must become true (resp. false). Atoms in
NIp (resp. NOp) are those that cannot remain true (resp. false). If TN O = {}
then P is said coherent.

In the sequel, we omit the index P whenever the update program is clear
from the context. Note that, by definition of 3-valued interpretation, I = (T'; F'),
and T and F are disjoint, and so Ip € NOp and Op C Nip; i.e., as expected,
atoms that must become true cannot remain false, and atoms that must become
false cannot remain true.

Intuitively, out(a) ¢ Fp means that out(a) is either true or undefined in
M, but definitely not false. Thus, a should not remain true. If, additionally,
out(a) € Ty then the a should also become false. Similar arguments justify the
definition of NOp.

3-valued justified updates rely on this new definition of necessary change,
which falls back on the previous one for 2-valued interpretations. Only the third
and fourth operations below are new, forged to deal with the effect on update
rules of undefined literals in I,,.

Definition 5 (3-valued justified update). Let P be an update program and
I; = (T;; F;) and I, = (T,;; F,) two partial (or 3-valued) interpretations. The
reduct Pr |y, with respect to I; and I, is obtained by the following operations,
where u is a reserved atom undefined in every interpretation:

— Removing from P all rules whose body contains some in(a) and a € F;

— Removing from P all rules whose body contains some out(a) and a € T,,;

— Substituting in the body of remaining rules of P the reserved atom u for
every in(a), such that a is undefined in I,,> and a € Tj;

— Substituting in the body of remaining rules of P the reserved atom u for
every ou,t(a,) such that a is undefined in 7, and a € F};

— Removing from the body of remaining rules of P all in(a) such that a € Tj;

— Removing from the body of remaining rules of P all out(a) such that a € F;.

5le. a ¢ T, and a & F,.



Let (I,O,NI,NO) be the 3-valued necessary change determined by Py z,.
Whenever P is coherent, [, is a P-justified update of [; if the two stability
counditions hold:

T,=(T;,—NIHUuI

F,=(F;-—NO)UO.

The two new operations are justified as follows. In a rule with in(a) in its
body, where a is undefined in I,, and a & T}, in(a) cannot be true, and also it can-
not be substituted by undefined for, otherwise, the irrelevant rule in(a) — in(a),
which must be possible to add to any update program inconsequently, would be-
come in(a) —u, with the paradoxical effect of including @ in NO for subtraction
from Fj. More generally, in such a case in{a) cannot become undefined in the
reduct of P by virtue of undefining it in the body of a rule. Not so if @ € T;. In
that case, in(a) in a rule body can and should be replaced by u to test stability.
Finally, because of the inertial character of the stability conditions, any literal
undefined in I; will remain so in I, unless explicitly added as true or as false
by the reduct of P. So no inertia operations are called for regarding undefined
literals in I;.

A similar, symmetric, reasoning applies in the case of occurences of out(a)
in the rule bodies.

Ezample 9. Consider the update program P = {out{gatwick)} and an initial
interpretation where both gatwick and heathrow are undefined, i.e. ({};{}).
Trivially, the reduct of P is equal to P, independently of the final interpre-
tation: in the reduct all modifications to the original program are conditional on
literals in the body of update rules, and P has none. The least model of P is:

({out(gatwick)}; {in(gatwick), in(heathrow), out(heathrow)})

Thus, the necessary change is I = {}, O = {gatwick}, NI = {gatwick}, NO =
{}. Accordingly, the only P-justified update of ({};{}) is {{}; {gatwick}).

Ezample 10. Counsider the update program P of Example 8, and the initial model
I; = ({}; {heathrow, gatwick}).
It is easy to check that the two P-justified updates
({gatwick}; {heathrow})  and  ({heathrow}; {gatwick}),

obtained as per Definition 3, are also 3-valued justified updates. Moreover, I,, =
{}:{}) is also a 3-valued justified update.
In fact, the reduct with respect to this final model is:

in(gatwick) «— u
in(heathrow) — u

Note that heathrow is undefined in I, and false in I;. So out(heathrow) was
replaced by u. Similarly for out(gatwick).



