
Well founded semantics for logic program updates

F. Banti1, J. J. Alferes1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Over the last years various semantics have been proposed for dealing
with updates of logic programs by (other) logic programs. Most of these various
semantics extend the stable models semantics of normal, extended (with explicit
negation) or generalized (with default negation in rule heads) logic programs.
In this paper we propose a well founded semantics for logic programs updates.
We motivate our proposal with both practical and theoretical argumentations.
Various theoretical results presented here show how our proposal is related to
the stable model approach and how it extends the well founded semantics of
normal and generalized logic programs.

1 Introduction

When dealing with knowledge bases modelling knowledge that may change over time,
an important issue is that of how to automatically incorporate new (updated) knowl-
edge without falling into an inconsistency each time this new knowledge is in conflict
with the previous one. When these knowledge bases are represented by logic programs
(LPs), this issue boils down to that of how to deal with logic programs updates. In this
context, updates are represented by sequences of sets of logic programming rules, also
called dynamic logic programs (DLPs), the first set representing our initial knowledge,
while later ones represent new incoming information. In the last years, several semantics
had been proposed for logic programs updates [1, 2, 5, 9, 14–16, 19, 20]. Most of these
semantics are extensions of the stable models semantics of extended (with explicit nega-
tion) [13] or generalized (allowing default negation in rule heads) [17] logic programs.
This is a natural choice given the appropriateness of stable models for knowledge rep-
resentation, and the simplicity of the definition of stable model semantics for normal
logic programs, which allows various extensions in a natural way. However, it is our
stance that there are application domains for logic programs updates with requirements
demanding a different choice of basic semantics, such as the well founded semantics
[11]. One of such requirements is that of computational complexity: in applications
that require the capability of dealing with an overwhelming mass of information, it
is very important to be able to quickly process such information, even at the cost of
losing some inference power. In this respect, as it is well known, the computation of
stable models is NP-hard, whereas that of the well founded model is polynomial. An-
other requirement not fulfilled by stable model semantics is that of being able to answer
queries about a given part of the knowledge without the need to, in general, consult the
whole knowledge base. The well founded semantics complies with the property of rele-
vance [8], making it possible to implement query driven proof procedures that, for any
given query, only need to explore a part of the knowledge base. Moreover, in domains

with a great amount of highly distributed and heterogeneous knowledge, inconsisten-
cies are bound to appear not only when new knowledge conflicts with old knowledge,
but also within the new (or old) knowledge alone. To deal with contradictions that
appear simultaneously, the mechanisms of updates are of no use, and some form of
paraconsistent semantics [7] is required, i.e. a semantics where these contradictions are
at least detected, and isolated. The issue of removing these contradictions (which is
left out of this paper) can then be viewed as orthogonal, and forms of revision may, or
not, be applied afterwards depending also on the requirements of efficiency.

The well founded semantics (of single programs) is successfully used in several
domains where these requirements are important, such as deductive and relational
databases [18], implementation of agents and multi-agents [21]. A well founded based
semantics for logic programs updates seems to be the answer for domains where the
above requirements are added with the need to update knowledge in dynamic domains.
However, as we mentioned above, most of the existing semantics are stable models
based. A few attempts to define a well founded semantics for DLPs can be found
[2, 3, 14]. Unfortunately, as discussed in Section 5.1, none of these is, in our opinion,
satisfactory, be it because they lack a declarative definition of the semantics, or because
they are too skeptical.

In this paper we define the (paraconsistent) well founded semantics of dynamic
logic programs. This semantics is a generalization for sequences of programs of the
(paraconsistent) well founded semantics of normal [11] and generalized programs [6].
Moreover it is sound wrt to the stable models semantics for DLPs as defined in [1]. As
for most of the existing semantics for logic programs updates, the approach herein is
also based on the causal rejection principle [9, 15], which states, informally: an old rule
is rejected if there exists a more recent one which is supported and whose conclusions
are in conflict with the ones of the older rule. We extend this principle from a 2-valued
to a 3-valued setting, and apply it to the well founded semantics.

The rest of the paper is organized as follows. Section 2 recalls some preliminary
notions and establishes notation. Section 3 presents the extension of the causal rejection
principle to the 3-valued case. In section 4 the well founded semantics for DLPs is
defined, and in section 5 some of its properties are studied and relations with existing
proposals (briefly) established. We end, in section 6, with some concluding remarks.
Lack of space prevents us from providing the proofs here.

