
Operational semantics for DyLPs?

F. Banti1, J. J. Alferes1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Theoretical research has spent some years facing the problem
of how to represent and provide semantics to updates of logic programs.
This problem is relevant for addressing highly dynamic domains with
logic programming techniques. Two of the most recent results are the de-
finition of the refined stable and the well founded semantics for dynamic
logic programs that extend stable model and well founded semantic to
the dynamic case. We present here alternative, although equivalent, oper-
ational characterizations of these semantics by program transformations
into normal logic programs. The transformations provide new insights on
the computational complexity of these semantics, a way for better under-
standing the meaning of the update programs, and also a methodology
for the implementation of these semantics. In this sense, the equivalence
theorems in this paper constitute soundness an completeness results for
the implementations of these semantics.

1 Introduction

In recent years considerable effort was devoted to explore the problem of how
to update knowledge bases represented by logic programs (LPs) with new rules.
This allows, for instance, to better use LPs for representing and reasoning with
knowledge that evolves in time, as required in several fields of application. The
LP updates framework has been used, for instance, as the base of the MINERVA
agent architecture [14] and of the action description language EAPs [4].

Different semantics have been proposed [1, 2, 5, 6, 8, 15, 18, 19, 23] that assign
meaning to arbitrary finite sequences P1, . . . , Pm of logic programs. Such se-
quences are called dynamic logic programs (DyLPs), each program in them rep-
resenting a supervenient state of the world. The different states can be seen as
representing different time points, in which case P1 is an initial knowledge base,
and the other Pis are subsequent updates of the knowledge base. The different
states can also be seen as knowledge coming from different sources that are (to-
tally) ordered according to some precedence, or as different hierarchical instances
where the subsequent programs represent more specific information. The role of
the semantics of DyLPs is to employ the mutual relationships among different
states to precisely determine the meaning of the combined program comprised
of all individual programs at each state. Intuitively, one can add at the end of
? This work was supported by project POSI/40958/SRI/01, FLUX, and by the Euro-

pean Commission within the 6th Framework P. project Rewerse, no. 506779.

the sequence, newer rules or rules with precedence (arising from newly acquired,
more specific or preferred knowledge) leaving to the semantics the task of ensur-
ing that these added rules are in force, and that previous or less specific rules
are still valid (by inertia) only as far as possible, i.e. that they are kept as long
as they are not rejected. A rule is rejected whenever it is in conflict with a newly
added one (causal rejection of rules). Most of the semantics defined for DyLPs
[1, 2, 5, 6, 8, 15] are based on such a concept of causal rejection.

With the exception of the semantics proposed in [5], these semantics are
extensions of the stable model semantics [10] to DyLPs and are proved to coincide
on large classes of programs [8, 11, 13]. In [1] the authors provide theoretical
results which strongly suggest that the refined semantics [1] should be regarded
as the proper stable model-like semantics for DyLPs based on causal rejection.
In particular, it solves some unintuitive behaviour of the other semantics in what
regards updates with cyclic rules.

As discussed in [5], though a stable model-like semantics is the most suitable
option for several application domains1 other domains exist, whose specificities
require a different approach. In particular, domains with huge amount of dis-
tributed and heterogenous data require an approach to automated reasoning
capable of quickly processing knowledge, and of dealing with inconsistent in-
formation even at the cost of losing some inference power. Such areas demand
a different choice of basic semantics, such as the well founded semantics [9].
In [5] a well founded paraconsistent semantics for DyLPs (WFDy) is defined.
The WFDy semantics is shown to be a skeptical approximation of the refined
semantic defined in [1]. Moreover, it is always defined, even when the consid-
ered program is inconsistent, and its computational complexity is polynomial
wrt. the number of rules of the program. For these reasons we believe that the
refined and the well founded semantics for DyLPs are useful paradigms in the
knowledge representation field and hence implementations for computing both
semantics are in order.

The existing definitions of both semantics are purely declarative, a feature
that provides several advantages, like the simplicity of such definitions and the
related theorems. However, when facing computational problem like establish-
ing computational complexity and programming implementations, a more oper-
ational approach would have several advantages. For providing an operational
definition for extensions of normal LPs, a widely used technique is that of having
a transformation of the original program into a normal logic program and then
to prove results of equivalence between the two semantics. In logic programs
updates this methodology has been successfully used several times (see, for in-
stance, [2, 8]). Once such program transformations have been established (and
implemented), it is then an easy job to implement the corresponding semantics
by applying existing software for computing the semantics of normal LPs, like
DLV [7] or smodels [20] for the stable model semantics, or XSB-Prolog [22] for
the well founded semantics. Following this direction, we provide two transfor-

1 In particular, the stable model semantics has been shown to be a useful paradigm
for modelling NP-complete problems.

mations of DyLPs into normal LPs (namely the refined and the well founded
transformation), one for each semantics and provide equivalence results.