The reduct’s least model is {{}; {out(gatwick), out(heathrow)}). Thus the
necessary change is I = O = NI = {}, NO = {gatwick, heathrow}. Given that
{}={}=NHUl and {} = {} = NO)U O, {{};{}) is indeed a 3-valued

justified update.

Ezxample 11. Consider again the same update program, but now the initial model
I; = ({gatwick, heathrow}; {}).

In this case the only justified update is I; itself. Note that I, = ({};{}) is not a
justified update.
In this case the reduct of P with respect to I; and I, is:

in(gatwick) «— out(heathrow)
in(heathrow) — out(gatwick)

where out(heathrow) was not replaced by u because, even though heathrow is
undefined in I,,, it is not false in I;.
The least model of the reduct is:

{}; {in(gatwick),in(heathrow), out(gatwick), out(heathrow)})

and so I = O = NI = NO = {}. {{};{}) is not in fact a (3-valued) justified
update because: {} # ({gatwick, heathrow} — {})U{}.

Ezample 12. Consider again Example 5. Now the partial interpretation ({c}; {b})
is a (3-valued) justified update of augmented P.

Ezample 13. Consider once again Example 6. The empty interpretation I, =
{};{}) is indeed a (3-valued) P-justified update of I; = ({};{a,b}) as desired.
The other two updates are preserved.

Theorem 6 (Generalization of updates). The 3-valued versions of meces-
sary change and justified update both reduce to thewr 2-valued versions whenever
the ineteal and final interpretations are total.

Proof. If the final and initial interpretations are total then the new rules intro-
duced in the definition of reduct are useless, and thus the definition of reduct
for three-valued justified update exactly coincides with the one for a two-valued
justified update. Moreover, no symbol u occurs in the reduct. Thus the least
model of the reduct is total, and so NI = O and NO = I. Clearly, under these
conditions the stability equalities also coincide.

An update is to be performed only if necessary. In other words, if an update
program does not countradict the initial model, the ouly justified update should
equal the initial model. This is indeed the case for 3-valued justified updates®.

® In [12], its authors prove that this is also the case for their (2-valued) justified
updates.



Definition 7. An interpretation M = (T; F) satisfies in(a) (resp. out(a)) iff
a €T (resp. a € F). It satisties the body of a rule iff it satisfies each literal of
the body, and it satisfies a rule iff whenever it satisfies the body it also satisfies
the head of the rule. An interpretation M satisfies an update program P iff it
satisfies all its rules.

Theorem 8. Let M be an interpretation satisfying an update program P. Then
the only 3-valued justified update of M by P is M.

Proof. If an interpretation M = (T;; F}) satisfies an update program P then:

1. It is a justified update. Ip adds nothing to T;, and Op adds nothing to F},
because any conclusion of a rule with satisfied body in the reduct of P is
necessarily satisfied as well. Furthermore, NIp can subtract nothing from
T;: first, because for any true conclusion out{a), since Op adds nothing to
F;, a cannot belong to T;; second, because any undefined literal in M cannot
introduce u in the rules of the reduct of P, since that requires the literal being
in F;. Similarly, NO can subtract nothing from F;. Consequently F, = F;
and T, = T;.

