Intelligenza Artificiale 5 (2011) 77-81
10S Press

77

Evolving Reactive Logic Programs

J.J. Alferes®, F. Banti ®, A. Brogi "

& CENTRIA, Universidade Nova de Lisboa, Portugal
> Dept. of Computer Science, University of Pisa, Italy

Abstract. In this paper we briefly describe the research ac-
tivity that we have been carrying out during the last years
on dynamic logic programs. After reviewing our contribu-
tions to strengthening the semantic foundations of dynamic
logic programs, we describe a simple formalism to reason
about actions —based on dynamic logic programs— and its
event-condition-action extension that supports the specifica-
tion and the execution of reactive programs.

Keywords: Logic programs, dynamic knowledge, action de-
scription languages, event-condition-action languages.

1. Introduction

Research in Artificial Intelligence (Al) is concerned
with producing machines to automate tasks requir-
ing intelligent behavior. An important problem to
face when implementing Al applications is how to
represent knowledge, and how to extract informa-
tion from such knowledge. This area of research is
known as knowledge representation (KR) and reason-
ing. The dominant approach in KR is to define sym-
bolic paradigms based on some form of logic, usu-
ally consisting of crude facts and more sophisticated
logic formulas. Together, facts and formulas form the
knowledge base (KB) of the AI application. Many
tasks for Al applications also demand to perform some
kind of actions. Hence actions, and possibly the ef-
fects of actions, should be represent able in the KR
framework, and the mechanism specifying when an
action must be performed must be defined. Further-
more, usually interactive applications continually re-
ceive external inputs in the form of messages, percep-
tions, commands and so on. Such inputs can be con-
sidered as events to which the Al application is sup-
posed to react in an intelligent way. Reactivity is a key

feature in dynamic domains, where changes frequently
occur. Among the existing proposals for programming
reactive behavior, Event-Condition-Action (ECA) lan-
guages distinguish themselves for their flexibility and
intuitive syntax and semantics.

Dynamic domains require Al applications capable
to handle frequent changes and, consequently, to up-
date their KBs. The required updates surely involve the
extensional part of the knowledge base (facts), but oc-
casionally it may be necessary to update also the inten-
sional part (logic formulas) to represent the fact that
the very rules of the domain changed. Furthermore, for
adapting to the new situation, besides knowledge up-
dates, it may be necessary to update the behavior of the
Al applications, i.e., the reactive mechanisms them-
selves. These updates may be the result of external in-
puts, but it might be necessary for the application to
perform actions leading to self-updates. Moreover, be-
sides what could be called basic actions like, for in-
stance, insertions and deletions of facts and formulas,
developers may want to specify more sophisticated ac-
tions obtained by combining the basic ones.

Among the existing formalisms for KR, Logic Pro-
gramming (LP) has a simple logic-based syntax, for-
mal declarative semantics and implemented inference
systems. In the past years, part of the research on
LP focused on representing dynamic knowledge, i.e.,
knowledge that is constantly self-updated, leading to
the dynamic logic programming (DyLP) framework
[5,9,10,12]. Taking advantage of the established re-
sults in the field, we developed a (dynamic) LP frame-
work for programming Al applications satisfying the
above listed features.

In this paper, we first review (Section 2) our contri-
butions to strengthening the semantics foundations of
dynamic logic programs that yielded a refined stable-
model based semantics and a well-founded semantics
for this class of logic programs. We then describe (Sec-
tion 3) a simple formalism, named EAPs (after Evolv-
ing Action Programs) to reason about the effects of
actions —based on dynamic logic programs and on
the LP update language Evolp [4]— and its event-
condition-action extension ERA (after Evolving Alge-

1876-1364/11/$17.00 © 2011 — IOS Press and the authors. All rights reserved

78 Alferes, Banti, Brogi / Evolving Reactive Logic Programs

braic Programs) that supports the specification and the
execution of reactive programs. As we will see, ERA
supports the specification and the execution of reactive
programs by detecting (simple and complex) events
and by executing (simple and complex) actions includ-
ing self-updates. Since ERA can also encode EAPs, it
hence satisfies the features listed earlier in this Intro-
duction. Finally some conclusions and directions for
future work are discussed (Section 4).

We assume the reader is familiar with logic pro-
gramming and the stable models and well-founded se-
mantics and refer to [6] for details on syntax and se-
mantics of LPs.