The shape of the transformations proposed for the refined and well founded
semantics for DyLPs is quite different from the ones proposed for the other se-
mantics (see for instance [2, 3, 12]). These differences are partially related to the
different behaviors of the considered semantics (none of the existing program
transformation is sound and complete w.r.t the refined and the well founded se-
mantics) but they are also related to peculiar properties of the presented program
transformations. One of such properties is the minimum size of the transformed
program. Since the size of the transformed program significantly influences the
cost of computing the semantics (especially in case of the stable model seman-
tics), this topic is quite relevant. A drawback of the existing program transfor-
mations is that the size of the transformed program linearly depends on the
size of the language times the number of performed updates. This means that,
when the number of updates grows, the size of the transformed program grows
in a way that linearly depends on the size of the language. This happens even
when the updates are empty. On the contrary, in our approach the size of the
transformed programs has an upper bound that does not depend on the number
of updates, but solely (and linearly) on the number of rules and the size of the
original language (see Theorems 2 and 4).

Prototypical implementations that use the theoretical background of this
paper are available at http://centria.di.fct.unl.pt/∼banti/implementation.htm.
These implementations take advantage of DLV, smodels, and XSB-Prolog sys-
tems to compute the semantics of the transformed programs.

Due to their simplicity, the proposed transformations are also interesting
beyond the scope of implementation. They give new insights on how the rejec-
tion mechanism works and how it creates new dependencies among rules. The
transformed programs provide an alternative, more immediate description of the
behaviour of the updated program.

The rest of the paper is structured as follows. Section 2 establishes notation
and provides some background and the formal definition of the refined and well
founded semantics for DyLPs. Section 3 illustrates the refined transformation,
describes some of its properties and makes comparisons to related transforma-
tions for other semantics. The well founded transformation is defined and studied
in Section 4 . Finally, Section 5 draws conclusions and mentions some future de-
velopments. For lack of space, proofs cannot be presented here, but are available
on a technical report from the authors.

2 Background: Concepts and notation

In this section we briefly recall the syntax of DyLPs, and the refined and well
founded semantics defined, respectively, in [1] and [5].

To represent negative information in logic programs and their updates, DyLP
uses generalized logic programs (GLPs) [16], which allow for default negation
not A not only in the premises of rules but also in their heads. A language L is

any set literals of the form A or not A such that A ∈ L iff not A ∈ L. A GLP
defined over a propositional language L is a (possibly infinite) set of ground
rules of the form L0 ← L1, . . . , Ln, where each Li is a literal in L, i.e., either
a propositional atom A in L or the default negation not A of a propositional
atom A in L. We say that A is the default complement of not A and viceversa.
With a slight abuse of notation, we denote by not L the default complement of
L (hence if L is the not A, then not L is the atom A). Given a rule τ as above,
by hd(τ) we mean L0 and by B(τ) we mean {L1, . . . , Ln}.

In the sequel an interpretation is simply a set of literals of L. A literal L
is true (resp. false) in I iff L ∈ I (resp. not L ∈ I) and undefined in I iff
{L, not L} ∩ I = {}. A conjunction (or set) of literals C is true (resp. false) in I
iff C ⊆ I (resp. ∃ L ∈ C such that L is false in I). We say that I is consistent
iff ∀ A ∈ L at most one of A and not A belongs to I, otherwise we say I is
paraconsistent. We say that I is 2-valued iff for each atom A ∈ L exactly one of
A and not A belongs to I.

A dynamic logic program with length n over a language L is a finite sequence
P1, . . . , Pn (also denoted P, where the Pis are GLPs indexed by 1, . . . , n), where
all the Pis are defined over L. Intuitively, such a sequence may be viewed as
the result of, starting with program P1, updating it with program P2, . . . , and
updating it with program Pn. For this reason we call the singles Pis updates.
Let Pj and Pi be two updates of P. We say that Pj is more recent than Pi iff
i < j. We use ρ (P) to denote the multiset of all rules appearing in the programs
P1, ..., Pn.