2. There is no other justified update R = (Ty; F,,). Indeed, first note that T, C
T; and F, C F;, since Ip can add nothing to T; and Op can add nothing
to F;, because of the form of the justified update operations and because
I; satisfies P. Second, neither NI nor NO can subtract from I; and Fj.
Consider NI. Again, there can be no new out conclusion from the reduct
of P. Also there cannot be any undefined out(a) arising from the reduct of
P. Such an undefined out(a) would require some in(b) (resp. out(b)) to be
undefined in the body of some rule and that b € T; (resp. b € F;). But for
in(b) (resp. out(b)) to be undefined, since b € T; (resp. b € F;) there must be
some rule with conclusion out(b) (resp. in(b)) undefined so that b, which does
not belong to R, is subtracted from T; (resp. F;). Applying this reasoning
systematically, eventually either out(b) (resp. in(b)) depends oun in(b) or on
out(b). If it depends on in(b) then, because b € T; and M satisfies P, b € F;
(contradiction). If it depends on out(b) then b; € F; too (contradiction).
The same reasoning applies to NO, showing that neither NI nor NO sub-
tract from T; and Fj, respectively, and consequently R = M.

Example 14. Consider the update program P of Example 8, and the initial model
I = {{heathrow, gatwick}; {}).

Since neither out(gatwick) nor out(heathrow) are satisfied by I, both rules of P
are trivially satisfied by I. As shown in Example 11, [ is in fact the only justified
update of itself.

An obvious consequence of the above theorem is that tautological update
rules (i.e. update rules satisfied by every interpretation, e.g. in(L) «— in(L)) do
not modify the initial interpretation.



4 Normal Program Updates

We’ve seen in the introduction that, till now, program updating has been only
implicitly achieved, by recourse to the updating of each of a program’s models
to obtain a new set of updated models, via the update rules. Following [11],
any program whose models are exactly the updated models counts as a program
update. But how to obtain such a program?

Our stance, while consistent with the view depicted in Figure 1, is quite dif-
ferent. We aim at producing a program transformation path to updating that
directly obtains, from the original program, an updated program with the re-
quired models, which is similar to the first. The update program’s models will be
exactly those derivable, one by one, from the original program’s models through
the update rules. Thus we are able to sidetrack the model generation path. Fur-
thermore, due to the similarity between both programs, any revisions targeted
for the old program can be correctly performed on the new one. This new ap-
proach can be depicted as in Figure 2.

Fig. 2. Program update via program transformation

We shall see that any update program can be transformed into an extended
logic program which, by the way, becomes part of the new updated program.
This transformation is similar in character to the one in [16], which serves a
different purpose though?. The normal program which is subjected to the update
program, has to be transformed too. The final updated program is the union of
the two transformations.

We will resort to a 3-valued well-founded semantics of extended logic pro-
grams, namely WFSX [14], that introduces explicit negation in Well-Founded
Semantics [7] by means of its coherence principle, stating that explicit negation
—L entails default negation not L, for every objective literal L®. In the case of
stratified (and locally stratified) programs WFSX coincides with Aunswer-Sets

" In the next section, we shall have to consider a more complex transformation, in the
case where the program to be updated is also an extended logic program.
8 An objective literal is, as usual, an atom A or its explicit negation —A.



Semantics. However, its 3-valued character is essential for dealing with partial
interpretations, and its skeptical character for allowing (otherwise impossible)
skeptical updates (viz. Example 13).

Definition 9 (Translation of update programs into extended LPs).
Given an update program U P, its translation into the update logic program

ULP is defined as follows.

— Each update in-rule of the form (1) translates into:
D Gryee s Qm, 81,0, T8y,

— Each update out-rule of the form (2) translates into:
Rl P N V- B T

The rationale for this translation can best be understood in conjunction
with the next definition, for they go together. Suffice it to say that we can
simply equate explicit negation — with out, since the programs to be updated
are normal ones, and thus devoid of explicit negation (so no confusion can arise).

Definition 10 (Update transformation of a normal program). Given an
update program U P, consider its corresponding update logic program U LP. For
any normal logic program P, its updated program U with respect to ULP (or
to UP) is obtained through the operations:

— The rules of ULP belong to U;
— The rules of P belong to U, subject to the changes below;
— For each atom A figuring in a head of a rule of ULP:
Replace in every rule of U originated in P all occurences of A by A’,
where A’ is a new atom;
Include in U the rules A — A’ not =A and -A « not A',not A.