2. Dynamic Logic Programs

Dynamic Logic Programs represent evolving knowl-
edge. Syntactically, a DyLP P is a sequence

P,....P,

(rather than a single program) of generalized logic pro-
grams (GLPs), viz., programs where rule heads may
be negative literals. P; represents the initial knowledge
and the other P;s are supervenient updates represent-
ing the evolution of the described situation. Given two
updates P;, P;, of a DyLP P, P; is said to be more
recent than P; if P; follows P; in the sequence P. In
the past years, several semantics have been defined for
providing a meaning to DyLPs [5,9,10,12,13]. These
semantics are extensions of the stable model seman-
tics of normal logic programs, in the sense that, when-
ever the considered DyLP is a single normal program
P, the models of P in the considered semantics for
DyLPs coincide with the stable models of P. Another
common denominator of these semantics, is the causal
rejection principle [10,12]. This principle states that a
model M of a DyLP ‘P must fulfill a rule T in an update
of P unless there exists a rule in a more recent update
that is in conflict with T and whose body is true in M.
Two rules 7 and 7 are said to be in conflict if they have
complementary heads, viz., the head of 7 is a literal A
and the head of 7 is not A or viceversa. The principle
allows a more recent rule to specify an exception to an
older one, thus allowing to update previous beliefs.
The semantics for DyLPs based on the causal rejec-
tion principle coincide on large classes of programs but
disagree on some examples and, at the time we started
our investigation, there was no general agreement on
which should be the stable model-like semantics for

DyLPs based on the causal rejection principle. More-
over, all the semantics defined before we started our
investigation show counterintuitive behavior in some
well known example. The simpler examples involve
tautological updates that happen to change the seman-
tics of a DyLP, while immunity to tautologies is a prop-
erty generally required to a semantics.
For instance, the single program DyLP

Py : notrain.
rain «— cloudy.
cloudy < not sun.
sun «— not cloudy.

has one model {not rain, sun}. If we update P; with
Py rain < rain.

another model {rain, not sun} is allowed. Somehow,
the tautology has generated another model by rejecting
the rule not rain. In general, all the known counterin-
tuitive behavior occur in DyLPs with cyclic dependen-
cies among literals, somehow leading to the introduc-
tion of undesired models, although a formal definition
of counterintuitive behavior and undesired model was
missing. Our contribution was:

— to formalize the concept underlying such coun-
terintuitive behavior and to clarify which should
be the right semantics for DyLPs by establishing
which properties should be satisfied by such se-
mantics, and

— to define a semantics satisfying those properties,
thus avoiding the known counterintuitive behav-
ior.

To achieve these results we defined the refined exten-
sion principle [1]. The refined extension principle is a
criterion stating when the addition of rules to a pro-
gram should not add more models to its semantics, and
it permits to formalize which models should not be in-
troduced. Then, we defined the refined stable model se-
mantics (or simply refined semantics) for DyLPs that
refines the other stable-like semantics for DyLPs. For-
mally this was achieved by associating to each DyLP
P = Pi,...,P,, an operator over sets of literals Fg
and defining the refined models of P as the fix-points
of I'Z. The I'E operator is formally defined as follows:

TRE(M) = least (p(P) \ Rej™ (P, M) U Def(P,M))

where p(P) is the multiset of all the rules appearing
in any program of the sequence P and Rej®(P, M)

Alferes, Banti, Brogi / Evolving Reactive Logic Programs 79

is the multiset of all the rules 7 in some update P; of
P for which there exist a rule 7 in some update P;
with ¢ < 7 such that 7 and n are in conflict and the
body of 7 is true in M. Finally Def(P, M) is the set
of default assumptions, i.e., the set of all the negative
literals not A such that there exists no rule in P whose
head is A and whose body is true in M.

The refined semantics was proved to satisfy the re-
fined extension principle and the causal rejection one.
Furthermore, we extended the concept of well sup-
ported models [6] to DyLPs and proved that the refined
models of a DyLP are exactly its well supported mod-
els.

A further result was the definition of a well founded
semantics for DyLPs [8]. The well founded seman-
tics is a skeptical approximation of the stable model
one. From a practical point of view, the well founded
semantics has less expressivity (for instance it does
not allow to express logic constraints) and less infer-
ence power (it allows to derive less conclusions). On
the other hand, the well founded semantics is com-
putationally less expensive than the stable model se-
mantics. Determining a (refined) stable model of a
(dynamic or generalized) logic program is an NP-
complete problem, while the computation of the well
founded model of a normal logic program has polyno-
mial complexity.

Moreover, unlike the stable model one, the well
founded semantics is always defined and, according to
it, a program can be queried about specific information
without having to compute its whole semantics. Due to
these features, the well founded semantics is a better
candidate than the stable model one for applications
that are time-committed and require to process huge
amounts of data, like most real world database related
applications.