2 Background: Language, concepts and notation

In this section we briefly recall the syntax of DLPs, a language introduced in [2] for
dealing with logic programs updates, and their semantics as defined in [1]. Our choice
on this semantics for introducing the background is based on the fact that, among the
extant ones, is the more credulous and that it properly overcomes some problems of
the extant, as shown in [1].

To represent negative information in logic programs and their updates, DLP uses
generalized logic programs (GLPs) [17], which allow for default negation notA not only
in the premises of rules but also in their heads. A GLP defined over a propositional
language L is a (possibly infinite) set of ground rules1 of the form L0 ← L1, . . . , Ln,
1 As usual, a programs with variables stands for the possibly infinite set of rules resulting

from replacing, in every possible way, the variables by elements of the Herbrand universe.

where each Li is a literal in L, i.e., either a propositional atom A in L or the default
negation not A of a propositional atom A in L. We say that A is the default complement
of notA and viceversa. Given a rule τ as above, by head(τ) we mean L0 and by body(τ)
we mean {L1, . . . , Ln}. Since we will be interested in defining a paraconsistent and 3-
valued (well founded) semantics for DLPs, our definition of interpretation will be quite
general. In the sequel an interpretation is simply a set of literals of L. A literal L is true
(resp. false) in I iff L ∈ I (resp. notL ∈ I) and undefined in I iff {L, not L} ∩ I = {}.
A conjunction (or set) of literals C is true (resp. false) in I iff C ⊆ I (resp. there exists
L ∈ C such that L is false in I).We say that I is consistent iff for each atom A ∈ L
at most one of A and notA belongs to I, otherwise we say I is paraconsistent. We say
that I is 2-valued iff for each atom A ∈ L exactly one of A and notA belongs to I.

A dynamic logic program over a language L is a finite sequence P1 ⊕ . . . ⊕ Pn

(also denoted ⊕Pi, where the Pis are GLPs indexed by 1, . . . , n), where all the Pis are
defined over L. Intuitively such a sequence may be viewed as the result of, starting
with program P1, updating it with program P2, . . ., and updating it with program Pn.
For this reason we call the singles Pis updates. We use ρ (P) to denote the multiset of
all rules appearing in the programs P1, ..., Ps.

The refined stable model semantics for DLPs is defined in [1] by assigning to each
such sequence a set of stable models (that is proven there to coincide with the stable
models based semantics defined in [17] when the sequence is formed by a single GLP).
The basic idea of the semantics is that, if a later rule τ has a true body (according to
a given interpretation), then former rules in conflict with τ should be rejected (causal
rejection principles). Moreover, any atom A for which there is no rule with true body
(given an interpretation) in any of the programs in the sequence, is considered false
by default. The semantics is then defined in term of a fixpoint equation that, given an
interpretation I, tests whether I has exactly the consequences obtained after removing
from the multiset ρ (P) all the rules rejected given I, and imposing all the default
assumptions given I. Formally, let:

Default(⊕Pi, I) = {not A | 6 ∃ A ← body ∈ ρ (P) ∧ body ⊆ I}
RejS(⊕Pi, I) = {τ | τ ∈ Pi| ∃ η ∈ Pj i ≤ j, τ ./ η ∧ body(η) ⊆ I}

where τ ./ η means that τ and η are conflicting rules, i.e. the head of τ is the default
complement of the head of η.

Definition 1. Let ⊕Pi be a DLP over language L and M a two valued interpretation.
M is a refined stable model of ⊕Pi iff M is a fixpoint of ΓS

⊕Pi
:

ΓS
⊕Pi

(M) = least
(
ρ (P) \RejS(M) ∪Default(M)

)

where least(P) denotes the least Herbrand model of the definite program obtained by
considering each negative literal notA in P as a new atom2.

The definition of dynamic stable models of DLPs [2] is as the one above, but where
the i ≤ in the rejection operator is replaced by i < j. I.e., if we denote this other
rejection operator by Rej(DLP, I), and define Γ⊕Pi(M) by replacing in ΓS Rej by
RejS , then the stable models of ⊕Pi are the interpretations I such that I = Γ⊕Pi(M).
2 Whenever clear from the context, hereafter we omit the ⊕Pi in any of the above defined

operators.

Comparisons among these two definitions, as well as further details, properties and
motivation for the definition of this language and semantics are beyond the scope of
this paper, and can be found in [1, 2].