The purpose of the first operation is to ensure change according to the update
program. The second operation guarantees that, for inertia, rules in P remain
unchanged unless they can be affected by some update rule. The third operation
changes all atoms in rules originating in P which are possibly affected by some
update rule, by renaming such atoms. The new name stands for the atom as
defined by the P program. The fourth operation introduces inertia rules, stating
that any possibly affected atom contributes to the definition of its new version,
unless actually affected through being overriden by the coutrary conclusion of
an update rule; the not = A and not A conditions cater for this test.

Ezample 15. Consider again the update program of Example 8, and the initial
empty program with respect to the vocabulary {g, h}, where g stands for gatwick
and h for heathrow. The updated logic program is U:

g — —h h «— h',not =h g — ¢',not =g
h — =g —h «— not h/,not h —g «— not g',not g



The WFSX model of the initial (empty) programis ({}; {g, #}). The WFSX mod-
els of U are ({}:{n',¢'}), {g,-h};{—g,h, ¢ . 1W'}), and ({—g,h};{g,—h,g', h'}).

Modulo the primed and explicitly negated atoms we have:

My = ({1 M= ({gh{rh) My={n}:{g})

These models exactly correspond to the justified updates obtained in Example

10.

Ezample 16. Consider once more the update program of Example 8, and the
initial program P = {g «<—; & <}. In this case, the updated logic program is
again U, of the previous example, plus the facts {¢’ «—; &I’ <}, and its only
WEFSX model is:

<{91 h, gla hl}; {_'gv _'h}>

Modulo the primed and explicitly negated atoms, this model exactly corresponds
to the result of Example 11.

Ezample 17. Let UP = {in(p) < in(q)}. Then ULP = {p « q¢}. Take the
normal program P:

p < not q

q < not p

The updated logic program U of P with respect to ULP (or to UP) is U:

Pe—q P — not ¢ p — p'.not —p
q — not p’ —p «— not p’,not p

The WFS5X models of P are:

My={h{}) M ={pk{d), M= {a}:{p}
The WFSX models of U are:

My=({}{})  Mi={p.ad:{p's-ph)  Mi={p.p'}:{e.p})

Modulo the primed and explicitly negated atoms we have:

My=({}1:{h Mi=({p,g}:{}) Ms={{r}iia})

which happen to be the U P—justified updates of the models of P.

Example 18. Let UP be:
out(q) — out(p)
out(p) —

Then ULP is:

—p —



Take again the normal program P of Example 17. The updated logic program
U of P with respect to ULP (or UP) is U:

=g — —p p — not ¢ p — p'.not —p
—p — q — not p’ —p < not p’,not p
q + ¢',not =g
—q — not ¢',not q

The WFEFSX models of U are:

{=p. =a}idp. a}) {=p,~¢. 0" }idp, . ') {0, 20, ' 35 4p- 0" })

Modulo the primed and explicitly negated atoms all these models coincide with
{}:{p, ¢}), corresponding to the single U P-justified update of the models of P.

Theorem 11 (Correctness of the update transformation).  Let P be a
normal logic program and UP a coherent update program. Modulo any primed
and explicitly negated elements, the WESX models of the updated program U
of P with respect to UP, are cxactly the (3-valued) U P-justified updates of the
WFSX models of P.

Proof. In this proof with assume that every atom A of the original program has
been replaced by a new atom A’, and that “inertia” rules have been added for
all atom. While the transformation only does so for atoms that actually occur in
the head of some update rule, this is clearly a simplification, and adding them
for all atoms does not change the results.

Let I be a WFSX model of ULP. Then I; represents the restriction of I to
primed atoms, and I,, the remainder of I.

Given the properties of WFSX (namely those of relevance and modularity),
it is easy to prove that:

— IfI'is a WFSX model of ULP then I; is a WFSX model of P.
— If I’ is a WFSX model of P then there exists at least one WFSX model T
of ULP such that I' = I;.