The refined stable model semantics for DyLPs is defined in [1] by assigning
to each DyLP a set of stable models. The basic idea of the semantics is that,
if a later rule τ has a true body, then former rules in conflict with τ should
be rejected. Moreover, any atom A for which there is no rule with true body
in any update, is considered false by default. The semantics is then defined by
a fixpoint equation that, given an interpretation I, tests whether I has exactly
the consequences obtained after removing from the multiset ρ (P) all the rules
rejected given I, and imposing all the default assumptions given I. Formally, let:

Default(P, I) = {not A | 6 ∃ A ← body ∈ ρ (P) ∧ body ⊆ I}
RejS(P, I) = {τ | τ ∈ Pi| ∃ η ∈ Pj i ≤ j, τ ./ η ∧ B(η) ⊆ I}

where τ ./ η means that τ and η are conflicting rules, i.e. the head of τ is the
default complement of the head of η.

Definition 1. Let P be any DyLP of length n, i ≤ n over language L and M a
two valued interpretation and let Pi be the prefix of P with length i. Then M is
a refined stable model of P, at state i, iff M is a fixpoint of ΓS

Pi:

ΓS
Pi(M) = least

(
ρ

(Pi
) \RejS(Pi, M) ∪Default(Pi, M)

)

where least(P) denotes the least Herbrand model of the definite program obtained
by considering each negative literal not A in P as a new atom2.
2 Whenever clear from the context, we omit the P in the above defined operators.

The definition of dynamic stable models of DyLPs [2] is as the one above, but
where the i ≤ j in the rejection operator is replaced by i < j. I.e., if we denote
this other rejection operator by Rej(P, I), and define ΓP(I) by replacing in ΓS

P
RejS by Rej, then the stable models of P are the interpretations I such that
I = ΓP(I).

The well founded semantics for DyLPs is defined through the two operators
Γ and ΓS . We use the notation ΓΓS to denote the operator obtained by first
applying ΓS and then Γ . The well founded model of a program is defined as the
least fix point of such operator. Formally:

Definition 2. The well founded model WFDy(P) of a DyLP P at state i is the
(set inclusion) least fixpoint of ΓPiΓS

Pi where Pi is the prefix of P with length i.

Since the operators Γ and ΓS are anti-monotone (see [5]) the composite
operator ΓΓS is monotone and, as it follows from the Tarski-Knaster Theorem
[21], it always has a least fixpoint. In other words, WFDy is uniquely defined for
every DyLP. Moreover, WFDy(P) can be obtained by (transfinitely) iterating
ΓΓS , starting from the empty interpretation. As already mentioned, the refined
and well founded semantics for DyLPs are strongly related. In particular, they
share analogous connections to the ones shared by the stable model and the well
founded semantics of normal LPs, as we see from the following proposition.

Proposition 1. Let M be any refined stable model of P. The well founded model
WFDy(P) is a subset of M. Moreover, if WFDy(P) is a 2-valued interpretation,
it coincides with the unique refined stable model of P.

This property does not hold if, instead of the refined semantics, we consider any
of the other semantics based on causal rejection [2, 6, 8, 15].

Example 1. Let P : P1, P2, P3 be the as follows:

P1 : a ← b. P2 : b. c. P3 : not a ← c.

The well founded model of P is M = {b, c, not a}. Moreover, M is a two valued
interpretation and so, by proposition 1, M is also the unique refined model.

3 A program transformation for the refined semantics.

The refined transformation defined in this section turns a DyLP P in the lan-
guage L into a normal logic program PR (called the refined transformational
equivalent of P) in an extended language. We provide herein a formal procedure
to obtain the transformational equivalent of a given DyLP.

Let L be a language. By LR we denote the language whose elements are
either atoms of L, or atoms of one of the following forms: u, A−, rej(A, i),
rej(A−, i), where i is a natural number, A is any atom of L and no one of the
atoms above belongs to L. Intuitively, A− stands for “A is false”, while rej(A, i)
(resp. rej(A−, i)), stands for: “all the rules with head A (resp. not A) in the
update Pi are rejected”. For every literal L, if L is an atom A, then L denotes

A itself, while if L is a negative literal not A then L denotes A−. Finally, u is a
new atom not belonging to L which is used for expressing integrity constraints
of the form u ← not u, L1, . . . , Lk (which has the effect of removing all stable
models containing L1, . . . , Lk).