3 The notion of causal rejection for 3-valued semantics.

According to the above mentioned causal rejection principle [9, 15], a rule from an
older program in a sequence is kept (by inertia) unless it is rejected by a more recent
conflicting rule whose body is true. On the basis of this, not only stable models have
to be defined (as reviewed above), but also the very basic notion of model has to
be modified when dealing with updates. In the static case, a model of a program is
an interpretation that satisfies all the rules of the program, where a rule is satisfied
if its head is true or its body is false. If we want to adapt this idea to the updates
setting taking in consideration the casual rejection principle we should only require
non rejected rules to be satisfied. Also the concept of supported model [4] has to be
revisited when dealing with updates. In the static case, a model M of P is supported iff
for every atom A ∈ M , there is a rule in P whose head is A and whose body is satisfied
in M . If we extend the concept of supportedness to logic programs with updates, it
would be unnatural to allow rejected rules to support a the truth of a literal.

The causal rejection principle is defined for 2-valued semantics, and we want now
to extend it to a 3-valued setting, in which literals can be undefined, besides being
true or false. In the 2-valued setting, we have seen, a rule is rejected iff there is a rule
in a later update whose body is true in the considered interpretation. In this context,
this is the same as saying that the body of the rejecting rule is not false. In a 3-valued
setting this is no longer the case, and the following question arises: should we reject
rules on the basis of rejecting rules whose body is true, or on the basis of rules whose
body is not false? We argue that the correct answer is the latter. In the remainder we
give both practical and theoretical reasons for our choice, but we want now to give an
intuitive justification. Suppose initially we believe a given literal L is true. Later on we
get the information that L is false if some conditions hold, but that those conditions are
(for now) undefined. As usual in updates, we prefer later information to the previous
one. On the basis of such information, can we be sure that L remains true? It seems to
us we cannot. The more recent source of information says that if some conditions hold
then L is not true, and such conditions may hold. We should then reject the previous
information and consider, on the basis of the most recent one, that L is undefined.

On the basis of these intuitions, and the corresponding consequent notion of causal
rejection, we extend the definition of update model and update supported model to
the 3-valued setting.

Definition 2. Let ⊕Pi be any DLP, and M a 3-valued interpretation. M is an update
3-valued model of ⊕Pi iff for each rule τ in any given Pi, M satisfies τ (i.e. head(τ) ∈
M or body(τ) 6⊆ M) or there exists a rule η in Pj , i < j such that τ ./ η and body(η)
is not false in M . We say M is a supported 3-valued update model of ⊕Pi iff it is
an update model and

1. for each atom A ∈ M , ∃ τ ∈ Pi with head A such that body(τ) ⊆ M and 6 ∃
η ∈ Pj , i < j such that τ ./ η, and body(η) is not false in M .

2. for each negative literal not A, if not A ∈ M , then for each rule
A ← body ∈ ρ (P) such that body is true in M , there exists a rule η, in a later
update whose head is notA, and such that body(η) is true in M .

We illustrate, via an example, the intuitive meaning of the defined concepts.

Example 1. Sara, Cristina and Bob, are deciding what they will do on Saturday. Sara
decides she is going to a museum, Cristina wants to go shopping and Bob decides to
go fishing in case Sara goes to the museum. Later on they update their plans: Cristina
realizes she has no money and hence she decides not to go shopping, Sara decides she
will not go to the museum in case it snows and Bob decides he will also go fishing if
it is a sunny day. Moreover we know from the forecast that Saturday can be either a
sunny day or a raining day. We represent the situation with the DLP P1⊕P2, where:

P1 : museum(s). P2 : fish(b) ← sunny. sunny ← not rain.
shopping(c). not shopping(c). rain ← not sunny.
fish(b) ← museum(s). not museum(s) ← snow.

The intended meaning of P1 ⊕ P2 is that it will not snow, but we do not know if
it will rain or not, Sara will go to the museum, Bob will go fishing and, finally,
Cristina will not go shopping. In fact, every 3-valued update model of P1⊕P2 contains
{museum(s), not shopping(c), fish(b)}. Suppose now Bob decides that, in the end, he
does not want to go fishing if it rains, i.e our knowledge is updated with:

P3 : not fish(b) ← rain

The intuitive meaning is that, after P3, we do not know whether Bob will go fishing
since we do not know whether Saturday is a rainy day. And, according to definition 2,
there is a supported 3-valued update model of P1 ⊕ P2 ⊕ P3 in which shopping(c) is
false, museum(s) is true and fish(b) is undefined.