Given this, it suffices to prove that:

1. If I is a WFSX model of ULP then I, is a justified update of I;.
2. It I; is a WFSX model of P and I, a justified update of I; then I = I, U I,
isa WFSX model of ULP.

(1) To prove this point, we begin by removing all primed atoms of ULP, by
taking I; into account, thus constructing a program 7 (ULP), as follows:

— remove all rules whose head is primed;
for all primed atoms A’ true in I;, add to ULP a rule A « not —A;
for all primed atoms A’ false in I;, add to ULP a rule =A < not A;
— for all primed atoms A’ undefined in I;, add to ULP the rules:

A —u,not - A and -A —u,not A.



T(ULP) corresponds to ULP after a partial evaluation with respect to I;. Given
that partial evaluation does not change the W FSX semantics of programs, and
that I is a WFSX model of ULP, clearly I, is a WFSX model of ULP,.

The proof proceeds by showing that?, one by one, the modifications on
T(ULP) corresponding to the modifications made to construct the reduct Py g,
do not change the semantics of 7(ULP). In the end, we conclude that I, is a
WFSX model of the translation of the reduct Py, |7,, as per Definition 9, plus the
rules added when constructing 7(ULP). Let R denote the resulting program.

It remains to be proven that such an I, satisfies the two stability conditions
on the reduct P7,|1,. Below we prove that I, satisfies the first stability condition.
Proving that it also satisfies the second stability condition is quite similar, and
is omitted for brevity.

By definition, A € Ip, |, iff in(A) € least(Py, ;). Since the translation of
Py, )1, does not introduce any default negated literals, in(A) € lea,st(P,u”i) iff
A belongs to the least model of the translation of the reduct. Given that I,
is a WFESX model of R, and R contains the translation of the reduct, clearly
AeT,.

Again by definition of justified update, 4 € T; and A ¢ Nip,,,, ift AeT;
and not out(A) € least(]’;u“i). Again, since the translation of Pj s, does not
introduce any default negated literals, not out(A) € least(Py,r,) iff not = A
belongs to the least model of the translation of the reduct. If A € T;, then
A — not A € T(ULP), and 7(ULP) has no rules for = A. Thus, given that I,
isa WFSX model of R, A € T,.

Consequently, if A € (T; — NI)UI then A € T,,. If A € T,, then either there
is a rule in the translation of the reduct proving A, in which case A € I, or
not 7A€ I, and A € T; (otherwise no enertia rule capable of proving A would
exist in 7(ULP)). Thus A € T; — NI. This proves that I, satisfies the first
stability condition.

(2) The proof of this point is similar to the reverse of the previous point’s
proof. First note that if I, is a justified update of I; by the update program
UP. it is also one by the reduct of the update program. The proof proceeds by
showing that I, is a W FSX model of R, the translation of the reduct plus the
rules in 7(ULP). This is done similarly to the last part of the previous point’s
proof. The proof proceeds by showing that, one by one, the modifications on R
corresponding to the reverse of the modifications made to construct the reduct
Pr, 1, do not change the semantics of R. After all the modifications, the resulting
program clearly corresponds to U LP. Since the semantics is not changed, I, is

also a WFEFSX model of ULP.

5 Updating models and programs with explicit negation

Since the updated programs of normal programs are, in general, extended pro-
grams, to update them in turn we need to address the issue of updating extended

? This part of the proof is quite long and is not presented here.



programs. This is one motivation for defining updates for models and programs
with explicit negation. Another motivation is to be able to update knowledge
bases represented by extended logic programs. In fact, much work has been done
in representing knowledge with extended logic programs (see e.g. [4, 15]). For
this knowledge to be updated one needs a definition of updates of models and
of programs with explicit negation. To do so, we first generalize the language of
update rules:

Definition 12 (Update rules for objective literals). Let U be a countable
set of objective literals. Update in-rules or, simply, in-rules, and update out-rules
or, simply, out-rules, are as per Definition 1, but with respect to this new set U.