Definition 3. Let P be a Dynamic Logic Program whose language is L. By
the refined transformational equivalent of P, denoted PR, we mean the normal
program PR

1 ∪ . . . ∪ PR
n in the extended language LR, where each PR

i exactly
consists of the following rules:

Default assumptions For each atom A of L appearing in Pi, and not appear-
ing in any other Pj, j ≤ i a rule:

A− ← not rej(A−, 0)

Rewritten rules For each rule L ← body in Pi, a rule:
L ← body, not rej(L, i)

Rejection rules For each rule L ← body in Pi, a rule:
rej(not L, j) ← body

where j ≤ i is either the largest index such that Pj has a rule with head not L
or. If no such Pj exists, and L is a positive literals, then j = 0, otherwise
this rule is not part of PR

i . Moreover, for each rule L ← body in Pi, a rule:
rej(L, j) ← rej(L, i)

where j < i is the largest index such that Pj also contains a rule L ← body.
If no such Pj exists, and L is a negative literal, then j = 0, otherwise this
rule is not part of PR

i .
Totality constraints For each pair of conflicting rules in Pi, with head A and

not A, the constraint:
u ← not u, not A, not A−

Let us briefly explain the intuition and the role for each of these rules. The
default assumptions specify that a literal of the form A− is true (i.e. A is false)
unless this initial assumption is rejected. The rewritten rules are basically the
original rules of the sequence of programs with an extra condition in their body
that specifies that in order to derive conclusions, the considered rule must not
be rejected. Note that, both in the head and in the body of a rule, the negative
literals of the form not A are replaced by the corresponding atoms of the form
A−. The role of rejection rules is to specify whether the rules with a given head
in a given state are rejected or not. Such a rule may have two possible forms. Let
L ← body be a rule in Pi. The rule of the form rej(L, j) ← body specifies that
all the rules with head not L in the most recent update Pj with j ≤ i must be
rejected. The rules of the form rej(L, j) ← rej(L, i) “propagate” the rejection to
the updates below Pj . Finally, totality constraints assure that, for each literal A,
at least one of the atoms A, A− belongs to the model. This is done to guarantee
that the models of transformed program are indeed two valued.

The role of the atoms of the extended language LR that do not belong to the
original language L is merely auxiliary, as we see from the following theorem.
Let P be any Dynamic Logic Program and Pi and update of P. We use ρ (P)Ri

= PR
0 ∪ . . . ∪ PR

i .

Theorem 1. Let P be any Dynamic Logic Program in the language L, Pi an
update of P, and let ρ (P)Ri be as above. Let M be any interpretation over
L. Then M is a refined stable model of P at Pi iff there exits a two valued
interpretation MR such that MR is a stable model of ρ (P)Ri and M ≡L MR.
Moreover, M and MR satisfy the following conditions:

A ∈ M ⇔ A ∈ MR not A ∈ M ⇔ A− ∈ MR

not A ∈ Default(Pi,M)) ⇔ rej(A−, 0) 6∈ MR

τ ∈ rejS(M,Pi) ∧ τ ∈ Pi ⇔ rej(hd(τ), i) ∈ MR

For illustration, we present an example of the computation of the refined
transformational equivalent of a DyLP.

Example 2. Let P : P1, P2 be the as in example 1. The transformational equiv-
alent of P is the following sequence PR

1 , PR
1 , PR

2 :

PR
1 : a− ← not rej(a−, 0). b− ← not rej(b−, 0).

a ← b, not rej(a, 1). rej(a−, 0) ← b.
PR

2 c− ← not rej(c−, 0).
rej(b−, 0). rej(c−, 0).
b ← not rej(b, 2). c ← not rej(c, 2).

PR
3 : a− ← c, not rej(a, 3). rej(a, 1) ← c.

For computing the refined semantics of P at P2 we just have to compute
the stable model semantics of the program PR

1 ∪ PR
2 . This program has a single

stable model MR consisting of the following set3.

MR = {a−, b, c, rej(a, 1), rej(a−, 0), rej(b−, 0), rej(c−, 0)}

We conclude that, P has M = {b, c} as the unique refined model. To compute the
refined semantics of P we have to compute, instead, the stable model semantics
of the program PR = PR

1 ∪ PR
2 ∪ PR

3 . Let us briefly examine the transformed
program PR and see how it clarifies the meaning of the related DyLP. Since
there exist no rules with head rej(b, 2) and rej(c, 2), we immediately infer b and
c. Then we also infer rej(a, 0), rej(b, 0) and rej(c, 0), and so that all the default
assumptions are rejected. The last rule of PR

3 implies rej(a, 1), thus the rule
a ← b in P1 is rejected and we do not infer a. In fact, we infer a− by the first
rule of PR

3 . Hence, the program has the single stable model MR which means
Pas the unique refined model {b, c}.