It can be checked that, according to all existing stable models based semantics for
updates of [1, 2, 5, 9, 15, 16], P1⊕P2⊕P3 has two stable models: one where rain is true
and fish(b) is false, and another where rain is false and fish(b) is true. A notable
property of the well founded semantics for (static) programs is that the well founded
model is always a subset of all stable models. If one wants to preserve this property in
DLPs, in the well founded model of this example one should neither conclude fish(b)
nor notfish(b). If a rule would only be rejected in case there is a later one with true
body (rather than not false as we advocate), since the body of the rule not fish(b) ←
rain is not true, we would not be able to reject the initial rule fish(b) ← museum(s),
and hence would conclude fish(b). This shows that, to preserve this relation to stable
models based semantics, the well founded model semantics for DLPs must relay on this
notion of 3-valued rejection described above.

4 The Well founded semantics for DLPs

Update models and supported models are just the starting point of our investigation.
In this section, based on the notion of causal rejection just presented, we define the

Well Founded Semantics for DLPs. Formally, our definition is made in a way similar
to the the definition of the well founded semantics for normal in [10], where the well
founded model is characterized by the least alternating fixpoint of the Gelfond-Lifschitz
operator Γ (i.e. by the least fixpoint of Γ 2). Unfortunately, if we apply literally this
idea, i.e. define the well founded model as the least alternating fixpoint of the operator
used for the dynamic stable (or refined stable) models of DLPs, the resulting semantics
turns out to be too skeptical:

Example 2. It is either day or night (but not both). Moreover, if the stars are visible
it is possible to make astronomical observations. This knowledge is updated with the
information that: if it is night the stars are visible; the observatory is closed if it is not
possible to make observations; and the starts are not visible:

P1 : observe ← see stars. day ← not night. night ← not day.
P2 : see stars ← night. not see stars. closed(obs) ← not observe.

The intended meaning of P1 ⊕ P2 is that currently the stars are not visible, it is
not possible to make astronomical observations and, hence, the observatory is closed.
However, it is easy to check, the least alternating fixpoint of ΓP1⊕P2 is {not see stars},
in which one is not able to conclude that the observatory is closed. This is, in our
opinion, not satisfactory: since we conclude that we cannot see the stars, we should
also conclude that we cannot make astronomical observations and that the observatory
is closed. Notably, the least alternating fixpoint of ΓS yield even more skeptical results.
In fact, this is a general result which is an immediate consequence of Lemma 1 below.

In order to overcome this problem, instead of defining the well founded model in terms
of the least fixpoint of the double application of one of the operators for stable models
of DLPs, we define it as the least fixpoint of the composition of two different (anti-
monotonous) operators. Such operators have to deal with the causal rejection principle
described above, in which a rule is to be rejected in case there is a later conflicting
one whose body is not false. In the well founded semantics of normal logic programs,
if there exists a rule A ← body (where A is an atom), such that body is not false in
the well founded model, then A is not false as well. Consider now the same situation
in an update setting with a rule L ← body1, where body1 is not false. In this situation
we should conclude that L is not false unless there exists a rule notL ← body2, where
body2 is true in the same or in a later program in the sequence. In fact, note that the
rule for notL is not rejected by the one for L. Since the body of the former is true,
according to the causal rejection principle notL should be true (i.e. L should be false)
unless the rule is rejected by some later rule. In any case, L ← body1 is no longer
playing any role in determining the truth value of L. For this reason we allow rules
to reject other rules in previous or in the same update while determining the set of
non-false literals of the well founded model and, accordingly, we use the ΓS

⊕Pi
operator,

as the first operator of our composition.
For determining the set of true literals according to the causal rejection principle,

only the rules that are not rejected by conflicting rules in later updates should be put
in place. For this reason we use the operator Γ⊕Pi as the second operator, the well
founded model being thus defined as the least fix point of the ΓΓS .

Definition 3. The well founded model WFDy(⊕Pi) of a DLP ⊕Pi is the (set inclu-
sion) least fixpoint of Γ⊕PiΓ

S
⊕Pi

.