Intuitively, an objective literal is quite similar to an atom. For example,
in(—a), simply means that —a must become true, and this can be achieved as for
atoms. The same applies to out(—a), which means that —a must become false.
Thus, it is not surprising that the definitions of necessary change and justified
update for models with explicit negation are quite similar to those for models
without explicit negation.

Despite the similarities, there is a subtle but important additional condition
that justified updates of models with explicit negation must obey.

Ezample 19. Counsider the initial model (with explicit negation):
({gatwick, —heathrow}; {—~gatwick, heathrow})

meaning that one knows that a flight is booked for Gatwick, and no flight is
booked for Heathrow.

Consider now the update program {in(—gatwick)}. This update means that
~gatwick must become true, i.e. gatwick must become (explicitly) false. Per-
forming this update on the initial model requires more than simply adding
—gatwick: it also requires the removal of gatwick from the positive part of the
model. In fact, if the world changed so that gatwick became explicitly false, cer-
tainly the truth of gatwick will have to be removed. Intuitively, the result of this
update on the initial model is {{~gatwick, ~heathrow}; {gatwick, heathrow}).

If later we are told in(heathrow), the result should then be:

({—gatwick, heathrow}; {gatwick, =heathrow}).

What this example shows is that in(-a) additionally requires out(a), and
in(a) additionally requires out(—a). This can be seen as a cousistency require-
ment on updated models. If =a (resp. ) must become true, then a (resp. —a)
must be guaranteed absent from the truth part of the model. Instead of chang-
ing the definitions of necessary change and justified update to cope with these
impositions, for simplicity we add instead, to every update program, the two
update rules:

out(A) — in(—A) and out(—A) — in(A)

for every atom A in the language, and then determine the justified updates as
before:



Definition 13 (Extended Justified Update). Let P be an update program
with explicit negation, and I; = (T;; F}) and I, = (Ty; F\,) two partial interpre-
tions with explicit negation'®.

Let P’ = PU{out(L) «— in(=L): L € U}, where U is the set of all objective
literals. I, is a P-justified update of I; iff it is a P’-justified update of I; according
to Definition 5, where all explicitly negated atoms are simply viewed as new
atoms.

Mark that, when the initial program does include explicit negation, the up-
date transformation for normal programs of Definition 10 does not yield an up-
dated extended program whose models are the updates of the initial program’s
models. This is so because the transformation does not distinguish between mak-
ing —a true (in(—a)) and making a false (out(a)): both are transformed into —a.
However, the definition of justified update of models with explicit negation views
the two updates differently:

Ezample 20. Consider the initial model ({a}; {—a,b,-b}), and the update out(a).
It is easy to check that the ouly justified update is {{};{a,—a,b, =b}), resulting
from removing the truth of a.

If the update in(—a) is considered instead, then the only justified update is

({~a}:{a,b.—b}).

In the transformation for normal programs, explicit negation —A is used to
falsify A. Since in WFSX —A entails not A, and the original programs have
no objective literals of the form —A, the only outcome of having —A is, in fact,
that of imposing not A, as desired. However, if the program being updated
differentiates = A from not A, the former can no longer be used as a means to
impose the latter.

Intuitively, an update out-rule out(A) — Body means that whenever Body
is true in the updated interpretation not A must be true. If extended programs
allowed default negated literals in the head of rules, this could be solved by
transforming out(A4) in the head of an update rule by not A. The intended
meaning of a rule not L « Body would then be “If the body is true then not L
must be true”.

In [5] is shown that WFSX is expressive enough to capture the semantics
of extended logic programs with default literals in the heads of rules. This is
accomplished via a program transformation, such that the partial stable models
of the transformed extended program exactly correspond to those models of the
program with default literals at the head, given the above intended reading for
such rules. The transformed extended program P"°! of a program P with default
literals in the head is simply constructed as follows:

— For each objective literal A (resp. —=A) in the language of P, program P"°
contains the rule A «— A (resp. =4 — A"), where A” (resp. A") is a new
atom;

'% Recall that in such interpretations, if =L € T then L € F, for every objective literal
L. See [14] for a formal definition.