We defined a well founded semantics for DyLPs that
extends the well founded semantics for normal LPs
and approximates the refined one, in the sense that (as
for normal LPs) the well founded model of a DyLP
is a subset of any of its refined models. Moreover, the
well founded semantics for DyLPs preserves the good
features shown for the class of normal and general-
ized LPs, i.e., the well founded model always exists, its
computation is polynomial, and a DyLP can be queried
about specific information without having to compute
its whole semantics.

The well founded model was defined as the least fix-
point of an operator I'T'*¥, combining the I'*? operator
used for defining the refined model semantics with an-
other operator I" used for defining another semantics

for DyLPs, i.e., the dynamic stable model semantics
[12].

3. Reasoning about and executing actions

After strengthening the formal foundation of dy-
namic logic programs, we turned our attention to the
problem of programming self-updatable Al applica-
tions capable of reasoning about and executing actions.
A bridge, using DyLPs, between dynamic KR and this
kind of applications was already established by the
family of LP updates languages [4,10,12]. These lan-
guages are built on the top of a DyLP semantics and,
besides representing dynamic and constantly updated
knowledge, they allow one to specify how a KB should
be updated. Among these formalism, the Evolp lan-
guage [4] has a particularly simple, but highly expres-
sive, syntax and semantics, and hence it was chosen as
the starting point of our investigation. Evolp is a lan-
guage for building sequences of DyLPs starting from
an original program. Syntactically, Evolp extends the
language of LP with new atoms assert(r) where r is
a rule. An Evolp programs evolves passing from the
current state to the next one by updating the program
with all the rules 7 such that the atom assert(r) is true
in the current state.

A widely used way to describe and reason about
the effects of actions are action description programs
written in specific formalisms called action descrip-
tion languages [11]. We defined an action description
language of our own, christened Evolving Action Pro-
grams (EAPs) [2]. EAPs are defined as a macro lan-
guage on top of Evolp in the sense that every state-
ment in EAPs is a syntactic notation for a set of Evolp
statements and the semantics of an EAP is given by the
semantics of the corresponding Evolp program.

Syntactically, an EAP statement can be:

— an inertial declaration inertial(f), or

— astatic, LP-like rule L «— L1, ... L, or

— adynamic rule effect(H «— B) <« Cond.

The meaning of an inertial declaration inertial(f),
where f is an atom (usually called a fluent in the con-
text of action description languages) is that the truth
value of f is preserved in time unless it changes as
an effect of the execution of an action. A static rule
describes the (static) rules of the environment by ex-
pressing correlations among fluents. A dynamic rule
expresses the effect of the execution of actions. Syntac-
tically, the effect H <« B is a static rule, while Cond

80 Alferes, Banti, Brogi / Evolving Reactive Logic Programs

is a conjunction of action literals representing actions
being or not executed and fluent literals representing
preconditions for the considered effects to take place.

The expressivity of EAPs was compared with that
of the action languages A, B, and C (see [11] for a
detailed description of these languages) and for each
of these languages, a modular translation of their ac-
tion programs into EAPs was defined, thus proving
that EAPs are at least as expressive as these languages.
Moreover, EAPs show a novel capability of encoding,
by sequences of EAPs, successive elaborations or up-
dates of an action description problem, similarly to the
capability of DyLPs of expressing successive updates
of a logic program.

Besides reasoning about the effects of actions, we
also needed a formalism for executing them. This
was achieved by defining an ECA formalism called
ERA (after Evolving Reactive Algebraic programs)
[3]. Along with inference logic programming rules,
ERA presents two new types of rules for specifying the
execution of actions, i.e., active and inhibition rules of
the form, respectively:

On Event If Condition Do Action. (D
When B Do not Action. 2)

where Fvent is an event literal encoding the occur-
rence of an event and Condition is a conjunction
of literals expressing the condition under which an
Action (syntactically an atom) is executed. Finally, B
is a conjunction of literals expressing conditions under
which Action should not be executed. Both events and
actions can be basic or complex ones. Complex events
and actions are obtained by combining simple ones via
an event and an action algebra.

Events occur at a given instant and are volatile in-
formation. Basic events may be external, representing
incoming inputs and commands, or internal, raised by
the system itself. The event algebra allows to combine
events occurring simultaneously or at different time
points. For instance, the complex event A(eq, e, e3),
where A/3 is a ternary operator and the e;s are events,
occurs at instant ¢ iff e3 occurs at instant ¢, e; occurred
at some previous instant and ey did not occur in be-
tween.