To compute the refined semantics of a given DyLP P1, . . . , Pn at a given state,
it is sufficient to compute its refined transformational equivalent PR

1 , . . . PR
n , then

3 As usual in the stable model semantics, hereafter we omit the negative literals

to compute the stable model semantics of the normal logic program ρ (P)Ri and,
finally, to consider only those literals that belong to the original language of the
program. A feature of the transformations in this papers, is that of being in-
cremental i.e., whenever a new update Pn+1 is received, the transformational
equivalent of the obtained DyLP is equal to the union of PR

n+1 and the refined
transformational equivalent of the original DyLP. The efficiency of the imple-
mentation relies on largely on the size of the transformed program compared to
the size of the original one. We present here a theoretical result that provides an
upper bound for the number of clauses of the refined transformational equivalent
of a DyLP.

Theorem 2. Let P = P1, . . . Pm be any finite ground DyLP in the language L
and let ρ (P)Rn be the set of all the rules appearing in the refined transformational
equivalent of P. Moreover, let m be the number of clauses in ρ (P) and l be the
cardinality of L4. Then, the program ρ (P)Rn consists of at most 2m + l rules.

The problem of satisfiability under the stable model semantics (i.e. to find
a stable model of a given program) is known to be NP-Complete, while the
inference problem (i.e. to determine if a given proposition is true in all the stable
models of a program) is co-NP-Complete [17]. Hence, from the fact that DyLPs
extends the class of normal LPs and from theorems 1 and 2 it immediately follows
that such problems are still NP-Complete and co-NP-Complete also under the
refined semantics for DyLPs. The size of the refined transformational equivalent
of a DyLP depends linearly and solely on the size of the program and of the
language. It has an upper bound which does not depend on the number of
updates performed. Thus, we gain the possibility of performing several updates
of our knowledge base without losing too much on efficiency.

The refined transformation presents some similarities with the one presented
in [2] and [8]. The three transformations use new atoms to represent rejection
of rules. A fundamental difference between these transformations is that they
are not semantically equivalent. The transformation in [2] is defined for imple-
menting the dynamic stable model semantics of DyLPs of [2], while the one in
[8] implements the Update semantics [8]. These semantics are not equivalent to
the refined one, which was, in fact, introduced for solving some counterintuitive
behaviours of the previously existing semantics for DyLPs (cf. [1]). In particular,
it is proved in [1] that every refined stable model is also a dynamic stable model
and an update stable model but the opposite is not always true. Moreover, the
size of the transformation defined in [2] is 2m + l(n + 2) where l and m are as
in Theorem 2 and n is the number of updates of the considered DyLP. Hence, a
single (even empty or single rule) update add at least l rules to the transformed
program. A similar result also holds when considering the transformation of [8]
(here the size of the transformed program is 2m + nl). The size of the refined
transformational equivalent is instead independent from n. Hence, for DyLPs
with many updates, the transformed programs of these transformation become
4 Since L contains the positive and the negative literals, l is equal to two times the

number of predicates appearing in P.

considerably larger then the ones of the refined transformation, especially in
cases where each of these updates has few rules.

Moreover, the transformations of [2] and [8] approach the problem of comput-
ing the semantics at different states by introducing an extra index on the body
of the transformed program. On the contrary, when using the refined transfor-
mation, it is sufficient to ignore the rules of the transformed program that are
related to the updates after Pi. Apart from computational aspect, the use of
extra indexes and the proliferation of rules make these semantics unsuitable for
the purpose of understanding the behaviour of the updated program.

4 Transformational well founded semantics

The well founded transformation turns a given DyLP P in the language L into a
normal logic program PTW in an extended language LW called the well founded
transformational equivalent of P.

Let L be a language. By LW we denote the language whose atoms are either
atoms of L, or are atoms of one of the following forms: AS A−S , rej(A, i),
rej(AS , i), rej(A−, i), and rej(A−S , i), where i is a natural number, A is any
atom of L and no one of the atoms above belongs to L. Given a conjunction of
literals C, use the notation CS for the conjunction obtained by replacing any
occurrence of an atom A in C with AS .