— For each rule of the form A « Body (resp. A «— Body) in P, program P"*!
contains the rule AP — Body (resp. A" — Body);

— For each rule of the form not A «— Body (resp. not =A — Body) in P,
program P"°! contains the rule AP — Body (resp. =A" « Body).

The whole idea of the transformation is to allow not A and not = A conclu-
sions, once transmuted into = AP and — A", to falsify the single rules for A and
for = A.

The translation of update programs with explicit negation into extended logic
programs mirrors this transformation, where atoms out(A) (resp. out(—A)) are
first translated into not A (resp. not =A), both in the bodies and heads of rules.

Definition 14 (Translation of extended update programs into LPs).
Given an update program with explicit negation U P, its translation into the
update logic program ULP is defined as follows:

1. Each in-rule in(Lg) < in(Ly),...,in(Ly),0ut(Lmt1),.. . out(Ly,)

where n > 0, and the L; are objective literals, translates into:
Ly —Ly,...,Ly,not Ly4q,...,n0t L,

where L = AP if Ly = A, and L§ = A" if Ly = - A4;
2. Each out-rule out(Ly) — in(Lq),...,in(Ly),0ut(Lyt1),. .., out(Ly)
where n > 0, and the L; are objective literals, translates into:

=Ly« Ly,...,Ly,not Lyyyq,...,no0t L,

where L = AP if Ly = A, and L§ = A" if Ly = - A4;

3. For every objective literal L such that in(L) belongs to the head of some
in-rule of UP, ULP contains —-L* «— L  where L = A" if L = A, and
L*= AP if L = —A4;

4. For every atom A occuring in the head of some update rule of UP, ULP
contains A— AP and —A— A"

Items (1) and (2) directly reflect the transformation P"“" on the rules that
result from translating in(L) by L. and out(L) by not L. Item (3) reflects the
transformation on the update rules out(L) «— in(—L) for each objective literal
L (implicitly added to all update programs). Note that if there are no rules in
the update program for in(—L) then there is no need to add the corresponding
rule, as it would be useless. Item (4) simply adds the rules required by P"“ for
establishing a link between objective literals L and the corresponding L? and
L" ones. Again, if the atom A never occurs in the heads of update rules, then
there is no need for adding such rules for it.

Definition 15 (Update transformation of an extended program).
Given an update program with explicit negation U P, consider its corresponding
ULP. For any extended program P, its updated program U with respect to
ULP (or to UP) is obtained by the operations:



— The rules of ULP belong to U;
— The rules of P belong to U, subject to the changes below;
— For each atom A occuring in the head of some update rule of UP
Replace in every rule of U originated in P all occurences of A by A’,
where A’ is a new atom;
Include in U the rules:

AP — A’ not ~AP A" — —A not 2 A"
—AP «— not A',not AP —A"™ «— not —|A', not A"

As before, atoms A of the initial program that may change their truth value
are replaced by new atoms A’. The added rules implement inertia for those
atoms. The first rule on the left states that “if A was true in the initial program,
and it is not the case that out(A), then A should be in” (note that, in heads,
out(A)is transformed into = A”). The second rule on the left states that “if A was
false in the initial program, and it is not the case that in(A), then A should be
out”. The rules on the right express correspondingly the same, but for explicitly
negated atons.