Actions represent operations to be executed. Basic
action can be external, representing some external op-
eration to be executed, or internal, specifying the oc-
currence of events or self-updates. As for events, ba-
sic actions can be combined by an algebra of opera-
tors, thus obtaining complex actions specifying a flow

of operations. For instance, given two actions a; and
as, action aj > agy specifies that action as must be exe-
cuted after a;, while action a4 ||ag specifies that a; and
as can be executed concurrently.

Among internal actions, particularly important ones
are the assertion and the deletion of facts and rules.
While deletion removes facts and rules from the KB,
the assertion of rules causes the application to update
itself by a new fact, an inference, an active or an in-
hibition rule. New facts and inference rules are incor-
porated by the underlying DyLP semantics (that can
be the refined as well as the well founded one). Also
new active and inhibition rules are incorporated by the
underlying DyLP semantics. Assertions of rules of the
forms (1) and (2) are translated, respectively, into the
LP updates

Action «— Condition, Event.
not Action < B.

The underlying DyLP framework allows to establish
whether the atom Action is derived or not. In the for-
mer case, the corresponding action is executed. Un-
like other ECA languages, an ERA program can up-
date not only its KB but also its behavior by assert-
ing new active rules and specifying exceptions to ex-
isting active rules by asserting inhibition ones. It was
also proved that every Evolp program, and hence ev-
ery EAP, can be directly encoded into ERA. Thus ERA
is a paradigm capable of both executing and reason-
ing about actions. In [7] ERA is discussed in detail and
compared to existing formalisms for programming re-
active behavior. We simply point out here the two main
novelties of ERA, i.e., its self evolution capabilities
and the featured possibility of both programming the
execution of actions and reasoning about their effects.

4. Conclusions and future work

In this paper we have briefly described the research
activity that we have been carrying out during the lat-
est years on dynamic logic programs. After reviewing
our contributions to strengthening the semantics foun-
dations of dynamic logic programs, we have presented
the EAPs formalism to reason about actions, and its
recent event-condition-action extension ERA that sup-
ports the specification and the execution of reactive
programs. While space limitations only allowed us to
provide an extended abstract of this research activity,
more details can be found in the papers [1,2,3,8] and

Alferes, Banti, Brogi / Evolving Reactive Logic Programs 81

a complete presentation of all the results is reported in
[7].

There are several branches of research for future
work. One of them is the definition of action query lan-
guages [11], that is, languages for extracting informa-
tion about the possible evolution of the situations de-
scribed by EAPs and to address planning issues, e.g.,
how to determine, given a current state and a goal, a
sequence of actions leading to a state satisfying that
goal. Another direction for future work are transac-
tions. Transactions are a fundamental issue in applica-
tions requiring databases updates and resources alloca-
tion. Although the action algebra of ERA has enough
expressivity to program complex actions, it is still less
than adequate for defining either ACID transactions or
transactions with associated compensation activities.

References

[1] J.J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined ex-
tension principle for semantics of dynamic logic programming.
Studia Logica, 79(1):7-32, 2005.

[2] J.J. Alferes, F. Banti, A. Brogi. From logic programs updates to
action description updates. In J. Leite, P. Torroni (eds.), CLIMA
V, LNAI 3487, pages 52-77, 2005.

[3] J.J. Alferes, F. Banti, A. Brogi. An event-condition-action logic
programming language. JELIA 2006, LNAI 4160, pages 29-42,
2006.

[4] J.J. Alferes, A. Brogi, J. A. Leite, L. M. Pereira. Evolving logic
programs. JELIA’02, LNCS 2424, 2002.

[5] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and

T. C. Przymusinski. Dynamic updates of non-monotonic knowl-

edge bases. The Journal of Logic Programming, 45(1-3):43-70,

2000.

K. R. Apt and R. N. Bol. Logic programming and negation: A

survey. The Journal of Logic Programming, 19 & 20:9-72, May

1994.

F. Banti. Evolving Reactive Logic Programs. PhD thesis, Uni-

versitade Nova de Lisboa, 2008.

F. Banti, J.J. Alferes, A. Brogi. Well founded semantics for logic

program updates. IBERAMIA’04, LNCS 3314, pages 397407,

2004.

[9] F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic pro-
grams with inheritance. ICLP’99, 1999.

[10] T. Eiter et al.. A framework for declarative update specifica-
tions in logic programs. In [JCAI, 2001.

[11] M. Gelfond and V. Lifschitz. Action languages. Electronic
Transactions on Al, 16, 1998.

[12] J. A. Leite. Evolving Knowledge Bases. Frontiers in Artificial
Intelligence and Applications, vol. 81, 2003.

[13] J. A. Leite and L. M. Pereira. Generalizing updates: from mod-
els to programs. LPKR’97, 1997.

[6

=

[7

—

[8

—_—