Definition 4. Let P be a Dynamic Logic Program on the language L. By the
well founded transformational equivalent of P, denoted PTW, we mean the normal
program PW

1 ∪ . . . ∪ PW
n in the extended language LW, where each Pi exactly

consists of the following rules:

Default assumptions For each atom A of L appearing in Pi, and not appear-
ing in any other Pj, j ≤ i the rules:

A− ← not rej(A−S , 0) A−S ← not rej(A−, 0)

Rewritten rules For each rule L ← body in Pi, the rules:

L ← body, not rej(L
S
, i) L

S ← body
S
, not rej(L, i)

Rejection rules For each rule L ← body in Pi, a rule:
rej(not L, j) ← body

where j < i is the largest index such that Pj has a rule with head not L. If
no such Pj exists, and L is a positive literals, then j = 0, otherwise this rule
is not part of PW

i .
Moreover, for each rule L ← body in Pi, a rule:

rej(not L
S
, k) ← body

S
.

where k ≤ i is the largest index such that Pk has a rule with head not L. If
no such Pj exists, and L is a positive literals, then j = 0, otherwise this rule
is not part of PW

i .

Finally, for each rule L ← body in Pi, the rules:
rej(L

S
, j) ← rej(L

S
, i) rej(L, j) ← rej(L, i)

where j < i is the largest index such that Pj also contains a rule L ← body.
If no such Pj exists, and L is a negative literal, then j = 0, otherwise these
rules are not part of PW

i .

As the reader can see, the program transformation above resembles the one
of Definition 3. The main difference is that the transformation of Definition 4
duplicates the language and the rules. This is done for simulating the alternate
application of two different operators, Γ and ΓS used in the definition of WFDy.
The difference between these two operators is on the rejection strategies: the ΓS

operator allows rejection of rules in the same state, while the Γ operator does
not. In the transformation above this difference is captured by the definition of
the rejection rules. Let L ← body be a rule in the update Pi. In the rules of the
form rej(L, j) ← body

S
and rej(L

S
, j) ← body

S
, j is less than i, in the first case,

and less or equal than i in the second one. A second difference is the absence
of the totality constraints. This is not surprising since the well founded model is
not necessarily a two valued interpretation. Note however, that the introduction
of any rule of the form u ← not u, body would not change the semantics. As for
the refined transformation, the atoms of the extended language LW that do not
belong to the original language L are merely auxiliary. Let P be any Dynamic
Logic Program, Pi and update of P, and let ρ (P)Ri = PW

0 ∪ . . . ∪ PW
i .

Theorem 3. Let Pbe any Dynamic Logic Program in the language L, Pi and
update of P, and let ρ (P)Ri be as above. Moreover, Let Wi be the well founded
model of the normal logic program ρ (P)Ri and WFDy(Pi) be the well found
model of P at Pi. Then WFDy(Pi) = {A | ∈ Wi} ∪ {not A| A− ∈ Wi}

To compute the well founded semantics of a given DyLP P1, . . . , Pn at a
given state, it is hence sufficient to compute its well founded transformational
equivalent PW

1 , . . . PW
n , then to compute the well founded model of the normal

logic program ρ (P)Rn and, finally, to consider only those literals that belong to
the original language of the program.

We present here a result analogous that of Theorem 2 that provides an upper
bound to the size of the well founded transformational equivalent.

Theorem 4. Let P : P1, . . . Pm be any finite ground DyLP in the language L
and let ρ (P)Rn be the set of all the rules appearing in the transformational
equivalent of P. Moreover, let m be the number of clauses in ρ (P) and l be the
cardinality of L. Then, the program ρ (P)Rn consists of at most 5m + l rules.

The problem of computing the well-founded model of a normal LP has a
polynomial complexity [9]. Hence, from Theorems 3 and 4, it follows that such
a problem is polynomial also under the well founded semantics for DyLPs.

Other program transformations for the computation of a well founded-like
semantics for DyLPs (see [2, 3, 12]), do not compute the well founded semantics
of DyLPs, as shown in [5]. Moreover, they suffer from the same drawbacks on
the size of the transformed program that have been discussed in Section 3.