Since both Γ and ΓS are antimonotonous (cf. [1, 15]), ΓΓS is monotonous, and so it
always has a least fixpoint. In other words, WFDyis uniquely defined for every DLP.
Moreover WFDy(⊕Pi) can be obtained by (transfinitely) iterating ΓΓS , starting from
the empty interpretation.

In alternating fixpoint definitions for the well founded semantics of normal pro-
grams, true atoms in the well founded model are those that belong to the least fixpoint
of the double application of the Gelfond-Lifschitz operator [12] (that is defined over
sets of atoms), the false ones being those that do not belong to the application of the
Gelfond-Lifschitz operator to the set of true atoms. This is not the case in definition
3, where both true and false literals are obtained at once. This is possible because
both operator in the composition apply directly to sets of literals. However, given the
proposition below, it is easy to see that an approach similar to that of normal programs
could have been used instead.

Proposition 1. Let I be any fixpoint of ΓΓS. Then, for each negative literal notA,
not A ∈ I ⇔ A 6∈ ΓS(I).

The reader can check that, for the DLP P1⊕P2 of example 2, the well founded model is
{not see stars, not observe, closed(obs)}. So, in this example, WFDy yield the desired
less skeptical conclusions. In fact, in general WFDy is less skeptical than any semantics
resulting from any other combination of ΓS and Γ .

Lemma 1. Let ⊕Pi be a DLP, and let X, Y be two interpretations such that X ⊆ Y .
Then ΓS(Y) ⊆ Γ (X).

From this Lemma it follows that the least fixpoint of any other combination is a pre-
fixpoint of ΓΓS and, as such, a subset of the least fixpoint of ΓΓS .

Example 3. Let P1, P2 and P3 be the programs of example 1. The reader can check
that WFDy(P1 ⊕ P2 ⊕ P3) is, as desired, {not snow, museum(s), not shopping(c)}.

Note in this example that the single program P1 ∪ P2 ∪ P3 is consistent, but
WFDy(P1 ⊕ P2 ⊕ P3) is nonetheless different from the well founded model of the
single program P1 ∪ P2 ∪ P3. In fact, the well founded model of that single program
contains fish(b). This, as argued in example 1, is not in accordance with the intended
meaning of that sequence of updates. Moreover, this (desired) behavior is not partic-
ular to the well founded semantics. In fact, the intersection of all stable models of
P1∪P2∪P3 contains fish(b), but fish(b) is not in the intersection of all stable models
of P1 ⊕ P2 ⊕ P3, in all of the stable model based semantics for DLPs [1, 2, 5, 9, 15, 16].

As shown in example 1, WFDy(P1⊕P2⊕P3) is a supported 3-valued update model.
This result holds in general, whenever the well founded model does not contain any
pair of complementary literals.

Theorem 1. Let ⊕Pi be a DLP and W its well founded model. Then, if W contains
no pair of complementary literals, W is a supported 3-valued update model of ⊕Pi.

The proviso of W not containing any pair of complementary literals is due to the fact
that, since we are using a notion of interpretation that allows contradictory sets of
literals, in principle nothing prevents the well founded model of a DLP from being con-
tradictory. We say that a DLP ⊕Pi is consistent (or non contradictory) iff WFDy(⊕Pi)
is consistent i.e. it does not contain any pair of complementary literals. Note that for
contradictory DLPs the very notion of model is not applicable.

5 Properties

Our motivation for defining a new semantics for logic programs updates, as described in
the Introduction, is based on a number of requirements. Though lack of space prevents
us from presenting here a detailed study on properties, this paper would not be complete
without at least stating in what term those requirements are indeed met by WFDy,
and briefly comparing with existing approaches.

One of the important requirements is that of having a semantics computable in
polynomial time. It is not difficult to check that the computation of both Γ⊕Pi

(I) and
ΓS
⊕Pi

(I) is polynomial in the size of DLP , and so:

Proposition 2. The well founded model of any finite ground dynamic logic program
⊕Pi is computable in polynomial time on the number of rules in ⊕Pi.

Another required property is that of relevance [8], so as to guarantee the possibility
of defining query driven proof procedures. Informally, in normal (single) programs, a
semantics complies with relevance if the truth value of any atom A in a program only
depends on the rules relevant for this literal (i.e. those rules with head A, or with a head
A′ such that A′ belongs to the body of (another) relevant rule). In order to establish
results regarding relevance of WFDy we have first to define what is the relevant part
of a DLP (rather than a single program) wrt a literal (rather than atom).