Example 21. ' Consider a university that periodically updates its evaluation of
faculty members based on their research and teaching record. Faculty members
who are known to be stroug researchers and good teachers receive positive eval-
uation. Those who are not known to be strong researchers are not positively
evaluated, and those that are poor teachers receive a negative evaluation. This
leads us to the following update program, with the obvious abbreviations, and
where non-ground rules stand for the set of their ground instances:

in(g-eval (X)) «— in,(g_res(X)) in(g-teach(X))
out(g-eval(X)) « out(gres(X))
in(—g-eval (X)) — in(—g-teach(X))

At this university, it is common knowledge that anyone who receives a teach-
ing award is considered a good teacher, and anyone who has published many
papers is counsidered a good researcher. It is part of the records that Scott is
a good teacher, Jack has received a teaching award, Lisa and Scott have al-
ready published many papers but not Jack, and that, in the previous evaluation
period, Lisa and Jack obtained good evaluations. This leads to the knowledge
representation program P:

g-teach(X) — award(X)  award(jack) —
gres(X) — many(X)  —many(jack) —
g-eval(jack) —

g-teach(scott) «— many(lisa) —
many(scott) — g-eval(lisa) —

' This example is inspired on a similar one due to Teodor Przymusinski.



whose only WFSX model M = (T; F) contains the following evaluation record:

{g-eval(jack), g_eval(lisa)} C T
{g-eval(scott), ~g_eval(jack),~g_eval(lisa)} C F

The update logic program U obtained by the transformation above is as
follows:

g-eval?(X) — gres(X), g_teach(X)
—g-eval?(X)) — not gres(X)
g-eval™(X)) « =g_teach(X)

g-teach(X) — award(X) award(jack) —

g-res(X) — many(X) —many(jack) —

g-eval' (jack) —

g-teach(scott) «— many(lisa) —

many(scott) — g-eval'(lisa)) —
g-eval(X) « g_eval?(X) —g_eval(X) — g_eval”(X)

g-eval?(X) — g_eval' (X),not—g_eval?(X)
ag_eval?(X) — not g_eval (X),not ~g_eval’(X)
g-eval™(X) — —g_eval'(X),not =g_eval™(X)
—g_eval”(X) «— not =g-eval (X ), not =g_eval™ (X)

The single justified update of the only WFSX model of P is the single
WFSX model of U = (Ty; Fy,), modulo primed, p-ed and n-ed literals, contain-
ing the evaluation record:

{g-eval(scott), g_eval(lisa)} C T,
{g-eval(jack), ~g-eval(jack),~g-eval(lisa)} C F,

Scott now has a good evaluation because he has many papers (which makes him
a good researcher) and he was already know to be a good teacher. Jack has no
longer a good evaluation because it is known that he does not have many papers
(and so he cannot be considered a good researcher). Though Lisa is not explicitly
known to be a good teacher, she keeps her good evaluation record because it is
neither the case that she cannot be considered a good researcher nor is it the
case that she does not have many papers.

Theorem 16 (Correctness of the transformation). Let P be an extended
logic program and UP a coherent update program. Modulo any primed and AP
and A" elemnents, the WFSX models of the updated program U of P with respect
to UP are exactly the UP-justified updates of the WFSX models of P.

The structure of this theorem’s proof is similar to that of Theorem 11. The
details of the proof are slightly more complex, mainly because the translation
T of update rules can now contain default negated literals in the the body of



rules of T'. To solve this additional complexity the proof appeals to most of
the arguments used in [5] to prove that, with the construction above, WFSX
is expressive enough to capture the semantics of extended logic programs with
default literals in the heads.

6 Conclusion

In this paper we have motivated, demonstrated, and illustrated how to make
more general use of update programs. Firstly, their application was extended to
encompases partial interpretations. Secondly, we showed how to apply update
programs directly to normal and extended logic programs, rather than to their
models. For doing so, we generate an updated program whose models are ex-
actly those that would be obtained by individually updating each model of the
original program. The updated programs result from transformations, proven
correct, which apply jointly to update programs and the given logic programs
they operate on. Whereas uptading models may be an exponential process, due
to a possible exponential number of models, our updating transformation of pro-
grams is clearly a polynomial process. The additional complexity in obtaining
the models of the updated program is only exacted on demand. Furthermore
successive update transformation may take place before any models are desired.
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