5 Concluding remarks and future works

Dynamic Logic Programs is a framework for representing knowledge that evolves
with time. The purpose of this paper was to illustrate operational characteriza-
tions of the refined and well founded semantics for DyLPs defined by program
transformations that transform a DyLP into a semantically equivalent normal
LP. This directly provides a way to implement these semantics, by relying on
software like DLV, smodels (for the refined semantics) and XSB-Prolog (for the
well founded one). Moreover, we have shown that the size of the transformed pro-
grams is linearly bound by the size of the original program. Moreover, especially
in case of the refined semantics, the transformed program is usually readable
and may help to better understand the meaning of the considered DyLP.

The close relationships between the two semantics rise the question whether
an approach to the implementation based on a single program transformation
would have been possible instead. Indeed, the answer is positive. The pro-
gram transformation of Definition 4 for computing the WFDy semantics can
be adapted for the refined semantics. This is done by adding proper integrity
constraints of the form u ← not u, body to the transformed program. Recall
that, as noted in section 4, the addition of such constraints does not change the
well founded model of the program, and hence the new program transformation
would still compute the WFDy semantics.

We opted for presenting two separate transformations for a matter of opti-
mization. Indeed, the size of the transformed program after the transformation
of Definition 3 is less than half the size that the unique transformation would
require. Moreover, the transformed program can be used also for “reading” a
DyLP as a normal logic program, a task for which a program transformation
with many more auxiliary rules and predicates would not be suitable.

As mentioned in the introduction there are several works on possible usage
of DyLPs. Other possible usages can be found in any application areas where
evolution and reactivity are a primary issue. We believe it is the time for the
research on DyLPs to realize practical applications of the framework, to provide
implementations for such applications and face real world problems. One of the
most obvious things to do is to transform the existing prototypical implementa-
tion into a real system and test its performance. In this perspective the paper
presented here is a, still preliminary, but fundamental step.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1), 2005.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, 2000. A preliminary version appeared in KR’98.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

4. J.J. Alferes, F. Banti, and A. Brogi. From logic programs updates to action de-
scription updates. In CLIMA V, 2004.

5. F. Banti, J. J. Alferes, and A. Brogi. The well founded semantics for dynamic logic
programs. In Christian Lemâıtre, editor, Proceedings of the 9th Ibero-American
Conference on Artificial Intelligence (IBERAMIA-9), LNAI, 2004.

6. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), Cambridge, November 1999. MIT Press.

7. DLV. The DLV project - a disjunctive datalog system (and more), 2000. Available
at http://www.dbai.tuwien.ac.at/proj/dlv/.

8. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2002.

9. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

10. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

11. M. Homola. Dynamic logic programming: Various semantics are equal on acyclic
programs. In J. Leite and P. Torroni, editors, 5th Int. Ws. On Computational Logic
In Multi-Agent Systems (CLIMA V). Pre-Proceedings, 2004. ISBN: 972-9119-37-6.

12. J. A. Leite. Logic program updates. Master’s thesis, Dept. de Informática, Facul-
dade de Ciências e Tecnologia, Universidade Nova de Lisboa, November 1997.

13. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2003.

14. J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In J. J. Meyer and M. Tambe, editors, Intelligent Agents VIII
— Agent Theories, Architectures, and Languages, volume 2333 of LNAI, pages
141–157. Springer-Verlag, 2002.

15. J. A. Leite and L. M. Pereira. Iterated logic program updates. In J. Jaffar, editor,
Proceedings of the 1998 Joint International Conference and Symposium on Logic
Programming (JICSLP-98), pages 265–278, Cambridge, 1998. MIT Press.

16. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

17. W. Marek and M. Truszczynski. Autoepistemic logics. Journal of the ACM,
38(3):588–619, 1991.

18. C. Sakama and K. Inoue. Updating extended logic programs through abduction. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, Proceedings of the 5th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-99),
volume 1730 of LNAI, pages 147–161, Berlin, 1999. Springer.

19. J. Sefranek. A kripkean semantics for dynamic logic programming. In Logic for Pro-
gramming and Automated Reasoning(LPAR’2000). Springer Verlag, LNAI, 2000.

20. SMODELS. The SMODELS system, 2000. Available at
http://www.tcs.hut.fi/Software/smodels/.

21. A. Tarski. A lattice–theoretic fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285–309, 1955.

22. XSB-Prolog. The XSB logic programming system, version 2.6, 2003.
xsb.sourceforge.net.

23. Y. Zhang and N. Y. Foo. Updating logic programs. In Henri Prade, editor, Proceed-
ings of the 13th European Conference on Artificial Intelligence (ECAI-98), 1998.