Definition 4. Let ⊕Pi be any DLP in the language L and L, B, C literals in L. We
say L directly depends on B iff B occurs in the body of some rule in ⊕Pi with head L
or not L. We say L depends on B iff L directly depends on B or there is some C such
that L directly depends on C and C depends on B. We call RelL(⊕Pi) the dynamic
logic programs P

(L)
1 ⊕ . . . ⊕ P

(L)
n such that P

(L)
i is the set of all rules of Pi with head

is L or not L or some B on which L depends on.

This definition simply applies the above intuition of relevance for normal program, but
now considering sequences of programs, and by stating that rules for notA are relevant
for A (and vice-versa). And WFDy complies with relevance exactly in these terms:

Theorem 2. . Let ⊕Pi be a DLP in the language L and A any atom of L. Then
WFDy(⊕Pi) ∩ {A, notA} = WFDy(RelA⊕Pi) ∩ {A, notA}.
As noted above, WFDy can be contradictory. In these cases, inconsistent conclusions
for a given atom may follow, but without necessarily having a contradiction in all atoms.
However, as desired in updates, these contradictions in atoms may only appear in case
there are two conflicting simultaneous rules (i.e. in a same program of the sequence)
which are both supported, and none of them is rejected by some later update:

Theorem 3. The well founded model W of a sequence ⊕Pi is noncontradictory iff for
all τ, η ∈ Pi such that: τ ./ η, W |= body(τ), W |= body(η)) there exists γ ∈ Pj , i < j
such that γ ./ τ or γ ./ η and ΓS(W) |= body(γ).

Finally, it was our goal to find a proper generalization of the well founded semantics
single programs into logic programs updates. It is thus important, to guarantee that
WFDy coincides with the well founded semantics of GLPs [6] when the considered
DLP is a single program P , and with the well founded semantics of normal programs
[11] when, furthermore, that single program has no negation in rule heads. Denoting
by WFG(P) the well founded semantics of the generalized logic program P according
to [6]:

Theorem 4. Let P be a generalized program. Then WFG(P) = WFDy(P).

Since WFG(P) coincides with the well founded semantics of [11] when P is a normal
program (cf. [6]), it follows that WFDy coincides with the semantics of [11] whenever
the sequences is made of a single program without default negation in rule heads.

5.1 Brief Comparisons

Among the various semantics defined for sequences of logic programs [1, 2, 5, 9, 15, 16,
20], WFDy shares a close relationship with the refined stable models semantics of [1],
resembling that between stable and well founded semantics of normal programs.

Proposition 3. Let M be any refined stable model of ⊕Pi. The well founded model
WFDy(⊕Pi) is a subset of M. Moreover, if WFDy(⊕Pi) is a 2-valued interpretation,
it coincides with the unique refined stable model of ⊕Pi.

This property does not hold if, instead of the refined semantics, we consider any of
the other semantics based on causal rejection [2, 5, 9, 15, 16]. This is so because these
semantics are sometimes overly skeptical, in the sense that admit to many models,
and thus have a smaller set of conclusions (in the intersection of all stable models).
One particular case when this happens is when a sequence is updated with tautologies.
Though, intuitively, updating our knowledge with a tautology should have no influence
on the results, this is not the case in any of those semantics. For example, with all
the cited semantics, updating the program P1 ⊕ P2 of example 2 (which, according to
all of them, has a single stable model containing not see starts) with the program P3

consisting of the tautological rule see stars ← see stars leads to two stable models:
one in which see stars is true and the other in which see stars is false. Thus, this
intuitively harmless update prevents not see stars from being concluded. This is not
the case with [1], nor with WFDy, which are both immune to tautologies. In this
example, both conclude that not see stars is true, before and after the update. For
further details on this topic see [1].

Notably, all the attempts found in the literature [2, 3, 14] to define a well founded
semantics for logic programs updates are overly skeptical as well. According to all the
cited semantics, the well founded model of P1⊕P2⊕P3 is the empty set, hence, unlike
WFDy, they are not able to conclude that not see stars is true. Though there it cannot
be detailed here, other class of programs exist, besides the ones with tautologies, where
the cited semantics bring more skeptical results then WFDy. Moreover the definition
of all these semantics is based on a complex syntactical transformation of sequences
into single programs, making it difficult to grasp what the declarative meaning of a
sequence is.

6 Concluding remarks

Guided by the needs of applications, it was our purpose in this paper to define a
semantics for DLPs fulfilling some specific requirements. Namely: a semantics whose
computation has polynomial complexity; that is able to deal with contradictory pro-
grams, assigning them a non trivial meaning; that can be used to compute answers to
queries without always visiting the whole knowledge base. With this in mind, we have
defined a well founded semantics for DLPs.

The defined semantics is a generalization of the well founded semantics of normal
and generalized logic programs, and it coincides with them when the DLP consists of
a single program. It has polynomial complexity and obeys relevance. Regarding the
requirement of being able to deal with contradictions, lack of space prevented us from
further elaborating on the properties of the semantics in these cases, and on how it
can in general be used to detect contradictory literals and literals that depend on
contradictions. We have, nonetheless, provided a complete characterization of the non
contradictory cases.

We briefly compared the proposed semantic to the existent ones for DLPs that are
based on the causal rejection principle, and shown that it is a skeptical approximation
of the refined stable model semantics for DLPs, and less skeptical than all other existing
well founded based semantics for updates. Comparisons to semantics of updates that
are not based on the causal rejection principle are outside the scope of this paper. For
an analysis of these semantics, and comparisons to the above ones see e.g. [15].

The definition of WFDy, as well as the various definitions of the well founded
semantics for normal logic programs, is based on ground programs only. Though not
presented, an operational semantics that allows query evaluation also in the non ground
case already exists. Future work involves the development of implementations of WFDy
based on such operational semantic, and its usage in applications.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic program-
ming: a principled based approach. In V. Lifschitz and I. Niemelä, editors, LPNMR-7,
volume 2923 of LNAI, pages 8–20. Springer, 2004.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. The Journal of Logic Programming,
45(1–3):43–70, September/October 2000.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language
for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

4. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. The Journal of
Logic Programming, 19 & 20:9–72, May 1994.

5. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheritance. In
D. De Schreye, editor, ICLP’99, pages 79–93. MIT Press, 1999.

6. C. V. Damásio and L. M. Pereira. Default negation in the heads: why not? In R. Dyckhoff,
H. Herre, and P. Schroeder-Heister, editors, Int. Ws. Extensions of Logic Programming,
volume 1050 of LNAI. Springer, 1996.

7. C. V. Damásio and L. M. Pereira. A survey on paraconsistent semantics for extended logic
programas. In D. M. Gabbay and Ph. Smets, editors, Handbook of Defeasible Reasoning
and Uncertainty Management Systems, volume 2, pages 241–320. Kluwer, 1998.

8. J. Dix. A classification theory of semantics of normal logic programs II: Weak properties.
Fundamenta Mathematicae, 22(3):257–288, 1995.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on
causal rejection. Theory and Practice of Logic Programming, 2:711–767, November 2002.

10. A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal of
Computer and System Sciences, 1992.

11. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. A. Bowen, editors, ICLP’88, pages 1070–1080. MIT Press, 1988.

13. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren and
Szeredi, editors, 7th ICLP, pages 579–597. MIT Press, 1990.

14. J. A. Leite. Logic program updates. Master’s thesis, Dept. de Informática, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, November 1997.

15. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelligence
and Applications. IOS Press, December 2002.

16. J. A. Leite and L. M. Pereira. Iterated logic program updates. In J. Jaffar, editor,
JICSLP-98, pages 265–278. MIT Press, 1998.

17. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary
report). In B. Nebel, C. Rich, and W. Swartout, editors, KR-92. Morgan-Kaufmann, 1992.

18. W. May, B. Ludasher, and G. Lausen. Well-founded semantics for deductive object-
oriented database languages. In Procs. of the 5th DOOD, volume 1341 of LNAI, pages
320–336. Springer, 1997.

19. C. Sakama and K. Inoue. Updating extended logic programs through abduction. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, LPNMR-99, volume 1730 of LNAI, pages
147–161. Springer, 1999.

20. Y. Zhang and N. Y. Foo. Updating logic programs. In Henri Prade, editor, ECAI-98,
pages 403–407. John Wiley & Sons, 1998.

21. Y. Zou, T. Finin, L. Ding, H. Chen, and R. Pan. Using semantic web technology in multi-
agent systems: a case study in the taga trading agent environment. In Proceedings of the
5th international conference on Electronic commerce, pages 95 – 101. ACM Press, 2003.

